Communications in
Commun. Math. Phys. 82, 305-343 (1981) thematical

Physics

© Springer-Verlag 1981

Phase Diagrams and Cluster Expansions
for Low Temperature 2(¢), Models*

II. The Schwinger Functions
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Abstract. We give a cluster expansion for the Schwinger functions of the stable
phases found in Part I. The Wightman axioms, the mass gap, and asympto-
ticity of perturbation theory follow.

In Part I the phase diagram of a generic low temperature %(¢), quantum field
model was mapped out. At each point in the diagram a number of stable phases g,
were found such that

ZV _ aaapey

Z(W!o) =

for every g. We now use this information with some other Part I machinery to give
a cluster expansion for the Schwinger functions in the stable phases. We also prove
the convergence estimates needed in Parts I and II. The reader is referred to the list
of references in Part I.

4. An Expansion for the Schwinger Functions

4.1. Constrained Expansions

In this chapter we derive a convergent expansion for the Schwinger functions from
bounds on ratios of partition functions. The presence of clusters containing field
monomials introduces constraints on partition function sums. The constraints
must be handled in such a way that the phase structure of Chap. 3 is not destroyed.

So far we have always multiplied clusters by ratios of interior partition
functions. This procedure must be altered for clusters surrounding squares
containing field monomials. In [20], a priori bounds on ratios of partition
functions in non-simply-connected regions were available. Thus it was possible to
multiply g(Y) by a ratio of partition functions in (IntY)\X, where X is a cluster
containing field monomials.
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In order to avoid an uncontrollable accumulation of surface effects on X, we
must alter the procedure of [20] by considering partition function sums with the
constraint that no cluster shall surround X If one fixes all the clusters surrounding
X then the resummation between the clusters yields partition function sums of this
type. (This procedure was not necessary in [20] because surface effects were always
favorable.)

We bound ratios of constrained partition functions in Sect. 4.2, using some of
the tools of Chap. 3. The ratios transform the expansion into an explicit sum over
clusters surrounding X’s and a constrained sum over other clusters. As the
constraints are ultimately connected with the presence of Xs, the techniques of
Sect. 3.2 can be applied to factor out the normalization fe'quum%(lpq) exactly. The
result is the expansion for (R}, .

4.2. More General Ratios of Partition Functions

This section is devoted to obtaining bounds on ratios of constrained partition
functions in regions that are not simply connected. The constraint will be that all
clusters Y contributing to the partition function in a region ¥V must have
YulintYCV. When V is not simply connected, this is nontrivial constraint.

The phase structure of the theory has already been determined from the
considerations of Chap. 3. Thus, our task will be to show that the constraints
produce at most surface effects, so that convergence factors from boundary
clusters can control the expansion.

We assume a solution to the equation L=.4(L) and we use the associated
objects F;, s(F%), and a¥(F ). The shorthand notation F, s% and a? will be used. We
hold to the convention of Chap. 3 that |Y|>1 for all clusters Y. In this section ¥V
will denote a connected, but not necessarily simply connected, region with
boundary condition p(V). The boundary condition is the same on all boundary
loops of V, including interior boundaries. Define constrained partition functions in
V as follows:
aP(W)!g W;nt*

oFV)= Y []F(Y)e (4.2.1)

{Ys}: p(Y)=p(V) s
Ysulnt ¥s ¢ V

QF W)= 3  JIFRY). (4.2.2)
Y p(Y)=p(¥) s
Ysulint Ys SV

Here p(Y,) denotes the external boundary condition of Y. The Y,’s are nonover-
lapping. When V is simply connected, this definition agrees with (3.4.7), so that
QU(F,V)=Q@(F, V).

Proposition 4.2.1. Suppose A<1<Ll. The following expressions for Q(F,V) are

valid : Z Z,(V)

EnV:@VnlRi=0

Q4(F, V)= ' (4.23)
1_[ ZAP(V)
AV
- PV} i
> zywe T
InVy:0Vn UR,‘= [}
QF, V)= (4.2.4)

i .
H ng(\r)

4cv
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Here {R;} are the regions associated with 2NV. In addition, the following bounds

hold :
Z};‘ = p(w}(w) é Q?(F, W) g QC(F, W)eap(W)IVE
ZA?(W)
ACY
:e(aP(V’+SP‘V))]W|eAc(F,W) (425)
|4(F, V)| <2428V (4.2.6)

Proof. Recall from (3.4.1) and (3.4.10)—3.4.12) that

F(Y) Q(m l—I Qa(F V) il Sl I C aP(Y) +log Z ar¥ — 108 Z 4 pw ) |V
veml QF, V)
]—[ o~ PV +log Z gpemo log Z 47¥2)|RinY] , 4.2.7)
1
where {R;} are the regions associated with X;.. Call a Y outer if it is not
contained in any IntY_. With the outer clusters in (4.2.1) fixed, the sums over the

others produce a factor [ Q(F, W), where W runs over the components of IntY,,
w

Y, outer. We obtain
Qa(F W) Z H[ (Y)He(logZAmR) logZsrW)|RinYs|

{Ys} outer s

1‘[[9& (F,w) [ Zee " 42

AW A4PV)

} — gP(V) ‘U R;!e

The last two factors cancel, and each term in [] is equal to

N

Q(Ys)e(ﬁ?ws)"Eaf“{‘))”lm"““‘wﬂ' l—[ e(—Eg(W)+E€v(\V)j12|W| I‘[ (ZAP(W))_1~ (4‘2‘9)

WCInt Ys ACYs

Moreover, by (3.5.2), Q“(F,W)zZ(W)/ [T Z 40w so that

4CW

Ep(¥s3 — ER(Y)I2| Y, Ulint Y
o(Y )e"®
QFEV= Yy [[—
{Ys)outer s n Z gpw
ACYsullntYs
_ 1—[ o~ B2+ EGWEIW 7 () (4.2.10)
w

Expand Z(W) into spin configurations. In the resulting sum over {Y,} and
{Zwh fix 2= U Zy U 2wand sum over Y,'s compatible with Z. If 2 is such that

o¥n UR +0, then there is no compatible {Y,}: If there were, then some Y, would
have Int Y, { V, contrary to construction. (Recall that | J R; does not contain the

sea of constant phase at the outer boundary of V. If interior boundaries of V are in
other seas, then some clusters would have to effect the transition, resulting in some

IntY, QW) If X is such that dVn U R; =0, then the restriction Int Y SV is vacuous.
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Thus
GFEV= ¥ 2

Z:0Vn{jRi=0 {¥s} outer
i compatible with £

Q(Y )e(Eg‘Vs) —~ EBCYNI2 Y eulint Vsl
s

[e{- Eg(W) +E€"(W))12{W!ZZ““N(W)} .

s WCintYs
H ZAP(W)
4 & Ysulint Ys

(4.2.11)
Equation (3.4.33) can now be applied to yield (4.2.3).
The same set of manipulations can be performed for Q (F, V), except that the

factor e_“p(wlgx"[ in (4.2.8) is not cancelled. Since U R/ is independent of ZnW,

the factor agrees with the one in (4.2.4). This completes the proof of (4.2.3) and
(4.2.4).

The first two inequalities in (4.2.5) are immediate consequences of (4.2.3) and
(4.2.4). The last step defines 4(F,V). As in (3.3.7), we have

1 k
logszc(F,W)zzmi Yo Y 11 A@) [1 FY)). (4.2.12)
k k! (Y15.00s YY) Ge £eGe s=1
WsulntVsSV

We can obtain an expansion for 4,(F,V) from this formula and (3.3.8), as in
the derivation of (3.3.9):

1
= —PMY| =§ —
AC(F,W)_IOch(F!W) Sp IWI— - k' Z
v *‘@Y;’:&’YB(V Int V)
nJYs n s\WInt Vs,
lWﬂU YS‘ o )
S S — | AZL) [] F(Y,). (4.2.13)
UYsil G ,?ls—[cc sl=—[1

Apply Lemma 3.3.1 to every boundary square of V to bound sums over
clusters intersecting both V and ~V. With |F|| <42, we obtain a term 22|V}, as
in (3.3.12). It remains for us to bound the sum over clusters contained in V¥ with
| JIntY,{ V. Single out one such cluster:

A(F, V<20V + Yk Y IF(W% X

ko vev:mY{V

k—1
12 1T 4@ I_]lF(WS). (4.2.14)

Ge PeGe

Another lemma is needed to control this sum.

Lemma 4.2.2. Suppose A <1<l If F?is any g-contour model with | F¥| £1, then for

any Y, ‘

> [T A@) I FaY)

Ge #<G, s=1

<kl mllk N4V (4.2.15)

(Y15 e s Vi)
ZIVI =N, p(Y) = 1

Here G, is a connected graph involving Y and all Y_s.
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The lemma will be proved in Sect. 4.4. It yields the bound
IAC(F,V)|§/1”2!6W|+ Z Z|F(Y)|e‘f“"“1“4ew|. (4.2.16)

k21 Y

We fix Y, the region in R? covered by Y, and sum over I'mY and Z. The first sum
produces a factor 22/¥1, and the second a factor

212}y '212|Yl R . ,
Y 0(1)'2’( 2] )e-m Bl (1 e 2) 2P < AT (4.2.17)
1Z]=0

The number of ¥’s with | Y| = N surrounding a given component of ~V is less than
P Applying | F| < A2, we obtain

|4,(F, V)| <0V ()L1/2+2 Y eO“’Ne'“’N/l”z)§2A’/2|6WI. (4.2.18)

N28

Proposition 4.2.1 is proven. [

4.3. Exponential Clustering and Asymptoticity of the Perturbation Series

We are now prepared to give a convergent cluster expansion for the Schwinger
functions, with bounds independent of the interaction volume A. We must use
boundary conditions corresponding to a stable phase g, that is, we must have
a?=0. In Chap. 3 and in Sect. 4.2 we have always taken A to be larger than Z to
define o(Z) and g(Z). We now fix A and return to the original objects g, ,(Z). We
no longer require [Y]>1, except where specifically indicated. ¢, ,(Z) is not
invariant under translations of Z. We will eventually find a formula for the infinite
volume Schwinger functions that involves ¢(Z) and §(Z), with no subscripts 4, q.

A standard argument [6, 197 expresses a Schwinger function as its first several
orders of perturbation theory plus a remainder. The remainder is a power of 4
times other (generalized) Schwinger functions. Thus bounds on the generalized
Schwinger functions yield asymptoticity of perturbation theory. Asymptoticity
immediately implies that the phases we construct at the coexistence hypersurfaces
are all distinct.

Normally, the argument shows for example that for all x and all A€[0, 4,],
IS(4)— S(0)| =0(4). We obtain a slightly weaker result, due to phase transitions
which will occur as 1 is varied. We prove that if g is one of the stable phases at 4,
then S(g, ) differs from the first n orders of perturbation theory about the g™
minimum by O(A4"*1). C* properties will not in general be uniform in parameter
space. If we choose u near a classical phase transition hypersurface (i.e. Ei(u, A=1)

- inle‘g(u,l=1)<1 for more than one q) then one must take 4 exceptionally

small to get the theory into the A=0 phase. Reparametrizing the interaction to
avoid phase transitions as A—0 would not solve the problem because we only
know Lipschitz continuity of the phase transition hypersurfaces. By using the
perturbation expansion for the vacuum energies, we could give a description of the
phase diagram that is much more precise than the one in Theorem 3.7.2. However,
it seems that Lipschitz continuity is an intrinsic limitation of the construction, at
least at the ¢~2%™? level. Whether this is a real effect or an artifact of the
construction is an interesting open question, even for lattice systems.
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We use the field p,=¢ —¢, to generate the perturbation series. We have

deg?

