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Abstract. For the operator i� + m(x), where m(x) can change sign, we develop a 
cluster expansion for computing the determinant and Green's functions. We use 
a local chiral transformation to relate the space-dependent case to the ordinary 
Dirac operator. 

1. Introduction 

The study of multi-phase field theories with generalized Yukawa interactions 
provides a natural structure for studying Dirac operators with space-dependent 
mass. Different phases of such a model will have different effective fermion masses. 
If one attempts to analyze such a model via a cluster expansion, different cluster 
will be in different phases and have different masses for the fermions. 

Our specific motivation for studying operators like i� + m(x) comes from trying 
to understand the phase structure of two-dimensional Wess-Zumino models. While 
the single phase case has been studied [15] and much is known for the system in 
finite volume [9-12], the infinite volume multiphase problem remains unexplored. 

A first step to understanding the behavior of the Wess-Zumino model is to 
study a simpler toy model with almost no bosonic field. By "almost no" field we 
mean that the only remnant of the boson is a restriction that each block of space
time is in a particular phase. This results in the study of a Dirac operator i� + m(x) 
in two dimensions where m(x) takes on a small number of values. 
Dirac Operators with Space Dependent Masses. To obtain a view of the technical 
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problems involved, consider first the Laplacian with a space dependent potential 
- L1 + m2(x), 

where 
m0 � m(x) > s > 0. (1.1) 

Exponential decay for the Green's function (- L1 + m2(x))- 1 can be established 
using the Neumann series 

(- L1 + m2(x))-1 = [1 + (- L1 + m�)-1(m2(x)- m�)]-1(- L1 + m�)-1 
00 

= L [ (- L1 + m�)-1(m�- m2(x))]k(- L1 + m�)-1 (1.2) 
k=O 

where convergence is guaranteed since lm�- m2(x)l < m�. 
Now consider the Dirac operator i� + m(x) on IR 2• This is the operator defined 

by 
(1.3) 

where y�, yf are 2 x 2 matrices 

E (0 Yo = 1 
- 1) (0 i ) 

0 ' 

y f = i 0 . (1.4) 

The Neumann series technique described above again works so long as m(x) 
satisfies a bound of the form (1.1). However in this case of the Dirac operator the 
restriction to positive mass is no longer trivial; in fact the effective quantum field 
theories of [11, 12] give rise to Dirac operators with m(x) taking different signs in 
different space time regions. 

In order to handle this problem we begin by remarking that the operators 
i� + m and i�- m are related via a (chiral) unitary transformation by y5 = y0y1, 
where Yo = iy� and Y1 = yf: 

YsYo (i� + m)ys = Yo(i�- m). 
Similarly we have, with U = eia(xJy',aEC�(IR2), 

u-1Yo (i� + m)U = Yo (i� + e2ia(x)y,m- �a(x)ys). 

(1.5) 

(1.6) 

If we choose a(x) = 0 in one region (region A), and a(x) = n/2 in region B (with a 
boundary layer between), then 

-1 ( " :11 ) 
{ y0(i� + m), in region A U Yo ly; + m  U =  

y0(i�- m), in region B. 
(1.7) 

Thus the Dirac operator with masses of differing signs is related to the Dirac 
operator with constant mass via a unitary transformation. 

This is our main technical device for handling the Dirac operator with differing 
signs for the masses. For simplicity we will consider the case where the function 
m(x) = ± 1. We discuss the more general case in the appendix, where we combine 
our methods with a Neumann series of the type discussed above (1.2). We could 
also easily consider the case where the mass was chiral, i.e. proportional to 
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cos(]+ iy5 sin 0, 8E1R. Although we consider only the two dimensional case, we 
believe an extension of our methods should work in any even dimension. 

