“Many-body localization near the critical point,” A. Morningstar, D. A. Huse, and J. Z. Imbrie, Phys. Rev. B 102, 125134 (2020). arXiv:2006.04825.
“Localization and eigenvalue statistics for the lattice Anderson model with discrete disorder,” J. Z. Imbrie, Rev. Math. Phys. 33, 2150024 (2021). arXiv:1705.01916.
“The lattice Anderson model with discrete disorder,” J. Z. Imbrie. In: Mathematical Problems in Quantum Physics, Bonetto, F. et al (eds.): AMS Contemporary Mathematics 162, 49-64 (2018).
“Many-body localization: stability and instability,” W. De Roeck and J. Z. Imbrie, Phil. Trans. R. Soc. A 375, 20160422 (2017). arXiv:1705.00756.
“Local integrals of motion in many-body localized systems,” J. Z. Imbrie, V. Ros, and A. Scardicchio, Annalen der Physik 529, 1600278 (2017). arXiv:1609.08076.
“Diagonalization and many-body localization for a disordered quantum spin chain,” J. Z. Imbrie, Phys. Rev. Lett. 117, 027201 (2016). arxiv:1605.03003.
“Level spacing for non-monotone Anderson models,” J. Z. Imbrie and R. Mavi, Jour. Stat. Phys. 162, 1451-1484 (2016). arxiv:1506.06692.
“On many-body localization for quantum spin chains,” J. Z. Imbrie, Jour. Stat. Phys., 163, 998-1048 (2016). arxiv:1403.7837.
“Multi-scale Jacobi method for Anderson localization,” J. Z. Imbrie, Commun. Math. Phys. 341, 491-521 (2016). arxiv:1406.2957.
“A Phase-Space Model for Pleistocene Ice Volume,” J. Z. Imbrie, A. Imbrie-Moore, and L. E. Lisiecki, Earth and Planetary Science Letters 307, 94-102 (2011), arXiv:1104.3610.
“Functional integral representations for self-avoiding walk,” D. C. Brydges, J. Z. Imbrie, and G. Slade, Probability Surveys 6, 34-61 (2009), arXiv:0906.0922.
“Dimensional Reduction for Isotropic and Directed Branched Polymers,” J. Z. Imbrie. In: Proceedings of the International Conference in Mathematical Physics, Lisbon, 2003.
“Dimensional Reduction for Directed Branched Polymers,” J. Z. Imbrie, J. Phys. A: Math. Gen. 37, L137-L142 (2004). arXiv:math-ph/0402074.
“Dimensional Reduction and Crossover to Mean-Field Behavior for Branched Polymers,” J. Z. Imbrie. Ann. Henri Poincaré
4, S445-S458 (2003). arXiv:math-ph/0303015.
“Dimensional Reduction Formulas for Branched Polymer Correlation Functions,” D. C. Brydges and J. Z. Imbrie. Jour. Stat. Phys. 110, 503-518 (2003). arXiv:math-ph/0203055.
“Branched Polymers and Dimensional Reduction,” D. C. Brydges and J. Z. Imbrie. Ann. Math. 158, 1019-1039 (2003). arXiv:math-ph/0107005.
“End-to-End Distance from the Green’s Function for a Hierarchical Self-Avoiding Walk in Four Dimensions,” D. C. Brydges and J. Z. Imbrie. Commun. Math. Phys. 239, 549-584 (2003). arXiv:math-ph/0205027.
“The Green’s Function for a Hierarchical Self-Avoiding Walk in Four Dimensions,” D. C. Brydges and J. Z. Imbrie. Commun. Math. Phys. 239, 523-547 (2003). arXiv:math-ph/0205028.
“Intraoperative Ultrasound is Associated with Clear Lumpectomy Margins for Palpable Infiltrating Ductal Breast Cancer,” M. M. Moore, L. A. Whitney, L. Cerilli, J. Z. Imbrie, M. Bunch, V. B. Simpson, J. B. Hanks. Ann. Surg. 233, 761-768 (2001).