2
m _
yl’”(wq+ éq)_ 72‘1 w; - '@/L u(éq): Z an,q’ln zw; ’
n=3

so that all coefficients in the interaction

2
Vo= [ 2un ) +2): ”;—q ()2 — P, (2| dx (4.3.1)

are O(A) or smaller. We defined the finite volume measure to be e’V‘Idum‘z’(:pq).
We give an asymptotic expansion for

(R 4,0= [ Re™ "t qw)/fe ™" edu,gp,).

The R’s we consider have the form

R=[w(x) ﬁ P (x)Pidx, (4.32)

where w(x;,...,x,)e L”( I1 Ai) is supported in a product of [-lattice squares, and
i=1

p>1 is fixed.
In the integration by parts formula

§ 2w )™ R(p e ™ adp,o(w,)

OR oV,
=({[dyC,.(x—y)| 1 (x)" " 1: —R—2|e Vdp (v, (43.3)
4yt 0,2 o) R a i,
we have
5V deg? 3 _
5y (q’c) = ), a,A" ’n tlpq(x)" L. 4.34)
%) W=

so that each derivative of ¥ produces factors of 4. We integrate by parts each

i oV, . . .
factor of y in (4.3.2), and the factors of 5—" that result. We continue inductively
lpq R
until all terms either have the form f(const)e"‘?dumgl(lpq), or else they have an
explicit factor of 2**!. Dividing by fe_VQdum%(tpq), we obtain

n

CRY4q= Z aj,lf+j_"+1 Z<Rk>/l,q' (4.3.5)

j=o

The a;'s form the usual perturbation series for (R) through order n. The other
terms are the remainder, and the R,’s have the form (4.3.2).

Theorem 4.3.1. Let p>1 be given and suppose a?=0. For A<1<l, there exist
positive constants K, T, depending on p,#, C such that for R of the form (4.3.2),

IR 4, gl S Wil [T(N(A)1)! /2K 48R (1 4 17 deeRe ™72 7%) (4.3.6)
|

Here N(A) is the degree of R in [-lattice square A.
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The theorem bounds the remainder in (4.3.5) by O(A**?). Note that | does not
diverge with A as in [19]. The factor i~ 9€Re"%4"" in (4.3.6) arises from the
possibility of fluctuations into minima other than g. Since |, — ¢ ,|=0(1""), we
have contributions of size A79#R_ but with small probability e"lg'z.

The theorem yields bounds uniform in A4, so that when we take A to infinity we
will obtain asymptoticity of perturbation theory for the infinite volume Schwinger
functions. In particular, we will have

{¢$>,=¢&,+00), (4.3.7)

where (-}, denotes the infinite volume expectation obtained as a limit of
expectations with boundary condition q. This distinguishes the different states that
we construct on coexistence hypersurfaces.

Proof of Theorem 4.3.1. Perform the mean field expansion on IRe_V'ldum%(zpq) =Fg
(see Chap. 2). We defer integration against the test function w and for the moment
take R to be a product of factors :1p,(x;)":.

Fp= > [Tea 2. (4.3.8)
{Zx} nonoverlapping, filling R? x
agreeing on common boundaries, £z, =gin Z,\ 4

only finitely many Z. have |z > 1

We make some notational conventions. Clusters that contain field monomials
will be denoted with the letter X and called nonvacuum clusters. Other clusters will
be denoted with the letter Y and called vacuum clusters. There are two types of
Y’s: those such that XClntY for some X, and those such that no Xis contained in
IntY. The first type will be denoted Y, the second simply Y. We shall have occasion
to extend sums over Y’s to clusters overlapping or surrounding X’s or Y’s. When
this happens, ¢, (W) will be defined as in the expansion for the partition function
Fg-,. Thus ¢, (V) is independent of R. In this respect it differs from ¢ 4 ,(X), which
does contain monomials from R. We use the letter T to denote either an Xora.
The letter Z will be used for all types of clusters — X, Y or Y.

In (4.3.8), fix all Xs, Y’s, and all Y’s such that Y {IIntZ, for any . The external
boundary condition of the Y’s is g, because Z =g in ~A. Let ¥, be the components
of the region complementary to all the fixed clusters. At this stage, clusters can
have |Z|=1, so exterior regions are completely filled with fixed clusters.
Resumming the expansion inside each V, yields a partition function in case V, is
simply connected, and a constrained partition function if not. If V,CIIntY, then V,
is simply connected. The result of resummation is

Fr= Z l_[ QA,q(Xr) ]_[ QA,q(Yt)

6 ¥ Wsh s $ Intz r !
p(¥s)=q

'HFA,q(Ys) [1 [Z(Wa)ew‘é—E€<V~>+Ee¢va>)|wmuz]]

Ve SntYs

Vo § () Intys
s

Z;(Wa)ewzEg<v«>+Ewm)nw”]. (4.3.9)

ZAVeilJRiN®V, =0
i

Note that V, <A if V,CIntY, The Y,’s cannot surround X’s and Y’s, and the
outermost X’s and Y’s have external boundary condition g.
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Divide Fg by [] (Z4.e**") and denote the result by Fy. This cancels all
[«

454
0.4,,Y)’'s with [¥| =11in (4.3.9). [Recall that ¢, ,(4)=1for 4{ A.] It also cancels the
factors 2V, By (3.5.2) and (4.2.3),

Z(Wa)zga(F9 sz) l—[ ZAp(V.,)
A4 CVe
and
ZZ‘(Va) ZQ?(Fa ng) H ZA;(VG) .
a4

EnV:URim8W=@ C Vo
b

We substitute in Fp
a2\ —
QA,q(Z)(ZAGeEWI) |zl
_é (Z)e(E‘g—Ev‘%—E{,’(Z)+Eﬂ,(l))lz|Zr\Ale(logZAp(m—logZAG)IRinll
“EAq
1—1 BT~ ER— 2@ + ER @) 2| lntnZ|
b

m

where the regions R; are those associated with the spin configuration that agrees
with {X,¥,Y,} and that is constant in each V,. Observe that each ¢®# ~ E¥|intn2l
factor cancels with

e(—Ergﬂ'f) + EBS)2(J¥ ~ 4| + |Int 1))

from outermost ¥’s in IInt,,Z or with e~ EZ¥<*EEYIEINI from outermost V,’s in
Int,Z. The

o~ EPD + BRIV LA A| + [Tt Z))

factors for Z’s that are not Ys cancel the B ERPIZoAl fa0t0rs, the 571V factors,
and the e ™ factors from (ZAquW”)'l, ACVY,. All of the energy factors have
disappeared, and (4.3.9) becomes

Fr= Y T1o4,0010.,Y)

X Ve, Y3 7 3
l_[ éA. q(Ys) ]—[ ‘Qa(F’ Woz):|
s:|Ys|>1 Vo ClntYs
H Qz(F, Wa) 1'1 ollos Z a»(ro —log Z 49| R;| ) (4_3_ 10)
vad U o i
Define
FA(\Y)=@A,q(Y)eLm (4.3.11)

so that by (3.4.10)~(3.4.12) and a?=0,
0aY) [1 @(FV) I eloetorm=ionkanlii

Ve CIntY itRinY¥*¢
ZFA(Y) ]_[ (F, VZ)
VaCintY
=F,Y) Y [IFaY). (4.3.12)

{Vs}: YsSIntY s
p(Ys) =g, |Ys|>1
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For interior Y’s, F and F, are the same. Multiply and divide by Q(F,V,) for
V, ¢ | JIntY; to obtain

Fom T 5 [T2.4X)

06, ¥ (¥ Yaulnt Ve SR\ U\ UF 7
Py =alvs[F1 F

o QUF. V)
l:[ QA’ q(Yt) Va & &nt% QC(F’ VZ)

e(logZAp(R‘)ﬁlogZAq)lRii HFA(Ys) . (4.3.13)

i:Rir\(UXruU ?‘{t)#ﬂ
- i

We have expanded Q(F, V) as in (4.2.2), and put all the sums over Y's together.
With {Iu} = {X,, Yt}a define
CAURA)

2T H=[1s, (T 0 (F Wi
(T} l:[QA.q( u)vagUﬂgru\UTfu Q(F, V)

. l_[ e(logZAp(Ro-logZAq)IRi[ . (4'3_14)

If not all external T’s have boundary condition g, then Z4({T,})=0. (External
means not contained in Int T, for any u.)

We wish to extend the sum over {Y,} to an unrestricted sum over k, (Y, ..., Y,)

as in Sect. 3.3. The extra terms will be eliminated with projections U(Z,,Z,).
Define

U(T, Y)= {0 if Ig.]IntY or if T and Y overlap
1 otherwise,
. (4.3.15)
UCY.. Yo = 0 if Y, and Y, overlap
(¥, Wo)= otherwise .
Then
- 1 _
Fe=2 Y07 X E(THIUT,Y)
{Tu} & f(Yiseens Yi), | Ys| > 1 u,s
k
[T U(Y,,, Y,) [T Fa(Y). (4.3.16)
51 <582 s=1

The sum over (Y, ...,Y,) is over ordered families of Y,’s, including overlapping
clusters and clusters surrounding or overlapping T’s.
Expand U=1+ A as in Sect. 3.3 to obtain
~ 1 K
Fr= ). Zk—, 2 LEATH [T AL [T FaY).  (43.17)
© (Y1 ZeG s=1

T} &

G is a graph of unordered pairs (or lines) {T,, Y.} or {Y,,Y_}. Let G, be the part
of G that contains lines connected directly or indirectly to some T,. Let G, = G\G..
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G is said to be connected with respect to {X,} if G, =0. We sum separately over the
Y,’s in G, and the Y’s in G, using

1

gL X=Xi X ZZ—- X X

k k! (Y1

..... W) G ke kc‘ (Yi,..., %) G¢ ko 0 (Y1, ..., %) Go

Here Y] is a cluster for G, and Y] is a cluster for G,

Y YEdmy ] 42) HFA( )

! ,
(T} ke kc' (Wl’x ..... Yie) Ge ZeG.

ko 0 (Y{..., Wig) Go £ebGo
Vsl > 1

ko
(Zk Y 2 Il 4w l:—llFA(Y;)>. (4.3.18)

The_second factor is just what we would have obtained for R=1. With
{R)=Fpg/Fg_,, we have

k
(Ryiq= X Zk. X rEmy IT a@) [T R, (43.19)

{T) & B Yy, Yi) Ge ZeG.

This is the final form of the expansion.

To make the transformations leading to (4.3.19) completely well-defined, we
should have placed Dirichlet boundary conditions on the boundary of a square
much larger than A. All clusters would then be constrained to lie in some large ¥V
with p(V)=q. We show below that the first three sums in (4.3.19) converge
absolutely, so that the right-hand side of (4.3.14) converges as V tends to infinity.
The left-hand side also converges by virtue of the “regularity at infinity” of [17], so
that (4.3.19) is valid in the limit.