Before stating our main theorem, however, we must make the following remark. 
Let y0(i� + m(x)) be the Dirac operator on Jlt' 112 EB Jlt' 112 , where Jlt' a is the Sobolev 
space Jit'a =L2(1R2, (p2+ 1)"d2p) . Let S =(y0 (i�+ l )) -1 be the operator on 
Jlt' = Jlt' _112 EB .'ft _ 1 12 determined by the kernel 

- ,/, + 1 d2 S(x, y) = J-f+l e -ip(x-y) 
(2n

�2 Yo, (1.8) 

i.e. the kernel (2.5) without cutoff. We wish to prove estimates on the putative 
Green's function 

(1.9) 

In fact it is not difficult to write down functions m(x) for which this inverse will 
not exist. To circumvent this problem we compute the "reduced" Green's function, 
formally given by 

[y0 (i� + m (x))J -1 det3 (S[y0(i� + m(x) )] ) = (1 + K) -1 S det3 (1 + K ), (1.10) 

where K = Sy0(m(x)- 1) is an operator on Jlt'. The object (1.1 0) is well defined 
and given by a Fredholm series [14], whether or not y0(i� + m(x)) is invertible. 
Convergence of the Fredholm series is guaranteed by Lemma 2.1. Note that where 
y0(i� + m(x)) is invertible, the reduced Green's function differs from the inverse by 
an irrelevant constant. 

We may now state our main theorem. 
Theorem 1. Let g, hE C �(JR 2) be supported in unit squares L19, A h. Then there exists 
c > 0 such that 

I (g, (1 + K ) -1S det3 (1 + K)h) I 
::;:; llg II ?t I I h II .ttexp [- cd(L19, Ah)] exp[21A -11/n + O (I 8A_1I)J , 

where 
A_1 =supp (l -m(x)). 

A similar result holds for higher Fredholm minors. We also have the following 
estimate for the regularized determinant (Proposition 2. 7): 

(1.11) 

where the coefficient of I A_ 11 has the expected perturbative value. 
The main idea of the proof is to make use of the unitary transformation U to 

relate y0(i� + m(x)) to an operator equal to y0(i� + 1) + C where (is supported on 
8A _1. The correction 21 A_ 11/n arises since, unlike a true determinant, det3 is not 
invariant under unitary conjugation. 

This result gives the main contribution to the weights of the contour expansion 
for the multiphase N = 2 Wess-Zumino2 models. We would hope that a slightly 
different version of this work, replacing determinants by Pfaffians, should give a 
similar result for the N = 1 models. The cluster expansion for these quantum field 
theories will be the subject of future papers [8]. For the reader interested in the 
quantum field theories this paper should serve as a simple introduction to the 
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necessary cluster expansion techniques. We hope however that this result may be 
of interest in itself. 

2. Estimates for the Determinant 

Before turning to estimates on Fredholm minors, let us consider the determinant 
alone. We want to be able to compute determinant ratios, such as that formally 
given by 

det3 y0(i� + m (x))/det3 y0(i� + 1). (2.1) 

The existence of the determinant is guaranteed by the following, which is an 
immediate consequence of Lemma 5.4: 
Lemma 2.1. Let !!? 3 (£) denote the 3-Schatten ideal, i.e. the ideal of operators % 
on £ such that 

Tr (%* %)3/2 < oo. 

Then 

K E!/?3(£). 
The fact that it is regularized determinants which appear complicates our 

analysis. While (formally) 
det Yo(i� - 1) 

= det (l - 2Syo) = 1 
det y0(i� + 1) 

because of (1.5), we (unfortunately) have 
det3(1- 2Sy0) = exp lim T", K�CO 

where 
T" = Tr[2S"y0 + 2S"y0Sy0]; 

here S" is the operator on £ _112 (£) £ _112 given by the kernel 

S ( ) _ J - P + _l_ - ip(x- Y) ( ) 3:-_P__ , " x , y - p2 + 1 
e X" p (2n)2 Yo, 

where 

xAP) = e-v2J"2. 

Let 5" be the operator on £ defined by 

Then S" = S"S = SS". 

� � d2p 
:::.J = S xAP) f(p) 

(2n) 2 · 

It is easily seen that in a finite volume A 
lim T" = 2IA I/n + 0 (1 8AI ). 

K�CO 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Thus in the local case we expect (finite) O ( IA I) corrections from the difference 
between det and det3 ,  as well as boundary corrections. 