“Association of Infiltrating Lobular Carcinoma with Positive Surgical Margins After Breast-Conservation Therapy,” M. M. Moore, G. Borossa, J. Z. Imbrie, R. Fechner, J. Harvey, C. Slingluff, R. Adams, and J. Hanks. Ann. Surg. 231, 877-882 (2000).
“The Mechanics Underlying Laparoscopic Intra-Abdominal Surgery for Obese Patients,” S. P. Robinson, M. Hirtle, J. Z. Imbrie, M. M. Moore. J. Laparoendosc. Adv. Surg. Tech. A 8, 11-18 (1998).
“Interventions to Reduce Decibel Levels on Patient Care Units,” M. M. Moore, N. Diem, P. N. Stanton, S. P. Robinson, B. Ryals, J. Z. Imbrie, W. Spotnitz. Am. Surg. 64, 894-899 (1998).
“The Broken Supersymmetry Phase of a Self-Avoiding Random Walk,” S. Golowich and J. Z. Imbrie. Commun. Math. Phys. 168, 265-320 (1995).
“End-to-End Distance for a Four-Dimensional Self-Avoiding Walk,” J. Z. Imbrie. Centre de Recherches Mathématiques Proceedings, 7, 191-196 (1994).
“Crossover Finite-Size Scaling at First-Order Transitions,” C. Borgs and J. Z. Imbrie. Jour. Stat. Phys. 69, 487-538 (1992).
“A New Approach to the Long-Time Behavior of Self-Avoiding Random Walks,” S. Golowich and J. Z. Imbrie. Ann. Phys. 217, 142-169 (1992).
“Finite-Size Scaling and Surface Tension from Effective One-Dimensional Systems,” C. Borgs and J. Z. Imbrie. Commun. Math. Phys. 145, 235-280 (1992).
“Self-Avoiding Walk in Four Dimensions,” J. Z. Imbrie. In: Probability Models in Mathematical Physics. G. J. Morrow and W.-S. Yang (eds.): Singapore: World Scientific 1991.
“Self-Avoiding Walk on a Hierarchical Lattice in Four Dimensions,” D. Brydges, S. Evans, and J. Z. Imbrie. Ann. Prob. 20, 82-124 (1992).
“Space-dependent Dirac Operators and Effective Quantum Field Theory for Fermions,” J. Z. Imbrie, S. A. Janowsky, and J. Weitsman. Commun. Math. Phys. 135, 421-442 (1991).
“Supersymmetry Breaking in Wess-Zumino Models,” J. Z. Imbrie. In: Constructive Quantum Field Theory II. G. Velo and A. S. Wightman (eds.): New York: Plenum 1990.
“A Unified Approach to Phase Diagrams in Field Theory and Statistical Mechanics,” C. Borgs and J. Z. Imbrie. Commun. Math. Phys. 123, 305-328 (1989).
“Diffusion of Directed Polymers in a Random Environment,” J. Z. Imbrie and T. Spencer. Jour. Stat. Phys. 52, 609-622 (1988).
“An Intermediate Phase with Slow Decay of Correlations in One Dimensional 1/|x-y|2 Percolation, Ising and Potts Models,” J. Z. Imbrie and C. M. Newman. Commun. Math. Phys. 118, 303-336 (1988).
“Directed Polymers in a Random Environment,” J. Z. Imbrie. In: Mathematical Quantum Field Theory and Related Topics. J. S. Feldman and L. M. Rosen (eds.): Providence: American Mathematical Society 1988.
“Effective Action and Cluster Properties of the Abelian Higgs Model,” T. Balaban, J. Z. Imbrie, and A. Jaffe. Commun. Math. Phys. 114, 257-315 (1988).
“On the Ising Model in a Random Magnetic Field,” J. Z. Imbrie. In: Statistical Physics. H. E. Stanley (ed.): Amsterdam: North Holland 1986.
“The Ising Model in a Random Magnetic Field,” J. Z. Imbrie. In: VIIIth International Congress on Mathematical Physics. M. Mebkhout and R. Sénéor (eds.): Singapore: World 1987.