We require some exponential decay of Z%({T,}) with

From (4.2.5)-(4.2.6) we have

o e 2 7 Qa(F W) (logZAmW)—logZAq)]W]
T QU(F, W)
< e(al’(v) +sP(V) —59+ KOgZAP(“V)— logZA?)W’Ie(AL'(F,V)‘ Ac(F,V9))
< A2V (4.3.20)
The volume coefficients have canceled exactly, by virtue of a?=0. In addition,

l0gZ yoro—108Z 4o = 57— sPRD <D 112

,| and with

so that
H e(logZasr(m) —togZ.49) Ixmg ng < ezzl/l § 9 n% ' (4'3.21)

i

Thus
124 (TS []184, ()l 87T

< |wlp, H [(N(A)?)Uze_“l]em degR(] +,‘{’degRe'rzA'2)
A:N(4)>0

*‘”I'UFUJ ‘rz/“VZIUEFu’

e “ e “ .

(4.3.22)
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In the second line we have used (2.5.11) and combined factors associated with R.
The test function w has been reintroduced. The external boundary condition of
each T agrees with the boundary loop of the T immediately surrounding it. Since
external loops all have boundary condition g, any factor of A~ 9#®% coming from
an X with X=m=q is compensated by a factor e~ ™*"* coming from a phase
boundary in some other T. Hence the factor (14 A~ 9%#Re~"47%) in (4.3.22).

The sums over k, (Y, ...,Y,), and G, are controlled by a lemma proven in
Sect. 4.4. Define

k

OHZy, ... . L3 Y, ..., Y)=Y [] AP [] F(Y,), (4.3.23)
G, LG, s=1

where each Z, is eithera T or a Y. G, is any graph that is connected with respect

to Z,, ..., Z, that involves all Y’s, and that does not contain lines {Z, Z.}, 1=y,

¥ =j. For k=0 we have G,=0 and ¢,=1.

Lemma 4.3.2. Suppose 2 <1 <. If F? is any q-contour model with |F2|| <1, then for
all {Zp e 9Zj}7 jg 17

Y \PHZ,, ..., Z;; Yy, ..., Y,
(Y1, .00 Yie)
ZIVsI =N, p(Ys) =4
—_ ZIZV
<kl nitMia F (4.3.24)

Together with (4.3.22), the lemma yields the following bound on (4.3.19):
KR 4= Y 2wl [ [(N@A))Y2e =1

{T.} A4:N(4)>0
_eKl degR(1 +l—degRe—t211‘2)

-e_ %ril|y'ﬂ'u|e—rzl'2|92]‘u|‘

(4.3.25)
Fix {T,}, the regions containing {T,}. The sum over I'n | J T, and over £~ (J T,

. C e 0(1) |UTy
are controlled as in (4.2.17), yielding factors of e 2 |.

The number of connected regions of size m overlapping or surrounding a
square is less than e®™, If a number of regions with total size N all overlap or
surround a square, then there are 2¥ ways of distributing the size into connected

regions. Given the distribution N=m, +m,+ ... +m,, there are []e%Vm =0V
i

possibilities, or e in all. Hence

[oe]

Ze(,;nuoaw)é [[ o).

= 3ut|UT| om|UT,| (
Ye ole Tl I
T A4:N(4)>0 \N=0 4:N(4)>0

(4.3.26)

The possibility N =0 is included because some 7”s might contain more than one 4.
The theorem now follows from (4.3.25) and (4.3.26). O

We have shown that the first three sums in (4.3.19) converge absolutely, with a
bound uniform in A given by (4.3.6). Each term converges as A— 0. In fact, 8, ,(Z)
=§(Z) for ZL A, so that F,(Y)=F(Y) for YCA and Z4({T,})=EY{T,}) for



316 J. Z. Imbrie

U T,EA. Here Z%{T,}) is given by (4.3.14) but with g replacing g, ,. Therefore,
{R),,, converges as A->co to (R}, given by

k
Z Z Yo YE(T) [T A T FY)  4327)
k (Y1, - PeG, s=1

s Yi) Ge
Vel > 1
and satisfying the bound of Theorem 4.3.1. Except for clustering, all of the
Osterwalder-Schrader axioms [22] are immediate consequences.
We now show that truncated expectations

CRy3 R =C(RR>—<RH>{Ry (4.3.28)
display exponential clustering. Let R, and R, be of the form [] :y,(x)?':, and let

w be an L? function of all the variables, supported in a product of I-lattice squares.
Let D be the distance (in ordinary units) between the R, -squares and the
R,-squares.

Theorem 4.3.3. Let p> 1 be given and suppose a®=0. For . <1 <l there exist positive
constants K, 1,7, depending on p,#, C such that

[dewl)CRy 5 RoYCIS w oo [T(N()1) 2kt

(1 +/1“’eg’“R2e‘t2‘ e TDIs, (4.3.29)
Here <+ refers either to the finite volume expectation or to the infinite volume one.
Proof. Define

<R>M= Z Z Z Z‘—‘(A)({]r}

(rg k (vi..., Yi):l¥s|>1 Ge
zllrul'}'Z'Wsl M

1 4®2) H Foy(Y)), (4.3.30)
ZeGe
so that
(R)= ZI<R>M (4.3.31)
and
0 M-1
<R1;R2>: Z <R1R2>M— KZ <R1>K<R2>M—KJ' (4.3.32)
M=1 =1

As long as M <D/, each term in the sums over clusters in {R,R,>,, has a
factorization property:

YELATY ] 4 H Foy(Y,

Ge LeGe

=(z &8, ({T,:supptR, (T, Ulnt T,) +@}) [T 4 1 F(A)(Ys))

Gic ZeGic YseGic

(Z (T supptRon (Tt L) +0) 11 42) T] FoafY).

G2c ZLeGac YseGac
(4.3.33)
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Here G, .isa graph connected with respect to the firstsetof T’s,and G, isconnected
with respect to the second set. Equation (4.3.33) is a consequence of the fact that
U=#1 (A#0) only when one cluster overlaps or surrounds another. With the
restriction on total size of clusters, a graph connected with respect to all the T’s
breaks into independent parts. The splitting of (Y, ..., Y,) into (Y, G, .)u(Y,€G,,)
is independent of the graph.

Factorization implies that the terms of (4.3.32) with M <D/l cancel, as there is a

one-to-one correspondence between nonvanishing terms of (R;R,),, and of
M-1

Zl <R1>K<R2>1W—K‘
K=
We estimate {R> as before. The sum over (Y, ...,Y,) involves only sets of

clusters with Z [Y,|=M— Z |T,|. Lemma 4.3.2 insures that we have a convergent

-1 (M 2|'|1'u|)/4

factor e left after summing over k and (Y, ..., Y,). Hence (4.3.25) is

. . _ o —3ulUT). -t |UT
valid for |(R >, with an extra factor e ~*M/*if ¢ *"' ¥ Ilsreplacedbye drat[ifm

The rest of the estimate is identical. Putting the resulting bound into (4.3.32), we
obtain

|[dx| w(x)<R ;5 RyD() < Iwll Lo [T(N(4)1)1/2eK!deeRiRz

(14347 de8RIRzp=02d"Y)  § pfpmuli4 (4334)

M >Djl
and the theorem follows. []

Theorem 4.3.3 establishes the remaining Osterwalder-Schrader axiom and
shows that all the states we have constructed are pure states. Moreover, the
Wightman field theory associated to the Schwinger functions has a positive mass
gap. The mass gap is uniform as 4 tends to zero, and it is uniform in the param-
eters {¢'}. When combined with the Chap. 3 results on the existence of phases with
a?=0, Theorems 4.3.1 and 4.3.3 establish Theorem 1.1.1.

4.4. The Convergence Lemmas

In Sects. 3.3, 4.2, and 4.3 we have made use of lemmas which proved convergence of
expansions involving U- and A-operations. We prove the lemmas here. The proof of
the main result, Lemma 4.3.2, is essentially contained in [1]. We include it here for
completeness.

Proof of Lemma 3.3.1, Assuming Lemma 4.3.2. Fix a cluster Y containing 4 and sum
over the others in (3.3.10) before summing over Y:

2 I @) [T Fovy

(Y1, o0, Yi): (JYs24 G Fete
s
ZIYs| =N, p(¥s)=q

<kY Y IFY Y 12HY;Y,, .., Y, )

n Y24 (W1, oovs Yie— 1)
|vl=n §IYs|=N—"
- — 2" 2 - - -
gktz Z HFHe UM (7Y [)Iv|e tl(k—1+N ")/4€|YI. (441)
n y24

Ivl=n
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A connected graph is connected with respect to any one of its clusters, so the
substitution of (4.3.23) into (4.4.1) is valid. In the last step we have applied
Lemma 4.3.2 and used || F|| < 1. The sum over Y is controlled as in (4.2.17). Using
k=1, n=2 we bound (4.4.1) by

k! HF” Ze—nlneO(l)ne—nl(k+N)/4enln/4§k! ||F||e4nz(k+1v)/4. (4'4‘2)

n

This completes the proof. [
Lemma 4.2.2 is just Lemma 4.3.2 in the case {Z,, ..., Z;} ={Y}.

Proof of Lemma 4.3.2. Our first task will be to find a Kirkwood-Salzburg type
equation expressing ®(Z,, ...,Z;; Y, ..., Y,) as a sum of terms involving @’s with
smaller j+k. For each G,in (4.3.23) let Q be the set of all ssuch that {Z,, Y}eG.. Q
may be empty, but only if j=2. Let G, denote the subset of G, composed of lines
{Z,, Y} and {Y,, Y, }, with 5,s5’e Q and r> 1. Let G” be composed of all remaining
lines except the lines {Z,,Y,}. If we fix Q, the summation over G, is unconstrained

but G, must be a graph connected with respect to {Z,, ..., Z;,(Y),.o}. Since
j
Y [l ao=1][Tvz.Y) [I UV,Y,), (443)
G, LeGi r=2 sef2 81 <52} 81,8260

Equation (4.3.23) becomes

A2, ..., Z:Y,,...Y)= Y [lAzZ,.Y,)

ty 15
QC{1,. k) 5€8

li[ U(Z H U( 51° Ysz)

r=2 sef 51 <s$2; s1,52€82

F(Y)Y [] A& []F(Y,). (4.44)

e G¢ LeGe 5¢0Q

2}

H [ [[U@.Y) ] U,V

51 <52} s1,52€82

g ]_g[2 F(Y)OHZ,, ..., Z; (Yo)seq; (Yo)se). (44.5)

This equation will enable us to prove the lemma by induction on j+ k. To start
the induction, notice that for k=0 we have ®HZ,, ..., Z;; 8)=1, by definition. The
lemma holds in this case. We define @x(d;Y,,...,Y,)=0.

Forj+k=2,j=1, k=1, assume the lemma for smaller j + k. Since A(Z,,Y,)=0
unless Y, overlaps or surrounds Z,, and since the U’s and A4’s are either £1 or 0,
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(4.4.5) yields
Y PZy T Y, L YY)
(Y1, .0es Vi)
EIW&[=N
=9 2 [TIFY)Pp(Zs, .. Z;, (Yo)sen; (Yo
Q (Y1,--..Yk) sef?
giwsl =N, ¥s overlaps or surrounds Z; for se®
- - 12|
Z Q— Z 3 [TIFCY)I
= M=[2| (Yi,....Y{a):ZlYs|=M s=1
Ys overlaps or surrounds Z:
1
ULy, .. LY, Yo YY)
(k IQI) (Y1,...,§§;{k |n|) FA&g it 1 !Q[ 1 k|92
ZIVs|=N-M
k
+ ) [T 1FCY)
(Yi1,...,Yx) =
z |Ys| = N, ¥; overlaps or surrounds Z;
+ Y 9(Z,, .. 25 Y, YY) (4.4.6)
(Y15 -0y Yie)
§|Y‘g|=N

We control the sums over Y, se Q as follows. Given Y, the region covered by Y|,
the sum over 2y, and I'nY are controlled as usual, us1ng [|F) = 1. This produces a
factor ¢@WI¥sl, There are at most 2" ways of expressing M as m; +m, + ... +mqg)s

and there are at most |Z|e®D!™:! connected regions overlapping or sur-
rounding Z,. Altogether, there is a factor e®™M|Z,|®l from the sum over

(Y, ..., ;Q,):ZIYSI-:M. Apply the induction hypothesis to the sums over Y,,
s¢EQ:

Y 19HZ, ..., 25 Y, Y

(Y1, ¥i)
Ylvs|=N
s
k—1 N~-1 J
<k! Z },Q% e—%nlMIZI{lQIe—UI(k—M]+N—M)/4er>;;z|lf|
jaf=1 * M=

z
Lo w”"'Z [Fg k1o TN R4, 2 2| |

g k ja
19=o €1

<kle nlv+Ry4,,E £ e (4.4.7)

We have used M =|Q|, N=k in the second step above. This completes the
proof. [
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5. Converge Estimates

5.1. Structure of the Estimates

Chapter 5 is devoted to the proofs of Propositions 2.5.1-2.5.6, which are the
essential input to the analysis of Chaps. 3 and 4. The starting point for all the
estimates is the vacuum energy bound, Proposition 2.5.1. The proof begins with
the Wick ordering lower bound

P, BdX): =37 (x) = £ = P, (&) —logy(d(A))+{ :6¢,(x)*:
> — b(logK)ie?2. (5.1.1)

Here ¢, is the momentum cutoff field and 6¢, = ¢, — ¢. This bound assures us that
the O(4™2) differences in classical energies and the O(4~?) effect from the term
—31(¢,—&,)* can be controlled by the spin localization factor y, and by estimates
on the fluctuation field d¢,. [The term 37 :(¢, — &,)* : is subtracted from 2 in order
to leave a small mass in the Gaussian measure when doing the vacuum energy
bound.]

The proof of (5.1.1) involves showing that —logxq((f) is large unless ¢ is in the
range [%(fq_1+§q),%(éq+éq+l)]. The term {d¢? is large unless ¢, is close to ¢.
Thus ¢, is localized near ¢, where we have a quadratic lower bound on 2
[condition (vii), Sect. 2.1].

After proving the Wick bounds, the proof follows [19] with a few niodifi-
cations arising from differences in classical masses. In each phase p the vacuum
energy relative to the mass m, ground state is bounded below by E? —O(4). Phase

. - -2 o . .
boundaries produce strong convergence e~ 3* *¥l arising from the gradient

term in the Euclidean action. The field changes by O(A™!) in a distance O(1), so
that [$|F$|>=0(A"?). The other important ingredient for the vacuum energy
bound is a bound on the fluctuation field

Jexp({ :6¢2A") Ydp, ()< O(1), (5.1.2)

uniform as #-—0.
The lower bound on Z,, (Sect. 5.4) puts an upper bound EZ+ O(4) on the
vacuum energy (relative to mass m;). The lower bound

Zy(V)zexp[(—EXY— 004 )P(V]]

is needed in Sect. 5.7 to prove smoothness of Z in . Bounds of this type have not
previously been needed in low temperature expansions. It is ordinarily sufficient to
support the measure on uniform spin configurations, leaving phase boundary
terms to be as small as they like. In our case the smoothness in u is needed for all
configurations if we are to construct hypersurfaces with 2,3, ...,r—1 coexisting
phases. The proof involves bounding the expectation of :J(V): in the measure
Xxe‘VP(V)d;Lm%(wp) by O(4™ ?I?|V|. Cluster expansion techniques cannot be used for
such expectations ; we must control the error involved in considering :wi(W): asa
bounded variable.

Section 5.5 is concerned with the mass-shift normalization factors arising in the
decoupling expansion. Just as in Sect. 3.3, it is important to obtain the exact
volume dependence of logZ,, ,,.(s) and to bound the remainder as a surface effect.
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We also need smoothness in u. Armed with these estimates, we bound the terms of
the decoupling expansion in Sect. 5.6 and we obtain their smoothness in yx in
Sect. 5.8.

5.2. Wick Ordering Lower Bounds

In this section we prove lower bounds on the Wick ordered interactions. These
bounds diverge slowly as the momentum cutoff x tends to infinity. They are an
important ingredient in the vacuum energy bounds.

We use the momentum cutoff of [19]. It consists of a smoothing operator
0« : f—> f, which preserves localization in unit squares and acts as the identity on
characteristic functions of unit squares. If we define the fluctuation field d¢(x)

=¢(x)= P(x)=d(x)— [ P(x)dx, we have (6¢)(x)= ¢, (x)— §(x).

Asx

We shall require certain lower bounds on the polynomial #,(£). The Wick
bounds then apply to Z,(&)=4"22,(A¢) for AS1. If &, ..., ¢, are a number of
relative minima of #,, then £ (1) =1~ '¢, are relative minima of 2,. With 2,(£+£,)

d
= Z aj’qéj, put {o=—o00, ¢, ;=00 and take ¢, <¢,, ;. Recall the definition of

j=0
the spin localization functions:

(Eq(A)+ &g +1(2))/2 R
(&)= 12 | e € gy (5.2.1)
Eg-1(A)+&Eq(A))/2

where g=1, ...,r. The argument 4 in &, and g, will often be omitted. Let xf;')(é)

d"
= d_é"x"(é)'

Proposition 5.2.1. Suppose (e(0,3], (0, /4], and C>2. Let P, be any polynomial
with d < C even. Suppose |E,—,4 |2C ™1, la, |=C™ %, and |a; |SC forj=1,...,d.
Suppose further that for q=1,...,r

ME—E)h 2B, +ENIE AL )
PO~ P E) 2 ME—E) — SE-HEH e )Py E2HEHE)

ME= e = SEAE A G )P ESHE e ). (522

Then there exist constants b(C), a(n,C)>0, and K (depending only on their
respective arguments) such that for all k, all xe A, all Ae(0,1], and g=1, ...,r

1P DX): =31 :(B(X) = E)* 1 — Py(E,) — log 1, (B(A) + { :6¢,(x)*:
= —b(C)logr)?. (5.2.3)

Under the same conditions,
(P dX)): =31 [ P(x) = E)* 1 = P& ) —1og 1T N P(A))] + { :6¢,(x)*:
=a(n, C)A™ 2 —log Kn(4)! —b(C)logk)¥? (5.2.4)
for any n(4)=1.
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Proof. We begin with some upper bounds on log|y"(¢(4)). Put A=%(¢,+¢,_ ),
B=3(¢,+¢&,. 1) The following bounds are valid:
0=y (P(4)=1,
L(PA)=3, A=A or G4)=B

L BA)S |/ 2e™ 10D 42 q‘s(A)gA,
LB /2™ 30D Fg)>p,
I((BA) S1Kn! (6™ 3EN—47 1 o= 3GO=B?) - > (5.2.5)

The first two bounds are easy consequences of (5.2.1), and the others are proven in
[19]. We can combine the second, third, and fourth bounds to yield

10gxq(<?(d)) S —3@A)-4P, =4, (526)
logy,(§(4) < —3((4)—B)*,  P(4)=B.
Furthermore, for n=1, (5.2.5) implies
loglr(@(A) S Kn! —3(B(4) - A,  H(A)=E,,
(5.2.7)

loglz(@(A)| =Kn! —5($(4)-B)*,  $(4)z¢,.

Define X = A|¢, — ¢ | and break the proofinto two cases, depending on whether
|| is very large or not.

Case 1. X>4C>. We use the fact that the leading term a, ,A2*"%(¢p —¢ )" of 2,
dominates everything else, including the Wick counterterms. The Wick constants
are O(logk), so the following bound holds:

P=:2(¢(x): =31 (D (x)— )" 1 = PyfE) + 10, (x)*:
d—1
Za, AP —E) _; la; gl 16— E A2 = 3n(d— &)

[j/2]
L |B(ONlogr)lg,— g/ *772. (5.2.8)

I!Mn‘

The last term contains all the Wick counterterms. The index j runs over the degree
of monomials (¢, — ¢, ) in 2,. Since la; /= C and j<d=<C, the coefficients in the
Wick counterterms all satisfy a bound depending only on C. The proposition will
follow in Case 1 if we can show

P=a(n, C)A~2—b(C)(logk)*?, (5.2.9)

because 10gxq(<5( ) =0, loglx(¢(4) <Kn!.
We prove (5.2.9) by establlshlng the following two bounds:

1 at
seh Xizal OA2+ ¥ CXAT 20X 2072, (5.2.10)
i=1

2C3’1 2Xd>|ﬁ(C)|SUP(10gK)"X’ 22— b(C) g, (5.2.11)
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Cancel the common factor 172 in (5.2.10). Since X >4C3, we have Z%X"gl
1 o -
>a(y, C). Furthermore, RX“% C2X97 12 Y CX/+3inX?, s0(5.2.10) is valid.
i=1
For k=j/2=d/2, (52.11) is immediate. Otherwise, note that
X?—M(logk)X?~%* is  minimized at X=<MYZ%(logk)'’? so  that
X9=M(logk)x? 2k - M¥1logx)¥?2. Therefore,

1 1
pYec) AT2X4 > X 12 |B(C)l(logr)X*™ 2k~ b(C)(logx)*?
> |B(O)l(log )X~ 2k42k~2 _ p(C)(log k)2, (5.2.12)

using X =1, A<1. This completes the proof of (5.2.11).

Case 2. X <4C3. In this region we have a lower bound — b(C)(logx)¥? on the Wick
counterterms, so we can work freely with unordered polynomials. We consider
only Q—B(A)géq, as the case Q—S(A)§éq is essentially the same. Consider three
subcases.

Case 2A. B < o0, and either ¢(4)> B or n(4)>0. Let L=logKn(4)! if n(4)>0 or 0 if
n(4)=0. The proposition will follow from

PP = 31— E)* — PoE,) —log | xT N P(A))] + (¢ 2
>a(n, C)h 2-L, (5.2.13)
by virtue of the lower bound on the Wick counterterms.
Substitute &, =4, (4), £=4¢ in (5.2.2) and divide both sides by A2, The left-

hand side becomes }.'2?1(/1{’)—].‘Zﬁl(iéq)zﬂl(é’)—Q’A(éq), and the right-hand
side is invariant, except that ¢ is replaced by &". Thus (5.2.2) holds for 2, £, (4), and

D)= P Z NG~ 6~ G BP. (5214)

We have used the fact that (¢, — B)>> (¢, — A)? if ¢, < A. For ¢,e[A, B], the last
term could have been omitted.
From (5.2.6) and (5.2.7) we have

—loglx" ™ ($(4))| = — L+5(4(4)—B)>. (5.2.15)

Thus (5.2.13) reduces to the inequality

006~ €)= 56, ~ B+ K~ B + L6, F() 2aln, O

Using u? +v*23(u+v)? and { <4, we have

§6— B SHFN) - B4 S 6~ ). (5217
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Thus the left-hand side of (5.2.16) is bounded below by
$1(6— &, +HBD)~ BR + 5 (6~ B
b= &)+ 5 (6, ~ B

I

v

i, —BY z1enC7247 2. (5.2.18)
We have used ng\% and

Eg= BI=31E,— Epui| =307 (A= 1)~ & (A= DI23A71CT1. (52.19)
This completes Case 2A.
Case 2B. $(4)< B and n(4)=0. The proposition will follow from

PAb)—an(be— &) — PilE)+ 067 20. (5.2.20)
As in (5.2.15), (5.2.2) reduces the inequality to proving the positivity of

b= E) S (G BEHLFA -9, 6.>B

%’1(%“5(1)2—%(¢K—A)2+C(<5(A)—¢K)2, . <A (5.2.21)
(= E) +EMA)—)?,  ¢.€[4,B].