“Low Temperature Behavior in Random Ising Models,” J. Z. Imbrie. In: Random Media. G. Papanicalau (ed.): Berlin, Heidelberg, New York: Springer 1987.
“Renormalization Group Methods in Gauge Field Theories,” J. Z. Imbrie. In: Critical Phenomena, Random Systems, Gauge Theories, Les Houches 1984. K. Osterwalder and R. Stora (eds.): Amsterdam: North Holland 1986.
“The Ising Model in a Random Field: Long-Range Order in Three Dimensions,” J. Z. Imbrie. In: Critical Phenomena, Random Systems, Gauge Theories, Les Houches 1984. K. Osterwalder and R. Stora (eds.): Amsterdam: North Holland 1986.
“Renormalization of the Higgs Model: Minimizers, Propagators, and the Stability of Mean Field Theory,” T. Balaban, J. Z. Imbrie, and A. Jaffe. Commun. Math. Phys. 97, 299-329 (1985).
“The Ground State of the Three-Dimensional Random-Field Ising Model,” J. Z. Imbrie. Commun. Math. Phys. 98, 145-176 (1985).
“Lower Critical Dimension of the Random-Field Ising Model,” J. Z. Imbrie. Phys. Rev. Lett. 53, 1747-1750 (1984).
“Improved Perturbation Expansion for Disordered Systems: Beating Griffiths Singularities,” J. Fröhlich and J. Z. Imbrie. Commun. Math. Phys. 96, 145-180 (1984).
“The Mass Gap for Higgs Models on a Unit Lattice,” T. Balaban, D. Brydges, J. Z. Imbrie, and A. Jaffe. Ann. Phys. 158, 281-319 (1984).
“Exact Renormalization Group for Gauge theories,” T. Balaban, J. Z. Imbrie, and A. Jaffe. In: Progress in Gauge Field Theory, Cargèse 1983. G. ’t Hooft, A. Jaffe, H. Lehman, P. Mitter, I. Singer, R. Stora (eds.): New York: Plenum 1984.
“Iterated Mayer Expansions and Their Applications to Coulomb Gases,” J. Z. Imbrie. In: Scaling and Self-Similarity in Physics, Renormalization in Statistical Mechanics and Dynamics. J. Fröhlich (ed.): Boston: Birkhäuser 1983.
“Debye Screening in Jellium and Other Coulomb Gases,” J. Z. Imbrie. Commun. Math. Phys. 87, 515-565 (1983).
“Decay of Correlations in the One-Dimensional Ising Model with Jij = |i-j|-2,” J. Z. Imbrie. Commun. Math. Phys. 85, 491-515 (1982).
“Phase Diagrams for Low Temperature P(φ)2 Models,” J. Z. Imbrie. In: Mathematical Problems of Theoretical Physics, Proceedings of the VIth International Conference on Mathematical Physics, Berlin 1981. R. Schrader, R. Seiler, and D. A. Uhlenbrock (eds.): Berlin, Heidelberg, New York: Springer 1982.
“Phase Diagrams and Cluster Expansions for Low Temperature P(φ)2 Models, I. The Phase Diagram,” J. Z. Imbrie. Commun. Math. Phys. 82, 261-304 (1981).
“Phase Diagrams and Cluster Expansions for Low Temperature P(φ)2 Models, II. The Schwinger Functions,” J. Z. Imbrie. Commun. Math. Phys. 82, 305-343 (1981).
“Cluster Expansions and Mass Spectra for P(φ)2 Models Possessing Many Phases,” J. Z. Imbrie. Harvard Ph.D. thesis, 1980.
“Mass Spectrum of the Two-Dimensional λφ4 – ¼φ2 - µφ Quantum Field Model,” J. Z. Imbrie. Commun. Math. Phys. 78, 169-200 (1980).
“Modeling the Climatic Response to Orbital Variations,” J. Imbrie and J. Z. Imbrie. Science 207, 943-953 (1980).
“O(3) Symmetric Merons in an SU(3) Yang-Mills Theory,” J. Z. Imbrie. Lett. Math. Phys. 2, 483-492 (1978).