In the first case, |¢ — @, |=|¢, — B| proves positivity. The third case is positive as it
stands. In the second case, use ¢(4)=¢, to show |p(4)— ¢, | =|p,— Al and prove
positivity. This completes Case 2B.

Case 2C. B= o0 and n(4)=1. We have
—log|x(p(4)| = — Kn! +3(H(4) - A)
; “"Kn! +'1L2“|§q“éq<—1|2
2 —Kn!+{C72072. (5.2.22)

Thus Case 2C follows from (5.2.20). This completes the proof of
Proposition 5.2.1. [

5.3. Vacuum Energy Bound

We begin the proof of Proposition 2.5.1 by stating a number of lemmas bounding
F,,...,F, and the fluctuation field. The proofs are as in [19], with only slight
modifications arising from masses not equal to unity.

Lemma 5.3.1. For any C>2, ne(0, 1] there exists t,(n, C)>0 such that
Fi(Y)z61,A72%|2]. (5.3.1)

The proof uses the fact that the minima are separated by at least C"*A! to
obtain O(4~?) terms from |Fg|* and (g— h)*
Let w(x)e[n/2,m*] for all x and suppose mj—a)(x) is compactly supported.
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Lemma 5.3.2. For any C>2, ne(0,1], there exists a Ay(n,C)>0 such that for
4€(0,4,] and pe[1,0Gm/n)],

fe™ Py, (p)<et ™. (53.2)

Lemma 5.3.3. There exists a constant K, such that for any C>2, {e(0,n%/27),
7€ (0, /4] there exists Ay(#, C)>0 such that for A(0,4,], p=1, and any k, s, ®, Y,
with suppt(m; — w(x)) €4, Y, S ¥4,

[ £:00%(x):dx — pF (Y)|dp,, o #)

< Kl el +LF1(D)pp2(1 = nimBF2Y) (5.3.3)

[exp

We next prove some estimates on the coefficients occurring in Q,, (V). Let
A'CYNA, h(4Y)=¢, and define

U= | 2 ($0x): = B =50 (69— h(x): = 30,0 =) sp(x)* e

(5.34)
Wi, A")=t(U(4")+ E3— E™)+ j;w(x )—n) 1 (x)?:dx. (5.3.5)

See (2.3.8) and (2.4.3). Write
U(a') = Z § k()00 . (5.3.6)

j=0 4t
Lemma 5.3.4. The following bounds hold for dist(x,2)2 L/2:
kjx)|<CH™2, 3=5j=d,
ky(x)=k,(x)=0, (5.3.7)
ko(x)=E{—E1=0(2"%), h(x)=¢,.
If dist(x, )< L/2, then
k(OISO ~2, (5.3.8)

Proof. For dist(x, X)= L/2 we have 1 =t ,,=¢ —h for some m. By condition (iii),
Sect. 2.1 we have

P +E,) =222 (A +E, ) =422, (I +&,(1))
d
= Y a; WX P+ Imip? + Er (5.3.9)
j=3

and the first bound follows. The last two terms in (5.3.4) sum to —3w,(x) 11 ,(x)?:
= —3m,, 11 (x)*:, since w,(x)=mZ, whenever dist(x,Z)=L/2. Thus the j=2 and
j=1 terms vanish. The bound on |E — Ef| comes from (v) and the restriction
lsC .

The minima of 2, are separated by O(A™!), and hence lg—¢&,lis O(Z~ 1), Thus

Pyp)—El=A72P (a0 +0(1)+ (1) —EL.
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Expanding in terms of 1, we find that each monomial v’ has a coefficient O(4/~ ).
The same is true for the other terms in U. This completes the proof. [
Define for 41 YnA

W (t, A" =t I [:2 (@) — EV =35 :(d(x) — h(x))*:]dx
+ I — )(@u(x) = 1) ;. (x)? 1 dx, (5.3.10)

and let SW,(t,A")=W(t, A*)— W.(t, A'). Then with
kf)=kfx), j*2,
ky(x)= =3 ()~ 1),

. (5.3.11)
2
we have that W, is a sum of terms 12( w:—:(p,+g,—9g):). Expanding these

yields
SW.(t, AV =t Z [ k() — cp(x) )dx
+tz I X, ,) s, (x) 2 dx
+ [ 21— 0w, = ) — mp(x)? )dx,  (53.12)
where
ok, )=— 3 kfx) (,’1 ) (gulx)—g(x)y " (5.3.13)

Lemma 5.3.5. For all p< oo there exists &(p, C)>0 such that the following bounds
hold :
kx)I<0(1), j>1 and dist(x,2)2L/2,

512j(x)=121(x)=0, dist(x, )= L/2,
k()< 0()F 2,
‘lélzjnl,pul)éO(l)l_zkde_

Proof. The bounds on k ; follow from Lemma 5.3.4. Since g(x)=const for dist(x, X)

=L/2, 034 =1J4 implies g, =g and 5121.:0. The last bound follows from

(53.14)

1fg= ) "ls SIkAA™Y g (3= 1) = glh= DILE-» SO 217", (53.15)
The bound on |g,—gl follows from properties of the momentum cutoff,
see [19]. O

Lemma 5.3.6. There exists K,(w, C) and 6(C)>0 with the followmg property. Let
{m(4%): A* S YA} be a set of nonnegative integers and let {k(4'):4'C YA} bea
set of positive numbers with kK(41)°= 2172 for dist(4*,Z)<L/2. Then

| H SWany(t, A Y™ Oy, (1)

AC YA
H [(dm(A")! (K (A1) ~9pmtan] (5.3.16)

AEYna

IIA
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Proof. We require C,(s) to have fractional derivatives in some L% This follows
from the Neumann series representation for (2.4.1)

Cm(S mz(s OZO: m - CU)C,;,:(S)]H (53 1 7)

as in [19]. Convergence follows from the fact that O<w(x)<m® and
1
[Caals)] = =7 This representation also shows that both the kernel and the

operator C,(s) are positive, increasing in s, and decreasing in ®. The bounds of
Lemma 5.3.5 suffice to complete the proof as in [7]. O

We establish a weaker version of Proposition 2.5.1 and then recover the full
version using a perturbation argument. Let ¥, be the union of the unit lattice
squares of YNA that satisfy dist(4',2)=L/2 and n(4')=0. For each 4'CY,,
introduce a parameter t(4')e[0, 1]. Let Y, be the union of all 4* C Y, with #(4')+0
and let Y,=(YnA)\Y,. Define

U(4")=U(4") + EI — EP4Y,

. . . (5.3.18)
Ui, V)= Y taHu4ah)+ Y U(4Y).
A1CYq ArCY,
Proposition 5.3.7. Under the hypotheses of Proposition 2.5.1, but with
1
e|l1, 1+ ,
b [ 10‘}
-0, )~ SF(Y) 302 N al?
”x):nl’ t ; Lp(duw",s(w)él;[ Al)!e 3T AT AE T D gal?( el (5‘3.19)

Proof. We follow [19] closely. Let Y,=Y,UY, put t(4)=1 for 4CY, and define

Wi, Y)=ULt, Y)+ [ (o ):p(x)?dx =Y W(t, 4). (5.3.20)

th

Then with w=w,—p(w,— Ny,

i

HX(,)e— U, Y)— 5 F;

LP(dpcsn, s(w)
o ~WED-EF
=Z, )" e | Lok, o)

SZ,,0(8) P T e o g [y O™ WD T (5.3.21)

Here g <1+ Tg—ﬁl, q is even, and q'=q/(q—1)Spq £0(y/m). The F; integral is
bounded by Lemma 5.3.2and Z,, (s) is bounded in Sect. 5.5, yielding the estimate

g~ (L= OF(— P2 Kin, )| Yool He”‘W“’ Y)+Fa—log|x‘?) Hm . (5.3.22)

The last factor can be bounded using the Wick bounds of Sect. 5.2. For each
A'CY,, we specify a positive integer i(4'). We take x, ,, =2"¥ and sum over all sets
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{i(4)} subject to the restriction that «J, =4~ 2 for dist(4, 2) < L/2. For each {i(4)}
we find a bound that applies only to the subset of &’ such that for all 4CY,,

(W(t, )+ :0p%(4): —loglxUP(A)))e
[—b(logk 44 )"*—1, —b(logrk,)*?—1],  n(4)=0,
[ —b(logi; 4)+1)"* +ali™2—logKn(4)! -1,
—b(log;c,.(d))‘”z-I-ai_z—logKn(A)!—1], n(4)>0.

(5.3.23)

When i(4) assumes its minimum value, we omit the upper limit.
On this subset, and for i(4) not minimal, we have
W(t, 4)+( :0¢X(4): —loglx($(4))
—b(logi 42— 14+(al™? —logKn(4)!, n(4)>0)
SWlt, A)+:602(4): —logly (Pp(A) -1, (5.3.24)

where we have used the Wick bound

HA):P(B): —3n (P — &)1 — EN + 62 : —logly, (o)
+3(1 =) w,—n) :p*:
—b(logr )" +(ak™2 —logKn(4)!, n(4)>0). (5.3.29)

For n(4)>0 we have t(4)=1 and this is Proposition 5.2.1. For n(4)=0 the
additional terms satisfy

(1—t(A))(:602: —log tm(P(A) +3(w,—n) :p?:) = — b logk

and (5.3.25) follows using b=b(C)+b'".
Equation (5.3.24) implies that

L<|SW(t, ) < SWi(t, H)™ (5.3.26)

for m any positive even integer. We choose m(4) > (/j)d/q where 6 is given by

Lemma 5.3.6. For i(4) minimal, put m(4)=0. Applying the lower bounds in
(5.3.23), we obtain

lem Do Fyge < [T (Kn(d)le™ )
4:n(4)>0
d/ 1002(4):) . —
. Z ‘I H [5 x(a)(t A)M(A)epq(b(logmu>+1) 2+1+(:00%(4)1) qu“]dllw,s(W)
{i(4)}] 4SYe
Cii,:éci)a(x):dx—F‘g(Y) g

< ([Tntaer <1 o

4

Lpa?
. d/2
n 5Wm(m(ta A)m(A) H eb1logxicay)
fi(4) |aSY |La" ACY e
< (H n(A)le“a’l'zll’l)pq eKiYed?+ pa*Fi)la ,p2a%(1 = mF2
4

11

ALY

Y L@ +2) (K i a1

i(4)> imin(4)

. ph1logxica)/? 4 ebx(logmm)"“}. (5.3.27)
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We have applied Lemma 5.3.3 to the F, integral and Lemma 5.3.6 to the 6W,
integrals.

The i(4) sum converges, and the term i(d)=i,,(4) is less than eKs(Olloed]*
for dist(4, £)< L/2. Thus the product in (5.3.27) is bounded by

O(l)]}'czlﬂ l"[ eK5|1ogz|d/2 < eou)wd]ﬂe;ﬂ ) (5.3.28)
A:dist(4, DS LI2 -

We have used Lemma 5.3.1 to show that
L?K JlogA¥?|Z| £67,A7 2| SAF, .
Combining (5.3.27) and (5.3.22), we obtain
|lx(,)e—U(t, Y)— )i:F‘-"

< 1—[ n(A)!e—a’l’ZIE'IeO(l)IYcrllze-(l - 2Z—CK1)er*(1 — pa2(1 =n)F2 .

The difference | Y,|I* — | Y;/I? can be absorbed with a decrease in a’ and the loss
of another factor AF,. Take ( less than n?/2”pq and small enough so that 1 —34

—{K, =2 Since pg*<1+ —g, the coefficient of F, is negative. Since F, >0, we may

drop the F, factor. This completes the proof. L[]

Proof of Proposition 2.5.1. The change from U(1, Y) to 0,,,(Y) produces the factor
exp (Z I*(E2—E™) Yl,,.) in (2.5.3), see (5.3.18). To obtain a factor A in front of the

volume, apply the identity
~ ~ 1 ~
e PUD=1_pU(4) [ e~ POV gy (5.3.29)
0
for each 4L Y, as in [19]. In each term of the resulting sum, separate the pﬁ(A)

factors from the exponential with Holder’s inequality. Lemma 5.3.4 bounds the
coefficients in U (4 Y,) by O(2), so the U-integral is bounded by O(4)"1*. The

preceding proposition bounds the other integral. Thus for pe[l, 1+

N
30m)’
ng)e—Qm(Y) o

%lz(E‘é—E'é")lYlme*3t2,1-2(|2|.;.Ig*l)nn( (1+0(2), (5.3.30)

A3 A‘g}’d

IIA
o

and the proof is complete. (]

5.4. Lower Bounds for Z 4 and Z,

In this section we prove Proposition 2.5.2 and a lower bound on Z ¢(V) which will
be important in the proof of Proposition 2.5.6, Sect. 5.7.

Proof of Proposition 2.5.2. By (2.4.16) we need to show that for an l-lattice square
4¢€4

m
= [ 2P — — pmlx)?: ~ B ) d +1
<jxlzme Lj" ( i 2 o > xd'umrzn,ﬁA(lpm)) é ea(”!CMlz' (541)
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Write the integral as

[xz=me” ﬁw)d!‘m&.,a,a(wm)
=14 [ rzmle™ P = Dty o s+ [0z =m— Dt oa0) - (542)
As in (5.3.29)-(5.3.30), the second term is bounded by
[T A+0()—1=0(4?). (5.4.3)

41C4

Write the third term as — ) [y;d/t,2 ;4(1,,) and observe that for n+m

IEm
£ :0¢2(x): —log x(F(A) + F(m7 — 1) 1w,,(x) :
n
= —blo K-i--{ . - - 5 i
- 8 2 (¢x_gn1)2+(¢x'—¢)29 l¢_gm|g%c IA !
> —blogk+0(A™?). (5.44)
Thus (5.3.25) holds for t(4)=0, %.) réplaced by y,, and with a term a’.~ 2 With

Y,=4, F;=0, the remainder of the proof of Proposition 5.3.7 can be applied to
yield

(tsditny sawds  TT e 0¢7. (5.4.5)
41 (A Em
Thus
Y 25z, 04W) S(L+e7OF ) — [ <7007, (5.4.6)

TEm

This completes the proof. [

Proposition 5.4.1. Under the conditions of Proposition 2.5.1,
Zz(\y)eE&(W)lﬂw g e—a(n,C)/‘L" 212)y| . (5'47)
Here a is independent of X for X compatible with V.

Proof. This lower bound is very weak because of possible phase boundaries.
Nevertheless it is essential in the proof of Proposition 2.5.6.

Write p(V)=p, dumgﬂ(wp):dwp. By (2.4.16), we need a lower bound on
[xse™V*Mdy,. Recall that

Eotie+1)/2—&p ,
Al E)=m" 12 | e gz, (5.4.8)

Co-1+85)/2-&p

Choose an interval [zq,z5+ 1], zo=0(4"') in the range of z-integration. Since
—(&—2)2 - _ - . .
e €77 272870077 for 7 in the interval, we have a lower bound on y,:

YAE+E ) Ze 2 0T, (5.4.9)
Thus

[rse Ve M,z e G I TT o7 2vdD%~Vegy, (5.4.10)
Aicy
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By Jensen’s inequality, the integral on the right is bounded below by
eXP(—I ( > Aty + I{,(W))dw,,) > e 0P (5.4.11)
ALCvy

completing the proof. [

5.5. Estimates on Mass Shift Normalization Factors

We need estimates on the factors Z, ,, . (s)arisingin the expansion of Sect. 2.4. It
is important to get the correct volume dependence and to estimate the deviation as
a surface effect.

Recall that

Z g ifS) = ORI E Gy (), (5.5.1)

where the Wick order is with respect to the free covariance with mass m;= |/ w,.
In this section only, we shall use ordinary units (not I- or ?-units) to measure
lengths and areas.

Proposition 5.5.1. Let w,(x), w,(x) be constant on unit lattice squares and lie in the
range [1/2,m*] for all x. Let D be a finite union of unit lattice squares, and suppose
0,(x)=wy(x), x¢D and w/x)=00, xeD. Let s={s,} be an arbitrary set of
decoupling parameters for the bonds of the l-lattice, subject to the requirement that
s,=1 for b intersecting the interior of D. Finally, suppose |, —@®,|=d, —n/4,
where &, = 1nf ®,(x). Then

67’2_"5’_1) | D;! <0())eD], (5.5.2)

o
g 87

2
logZ,,,,,(s)— ( 10g o 875
where O(1) depends only on # and m. Here |D| is the volume of D and |0D)| is the length
of the boundary of D.

Proof. We have the formula

108Z,,,(8) = —3trlog(l — (0, — 0,)C,, (s)) = tr(w; — ,)Cy,
21
= ¥ 5 tr{(@, —0,)Co, () + 4@, —0)(C, )~ o), (5:53)
n=2

where C,,_ is the free covariance. Convergence follows from our assumed bound on
|, — w,] and C,, ()= (— 4+ &;)"'. We begin by comparing each term of this sum
with the corresponding term after replacing C,, (s) with the free covariance Cg,.
Using C,, (s)=Cy,, C5,=C;,, we have

w;’

L e [(@, = ,)C, (T — - tr (= ©2)Ca, T
n n

17e .
oy Z tr(@; = ,)"C5,|C,(5) = C 5 XpCoo () 7
éla) __wz'n trcz)i llcwi(s)—CcTJlIXD
<@, —@,"(trCh, 1Cp (0) — C, | +tr C4 IC, (5) = C, (i) . (5.5.4)
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Here C,,,(0) has Dirichlet boundary conditions on dD, C,, is the free covariance,
and yp is the operator of multiplication by the characteristic function of D.

Standard estimates on the Wiener integral representation for
(C5,000—C;)x,y) [17,27] yield a decay exp(— c(|x— y|+dist(y,0D))) for some
¢>0. Thus

“ C&');(O)( ) y)_ C031( ) y)“[,l(dx) éKe“Cdist(y,ﬁD) . (55~5)

The covariances C; map L? to L”rL?, so
C'u'{): llcml(o)__ Cc'ull(xa y)ng)i—nsze—cdist(y,ﬁD) (556)

and hence

lel—wzr‘trc 1C5,(0)—C5,| £ KI0D|. (5.5.7)

n=2

The second term in (5.5.4) is handled by putting w,=tw, +(1—t)® and
observing that

1Co\(5)— Cw,(SI—f —Co(s)(@, —@,)C,(s)dt <KIC ) ~pCo,(s)dt

(5.5.8)
Since
17 pC o M5 Y 2y < Ko™ ¢85 P) (5.5.9)
the second term is also bounded by K|0D|.
In a similar fashion we can prove
tr(w, —w,)IC,, (s)— C5,| = K[0D]. (5.5.10)
We have expressed logZ,, ,,,(s) as
® (D, —@,)" o
Y wlzn—z tr(xpCs,)" + 5(@; — @,) tr 1p(Cs, — Cop) (5.5.11)
n=2

up to an error K|0D|. We next control the substitution (x,C,)"~ ' —C%, *. Since
Cs,— 1pCs,=x~pCs,, We obtain a sum of terms
0, —,)" .
-(-—iﬁi)tr(xpc@)fx pCod,  j=1,...,n—1 (5.5.12)
as in (5.5.4). By (5.5.9), the sum of these terms is bounded by K|dD|.
With just one yp in each trace, we can use translation invariance to divide by
|D| simply:

(@1 —® )
|D| —(l0gZ,,,,,(s)+ 0(|loD]))= nzz T .

+%((Dl _(DZ)(le _Cmo)(o’ 0). (55.13)

2,0,0)
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We calculate the right-hand side in momentum space:

(@, —®,)"  d’p ! 15— dp (1 1
Z n Jl(§7z)2 (p + o )n ;(wluwZ)."(zn)Z (p2+601 p2+600)

n=2
(D, — @) @ —D,, g
log—=. 5.514
,,z n{n— l)cal+ 87 o, ( )
Since
,,\i:z n(nx—1)=(1_x)1°g(1'x)+x for |xI<1, (5.5.15)
this is equal to
661 6)1 C7)2—67)1
o, 81t S, 5.1
87r Iog 8m 1ngo 8t ° (5.5.16)

which completes the proof. []

Corollary 5.5.2. The bound (5.5.2) of Proposition 5.5.1 holds without the restriction
on |@,—d,|.

Proof. The elementary identity
mewg(s) a)‘mz(s)szan( ) (5517)

allows us to write Z,, ,,(s) as a product of Z’s for which Proposition 5.5.1 is
applicable. The terms

cancel for the intermediate w’s. [
This trick also proves the bound

Z g o(5) S eXO-PNYed (55.18)
used in Egs. (5.3.21)+5.3.22).
Proposition 5.5.3. Under the conditions of Proposition 5.5.1, let w,(x), w,(x), and w,

0
depend on a parameter p in such a way that sup awi(x)éc. Then

Proof. Expand the above difference as in the proof of Proposition 5.5.1, and

differentiate each term. Derivatives of (@, — @,) factors do not affect the estimates.
For derivatives of covariances, we apply

D210g22 _ P110qP1 _ D=l o
lomelm( s)— (8 log o, Sn log o o )IDIH =0(1)[oDy. (5.5.19)

0 ow
a C,(s)=—C(s) a C,(s). (5.5.20)

(This formula depends on the fact that / is independent of p.) When C,(s) is an
isolated covariance (one that has not been finite-differenced) we still have a
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bounded operator from L? to L*nL® and the surface estimate works as before.
(There are n—1 terms, but since the sum on n converges geometrically this causes
no problem.)

It remains for us to consider the terms involving

15} 0 0
a(cml(s)“cal)a @XD(CM(S)_CO-“(S))XD, or @(XDC(T)I—CQ_Jl)'

The first term is equal to
0,

0@,
—(Cs,(8)— Ca—,l)fa; Cs,(8)—Cs, au

(Cs,(9—C5,).
In each term the factor |Cj (s)—Cg |=|C5,(0)—Cg,| provides the necessary
localization at the boundary. The second case above may be written as

A, —by)

! Cwl(s)XD_XDCal(S) Em

0
-xp(cwl(s)—cmxs»%

o
-cwxs)x,)—xpc,,-,l(s)a%<cw1<s)—c@1<s»xl,.

The first and third terms are localized at the boundary as in (5.5.8)—(5.5.9). Since
0
o
above is equal to — .. ,Cz,(0,/0u)C; , which forces the preceding covariance to

@1°

stretch between D and ~ D as in (5.5.12). This completes the proof. [7]

(w; —@,;)=Ky..p, the second term can be handled similarly. The third case

Corollary 5.5.4. Proposition 5.5.3 holds without the restriction on |, — @,|.

Proof. This follows from (5.5.17) as in the previous corollary. [

5.6. Decoupling Expansion Estimates

This section is devoted to proving Propositions 2.5.3 and 2.5.4. We require the
bound

H.fdsr > I

ne®(I') j=1

@71~ Curn® ] f%azcw,(sr)-dw]]

xem
k)=
n-1

‘Ryuze™ 2 Pdu, (@) [] Zoyor. (5r,)
k=1

Lr
SMUZ)@-degR) ]‘[ (N(A)!)llzexldegRef 3tl|Z, p— 20227 23]
4

.e;(EZ-E%—Eg‘m+E€,‘Z’)iz|l]me§l(Eé“—E{{':—E«g@)+E{Z,(m)32|11mml| ‘ (5.6.1)
Here Z=2Z,,=I'nZ,¥=2nZ,and Z=(Z,Z,T) is a cluster. The factor (4!/?) is
conditional; it is present only if degR =0. Likewise (4~ °#%) is present only if £ ¥m
(R is a monomial in ,). We assume |Z|>1 if degR =0. The L? norm is with
respect to the variables in R, and pe[1, o). See Sects. 2.4 and 2.5.
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We expand 0;C into its llattice localizations and apply the derivatives 4.
Using Holder’s inequality, split the integral into a Gaussian part times an
interaction part. Apply Proposition 2.5.1 to the interaction integral. This produces
factors

— Fmy]2
o EE T BN e 355 3(13| + |37 pahi2| 2~ Al [Tn(a®)!.
At

The first factor accounts for some of the energy factors in (5.6.1); what remains to
be accounted for is

xp (L (EL — £y = EZO+ EEIPIZ ) (56.2)
(Recall that Z:™ extends into IntZ.) We use
m2. m: mi,  m: mi—m?
E"—FE"_—EP 4 FEP == Mg _ _PlogL .M P 563
¢ BT Et By & Ogmg R ogmq% o (5.6.3)

and Corollary 5.5.2 to obtain this factor from the Z, x (sr,) factors. The mass
prevailing over a particular square in Z™ is in general shifted many times.
However, the energy factors associated with intermediate values of the mass
cancel, by (5.5.2). Thus up to an error exp (Z 0(1)[61§k|>, we obtain a factor

I3

0(x), w(x) m  ml  w(x)—m)
—o— log—"r — o 2log—§ — == —"Fdx]|, 564
exp (Zugntl 87[ 1 g m; 877: Og m; 87'[ dx ( )

where we have put w,(x)=m2 for xellnt,Z. Recall that w,(x) differed from m?

a(x)
only when dist(x, X)< L/2. Thus (5.6.4) agrees with (5.6.2) up to an error eO“’Lz'%l.
Since Y 3D,/ <|Z|, both errors can be absorbed into e~ %2412,

k

We next estimate the Gaussian integrals that were split off with Holder’s
inequality above. We use the estimate

Ha:C”L'J(AjI x4y éeKle—cld((j1,j2),a)e—cl|a| Z e—cl|a| , (565)
veL(®)

proven at the end of this section. Here g < oo,

d((j1-J2)» )= sup (dist(d,,b) +dist(4,,, )/,
bea

and o is a linear ordering of the bonds in o We define |o| as follows. If
o=(by,...,b,), let I=(i,...,i,) be any subset of {1,...,n} with i,<i,,;. Then
k

loj=sup ) dist(b;, ,,b;)/I. This is not quite the same definition as in [17]. There
I g=2
is an analogous bound on the single-variable kernel 95C(x, x).

Assuming (5.6.5), the remainder of the proof of (5.6.1) is fairly standard
[27,29]. We indicate only the main points. The e ~<#°! factors control the sum over
partitions of 7, up to an effect €%, The e ~c™(U1:J2:9 factor controls localization
sums. Derivatives in 65C,, -4, can contract to Q,,, . . There must be a bond in «
contained in %, (), and w,,, is the correct mass-squared within L/2 of such
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bonds. Furthermore there are no phase boundaries within L of such bonds. Thus
the coefficients in @,  are O(4) within L/2 of the bond, and if the contraction is to
4 with dist(b,4)<L/2, then a factor O(4) is brought down. Otherwise factors
O(%™ ') can be introduced, but this is compensated by e~ “/2<? arising from
d((71»J2) o) > L/2L.

Derivatives of y, can be pinned to the factor e ***"* arising from |~ and hence
they also yield O(4) factors. If degR=0, |Z|>1, there must be at least one
derivative or phase boundary, hence the factor (/l” 2) in (5.6.1).

Translation from ,, to y in R will produce factors O(A~9#®) if ¥ $m. This has
been taken into account in (5.6.1). Some derivatives may act on R ; the associated
eX! goes into the eX'4°8® factor in (5.6.1).

At least a certain fraction of the derivatives not contracted to R will contract to
Q or to zyand yield factors O(4). Altogether we have at least a factor e " for every
derivative bond and e ¥ for every vertex. Since derivative bonds are “dense” in
reg%lgllls away from phase boundaries, we obtain the overall volume convergence
e %L

Finally there are factorials to control. With d=deg®, N(4)=degR,, M(4)
contractions in 4, and n(4') contractions to yx,(4'), we have factors

[T(N(4)+dM(4))!*"? from the Gaussian integration, [[n(4')! from the vacuum
| Al
energy bound, and [ [ (2PN M€ (A)MD) from summing over different ways

a4
of applying the derivatives. After extracting e®V¥¥(N(4)!)!/2 for (5.6.1), we must
bound
OOM@AM@ ] e cdisan

y contracted to 4

by O(1) to get a controllable volume effect. This is accomplished as in [17] by
taking account of the rate « is forced away from 4 as M(4) becomes large. This
completes the proof of Propositions 2.5.3 and 2.5.4.

We now prove (5.6.5). Using the Neumann series (5.3.17) for C_(s) we have

BC5) = Y Cos ) —0)Cls)] !
n=1
Z Y M Crals) fl [(m* — w)0%C,a(s)] - (5.6.6)
n=1 (m,.‘._,in) i=2

The ;s are disjoint, and possibly empty. When o,=@ or i=n—1, we use a
standard type of estimate [17,27]:

I 6§icm2(5)( 5 X)| La(Al)
éclailﬂ z e—Cl|0|e_C5(Al,°!i)e—Cé(x,a;)e—cdis!(x,d1). (5.6.7)
oeL(a;)
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Here §(4%,a;)= supdist(4t,b), &(x,;)= supdist(x,b), and qe[1,0). If «; is
bea; bea;
empty, these distances are defined to be zero. Summing over unit squares 4! CIR?,
we obtain

[0%C 1als) x, y)er?-20eemigel==slgy
§c|a‘|+1 Z e_dlol' (5.6.8)

oeL(a)
When o, =0 we may use
ijZ(S)(X, y)e"”zlx—yl/zdx
< [ C 1), 0)er (ol 172 g

2 ipx
:jiﬂ e ol +lmbizgy L
(2n)? p*+m? m2—n/2

We have from (5.6.7) that if n>2,

(5.6.9)

J‘ecé(x, an—1)ged(y,an - 1) gelx = y!azn - ‘Cﬁ,z(s)(x, y)
g0t 0 St 21 G C o(s) v, 2)dy
écltxn_1|+lmn|+l Z e—cl|a| Z e—CIIo'|

ocL(ay - 1) o’eL(an)

for each x and z. Equations (5.6.8) and (5.6.9) bound the norms of the integral
operators 05'C(s) after extracting some decay factors. Putting these estimates
together yields

HO5Culs) = B:Crals))(xo5 X,

o —2_2 n—|a|~2
< a2 {m__ﬂ.}
ngz {c:l,;,a,,)( ) m2 - n/2

n

sup ]

(X150, Xn-1) i=1 [OieL(ai)

We have used w(x)=2%. Put (m?-2#)/(m*—n/2)=1—2¢. With a factor

n [29)
(1—¢)""e"!*lwe can choose |a,], ...,|o,), because ] [ y e'“"'}=(1 —~€)~". Having
=1 l(li|=0
made this choice, a set of ;s with their linear orderings uniquely determines a
linear ordering o of a. Furthermore,

e~ clloil g—cdlxi - 1.“i)e"C5(xiaai)e_C|xi— 1 -xil] . (56 10)

n n—1
ol Z lo;| + Z (60, o) + (s, 0t 4 1)+ |x; = X4 41)s (5.6.11)
i=1 i=1
and if x,€4;, x,€4;,, then
ld((h’jz)a o)< Z (5(xi— 15 oc,-)+5(xi, ai)+|x,-_1—xi|) . (5.6.12)
i=1

Altogether we have bounded the right-hand side of (5.6.10) by

o — n
Zc'“'“[l 28} Z o~ cllolp—cld((j1, i2), )

2 1—¢ oeL{x)
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Thus
195 Cls)— 5§sz(S)HLq(Ajl x 4,,)
< il +1 Z e—clIOIe—cld((jx,jz),a)’ (5.6.13)
o€ L(2)
and since
l4c|a|+1ewcl|o[/2éeKle«-c'tla[’ (5.6.14)

we obtain (5.6.5) for the difference 0%C,(s)—0%Cs.(s). The bound (5.6.5) is well
known for 6%C,,(s), so this completes the proof for 6%C,(s). Equation (5.6.13) holds
for the single-variable kernels as wellif we replace L4 x 4;)) with L%(4; ). Again,
comparison with 0%C. proves the bound analogous to (5.6.5) for single-variable
kernels.

5.7. The Bounded Spin Approximation

In this section we prove the bound

0 >

o —log(Z,(V)eB™V M) < KA™21%V) (5.7.1)

of Proposition 2.5.6. This derivative will turn out to be a sum of expectations of

quantities like :p/(V):= [:p,(x)):dx. If p, were a bounded variable, such
A\

expectations would be automatically bounded. (Having bounded spins simplified
the Pirogov-Sinai work at this point [24].) Since v, is in fact unbounded, we must
show that the error incurred in treating it as bounded is small enough to dominate
the vacuum energy volume divergences.

Write p for p(V), dy, for dp,; oWy, 1t for ', and C for the covariance of d,.
Using (2.4.16) we compute

W)= L ey,

_E(AICW o IOng(A3) Ase Vp(v)dw

v, ac
a"LW) xse” VP Vdy, +f Awpxze_VP(W)dlp (572)
From the formula (5.4.8) for y,(¢(4)) = y,(w(4)+&,), we have
i% — 1/26_38—(wp(4)~m2_7r— 1/2%6—(%(41)—/4)2
ou”™’ ou ou

=3erfe(p,(4)— B)—erfc(ip,(4) - 4),
where
A=3-+E)—¢,, B=3(+¢,.0)-¢,.
Note that 04/0u and 0B/dp are O(A™1).
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We use the asymptotic expansion

erfe(s)=n" 227 (1 40(72), 251 (513)

to bound

0 .
alogxdl by O(A™ N, (4)+1) for y,(4)2B. There is an analogous
bound for wp(A)gA, and for v, (4)e[A4, B] we have x, ' <O(1). Thus

-Tog| S0G i (4)+06), (574)

and the first term in (5.7.2) is bounded by
oA~ ( > Iw,,(é‘)l);cxe”""“’qdw,,ﬂL 0(A™1).
ACV

The second term in (5.7.2) is a sum of terms
O™ A)[ :pl(V):yze"?Vdy,, 0<j<d=deg?. (5.7.5)

This includes terms arising from differentiating the mass in the Wick ordering.
(The free covariance is always used in the Wick ordering.)
Using integration by parts, we have

oC

a P
o W:ij(x,y) C(y,z)

)
dxdyd:z
Sy

om?
= a—"j (0 cdy. (5.7.6)

The difference :yp2(V): — :yp’(V):  is a constant O(1?|V)), so the third term in (5.7.2)
is also of the form (5.7.5).
Altogether we have

0

— EZ1?V]
A

oAt <Z lw (A)l> + Z O 2w (V): )4,

(5.7.7)
where

I. Xze - Vp(w)dwp
Vrse™V* My,

Lemma 5.7.1. There exists a constant K,(C)>0 such that for all K=z K, the
following is true. With j<deg® let y.+()_) be the characteristic function of

V) 2ATKPY] (cyl(V): £ — ATKPY)),

respectively. Then

<'>z=

[ xa Wi (V) sze ™2 Vdip | S e~ KAPEIVIAC, (5.7.8)
Proof. Let V=V,(V)— 27" 2:9}(V):/2C. Then

[+ WiV s ™ P Vdup, = [y, cpi(V) 1™+ 72 wpMI26 o _lepp
g/'L—jK12|W|e—z-2K12|WI/2Cj'e dep , (5-7'9)
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because x;<1, and because Xe™* *¥/2C attains its maximum at the minimum

value of X =27/Ki?V|, for K large enough. In fact,

).—jK12|W|€—Z—2KIZ|V|/6C§ 1
for K large enough. Notice that ¥ is bounded below even if j=d=deg? because
the coefficient of y? in V, is at least C~'2?72 Furthermore, V is of the form

A7V (Ap,), so the lower bound is O(1~2).
Standard linear lower bound estimates [15] will yield

fe—dep < OGPV (5.7.10)

This can be absorbed into ¢~*" " "IM/12€ for K Jarge enough.
The proof for y_ is similar, using V="V,(V)+ A7~ 2:9i(V):/2C. [

Lemma 5.7.2. Let y. be the characteristic function of Y. |p,(4)|= A7 *KI?|V), and

suppose K is sufficiently large. Then 4ev
J1e X lw(A)lxze VPV, S o™ KATHAMAC, (5.7.11)
45V

Proof. We modify the proof of Lemma 5.7.1. Write the integral as a sum of 21Vl
terms according to whether y,(4)<0 or y,(4)=20 for each A'CV. (That is, insert
the corresponding partition of unity into the measure.) Each term can be bounded
as before if we take

V=vW)-i1/2C > e(dyp,(4).

Acv
Here &(4d)=1 for the y,(4)=0 term, &4)=—1 for the y,(4)<0 term. The
combinatoric factor 2”1 is controlled by ¢~ *K*IVl/12¢

Proof of Proposition 2.5.6. With y,,y_ asin Lemma 5.7.1 and yo=1-y, —x_, we
have

W)y, = Vo sV PO, | [ + ) (V)i se” T My,
d g onXze-Vp(v)dwp onX):e_Vp(w)dlpp

d  yplW)ige Wy,

de {(te(x s +x-)+xo)zse” " * My,

i
+ [t (5.7.12)
0

The first term is an expectation of a variable bounded by 4~ /K[?V| and so it is also

bounded by A~ /KI[?V|. By Lemma 5.7.1 we have
§t0rs + 1 )xse™ P My, <2e KA TIIMIAC (5.7.13)

since ty. <y, ZIP'L(W)Z, t_S—y_ :w{,(W):. Thus by Proposition 5.4.1,
§ts +x-)+ xouse™ P Vdyp, ze™ @IV e KATHIMAC
= 20AT V] (5.7.14)
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Thus the second term is bounded by 2exp[(— K/4C +2a)A~21*|V|]]1<1 for K large
enough. The third term is bounded by
If :p)(V): yze™ VX Ody [ (e +x_)ze” POy
(e + 1) +xohuze ™" Vdyp,)
<2exp[(0(1) — K/4C +4a)i~212V]] <1. (5.7.15)

The :pJ(V): integral has been split with Holder’s inequality and bounded as usual
using Proposition 2.5.1. Putting these bounds together, we obtain

F72Cpl(V): D SKATHAV 422772 2K AT 212V, (5.7.16)
The bound /1_1< . |1pp(A)|> <2KA™??|V| can be proven in the same way. By
48V z
(5.7.7), this completes the proof. [

5.8. Smoothness in p

In this section we prove the bound

0
a—ui(g,l,q(me

< JU2p Full¥ly=na 2y (5.8.1)

(-~ Eg+ER+ ERCV) ~E$V))12{Y]me;(—Ezﬂ + BB+ EpOY —ngvmzmmmwg)

of Proposition 2.5.5. An expression for ¢, (Y) may be found in (5.6.1). We take
R=1,¥Y|=1, p=p(Y). Almost everything in (5.6.1) depends on z=x*; we will show
that after deriving each element of (5.6.1) the structure of the estimates in Sect. 5.6
need be modified only slightly. Without the derivative with respect to u, (5.8.1)
would reduce to Proposition 2.5.3; the energy factors have merely been moved to
the other side of the inequality.

Consider first the dependence of Z,, . (sr,) on u. Divide some of the energy
factors amongst the Z’s in accordance with Proposition 5.5.3. By Corollary 5.5.4,
differentiating

Zwkco’;§+ 1(Sl"k)
. exp( wk(x)l 0(x) Wy 1) lo Wiy 1(X) n 01 1(X) — 0(x) dx)

3 2
golntz ST my 87 my 8n

brings down a factor 0(1)|613k+1|. Thus differentiating all the Zexp(...) factors
introduces a factor no worse than O(1)|Z], which can be absorbedinto e~ 2% *I®l in
(5.6.1). A factor Z can also be extracted, since |X| =1 whenever there are Z-factors
to differentiate.

In differentiating the remaining energy factors, consider two cases. If [X| =1,
the differentiation introduces a factor O(A~2)I3[Y|. When multiplied by
e~ A7l =6ullYl taken out of (5.6.1), we are left with O(A). This is sufficient to
stand as a contribution to the bound in (5.8.1). If |Z|=0, then there are no
Z-factors and the energy factors degenerate to e~ F2+ EB¥IYI We combine this with
Q before differentiating. The product over jin (5.6.1) degenerates to one term, with
all functional derivatives acting on yze 2@, The coefficients in 0,.3(2)
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—(Ef—E?)I?|Y| are O(4), so that differentiation with respect to u will bring down
terms O(4) : wJ (Y):. Such terms are bounded by Proposition 2.5.4; they correspond
to a sum of IYll2 terms with R = :y/(4):. The factor |Y|I? is absorbed into e ~3=!Y,
leaving an overall O(4)eX" < 13/4 which is small enough for (5.8.1).

Returning to the case |Z| = 1, we consider the effect of differentiating Q,, (Z) or
the mass-shifts 0, (Z2)—Q,,., (Z). Coefficients of 1) : will be O(2/~2), but since
|Z]=1 we must 1nclude a factor A4 from translatlon as in Proposition 2.5.4.
Having some R-factors precede some of the functional derivatives does not affect
the estimates in Sect. 5.6. Thus we have terms

O(A™ %)M Y|e™ omll¥lg =22 2181 < 3|

which is small enough.
We next consider u-derivatives of ys. As in (5.7.2), we have

0 0B

@XG(A)(IP(A) +g(A))= - llzae—(rﬂd)'(ﬁwéu 1)/2)

__n—1/2%_’49-(05(41»‘(55-1+§a)/2)2, (5.8.2)

where A=(¢,_ | +&,)/2—g(4), B=(&,+ &, 1)/2—g(4). We see that 0y,/0u satisfies
the same bound in (5.2.5) as for 0y,/d¢(4), except for a factor |0A4/0u+|0B/doy|

=0(A71Y). It is easy to see that derivatives also satisfy (5.2.5), up to a

0 0
oAy on’”
factor O(47!). Thus the vacuum energy bound will hold with |£'|>1 whenever
some y, is differentiated with respect to p This introduces a factor
O(4~Y)e™%2*"* <, which survives the decoupling expansion estimates. There are
also |W]I?y,’s to differentiate, but this is controlled by e~ %!,

The masses in the covariance C=C,, (s;) depend on g, so we must differentiate
the measure du (w). As in (5.7.6), this corresponds to inserting a factor
jacg (x) :p(x)?: before everything else in the functional integral in (5.6.1). Since
0w, (x)/0u is O(1), this produces a factor O(A~ 2)A|Y| if |Z|=1 or O(1)1?|Y} if || =
These factors are dominated by e~ %24 *¥le =27 55 before. As long as [Y|>2, the
overall factor A*/2 can still be obtained as in (5.6.1) because at least one functional
derivative must be applied to yze~ 2 if |2| =0. When [Y|=1, we use the fact that
:9(x)?:c has no self-lines when integrated in dyu,. Integrating one power of y by
parts then gives us the missing derivative on yze~ 2. This yields a factor O(1)
Se KlgmatB)314p= 31l qupplying the missing factors in (5.8.1).

The last type of term to consider involves differentiation of 6C, (s ). We
require the estimate

Wns ST

éeKle—cld((jl,jz)va)e—dlal z e_‘l]"l , (5.8.3)
La(d;, x 4;,) oeL(a)

‘—6“C

and the analogous one for the single-variable kernel. This is the same as the
estimate we used for 62C, Eq. (5.6.5). Since there are no more than |z| £|I' =2|Y]|
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covariances to differentiate, (5.8.3) will suffice to control all terms involving a

5,
aagc [The factor A!/2 is already present in (5.6.1) because |Y|=2.]

We compute

;—0‘;‘C(x,y)= Y —[efC(x, 2) "()EVC( ,y)dz. (5.8.4)
U Buy=a

Summing over z-localizations 4 ;, we can apply (5.6.5) to obtain

REY

s ol Y Y e2kle—cld((j1,js),/3)( Y ewcua,ﬂ)

puy=a 4;;,CY ogeL(B)

.e'cld((js,jz),v)e-ci(lﬂl+h’l)( Z e*dlovl). (5.8.5)
0y€L(?)

e,

If 6 is the linear ordering of « defined by (04, 0,), then
ol = logl+ d((i1,j3), )+ d((3.)2) 7) + o, | + 2,
d((i1,J2),0) 2d(U1.j3), B) +d((3,72): 7))
leel =151+ Iy,
Y emcldinin B2 < (1)

4;58Y

(5.8.6)

Note that there are |a| — 1 pairs (04,0,) that could correspond to any o€ L(x). Hence

with a factor |« we can replace ). Y Y with ) . Altogether we
. Buy=a ogeL(B) oyeL(?) geL(a)
obtain

< z eK'le‘Cld((j1>j2),a)/3e—cllallale“01|5|/3. (5.8.7)
La ®cL(@)

a l4
”a 0:C

Estimate (5.8.3) now follows with a change in ¢. This completes the proof of
Proposition 2.5.5.
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