Let the function m(x) take the values ± 1; let 
( = y0(m(x)e2iars- 1 -�et.y5), (2.9) 

where we choose et. such that m(x)e2ia(x) = 1 except in a neighborhood of oA _1• Let 

Then we have the following: 

Proposition 2.2 
(a) Then limit lim R" exists, and 

rc-oo 

R =lim R" = 21A -11/n + 0 (1 8A_11 ). (2.11) 
rc-oo 

(b) The determinant det3[1 + Sy0(m(x) -1)] satisfies 

det3 [1 + Sy0(m(x)- 1)] = det3 [1 + S(] exp (R + r), (2.12) 
where 

1 2 r =-II oet.ll u· 4n 
(2.13) 

Remark. The factor exp R is the ratio of the determinants expected from a naive 
product formula. The additional term exp r is a correction resulting from the need 
to place cutoffs on operators before such a formula can apply. 
Proof. Part (a) follows by a straightforward calculation. We devote the remainder 
of this section to proving (b). We begin with the following lemma: 
Lemma 2.3. Let A, BE23 (£'). Then 

C =A+ B + AB =(1 + A) (1 + B) -1E23 (£'), (2.14) 
and 

(2.15) 
where 

T = (AB)2/2 + AB2 + BA2E21(£'). (2.16) 
Proof. If A, BE 21 (£'), then 

Tr T = Tr [A + B -C -A2/2 -B2j2 + C2/2], (2.17) 
and the lemma follows by the product formula for Fredholm determinants and 
the definition of det3. Since operators in 2 3 (£') may be approximated by finite 
rank operators, the lemma follows. 

We now apply the above lemma to our case. Let U1 = exp[iet.y5t], and let 
(1 = y0(m(x)e2iarst- 1 -�et.y5t). (2.18) 
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Then 

where 

1 + S(, = SU ,-1 y0(i� + m(x) )U, 
= SU,-1 s-1 U,U,-1 Sy0 (i� + m(x))U, 
= (1 + S(�)(1 + u,-1 KU,), 

(� = Yo (e2iayst- 1 - �ayst). 

As a consequence of Lemma 2.3 we have the following: 
Corollary 2.4. Let 

(2.19) 

(2.20) 

T, = (S(� u,-1 KU,)2 /2 + (S(�)2U,-1 KU, + (U,-1 KU,)2S(�. (2.21) 
Then 

det3 [1 + S(,] = det3 [1 + S(�] det3 [1 + U ,-1 KU,] exp Tr T, 
= det3 [1 + S(�] det3 [1 + K] exp Tr T,. (2.22) 

On the other hand, some algebraic manipulation shows that 
Tr T = Tr T, / , =1 

=lim TrSKT K�ro 

= lim Tr (RK + EK + F K), (2.23) K� 00 

where 
(2.24) 

with 
(2.25) 

and 
(2.26) 

The term RK was estimated in Proposition 2.2, part (a). For EK,t and F K,t we 
have the following results: 
Lemma 2.5. 
(a) E(t) = lim EK,t exists, and 

K�ro 

(b) lim F K,t = 0. 
K�ro 

- t2 
det3 [1 + S(�] exp E(t) = exp-11 oa I I�; 

4n 

To prove this we make use of the following lemma: 
Lemma 2.6 The operator u,-1SKU, may be written as a sum 

u,-1sKu, = sK + @�Ys + @�, 

(2.27) 

(2.28) 
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where for any e > 0, 
JJ(9�Jil+s-+O as K-+00, 
II (9; 112+.-+0 as K-+ oo. 

Proof. We first demonstrate (2.30). The operator (9; is given by the kernel 
. z 

(9;(x ,  y) = l')'5K sin (�(x)- �(y))e -"2(x-y)2J4. 
4n 

We write (9; = L� + L�, where L�, L� are given by the kernels 

We have 

. z 5 !')'51( 2( )2/4 L1(x,y) =�o�(x) ·(x-y)e-" x-y , 

L�(x , y) = (9;(x,  y)-L�(x, y). 

li@�llz+.� IJLillz+. + IlL� liz · 
Using the notation of Lemma 2.1 of [13], L� is of the form 

where 

Thus 

const x f(p)g(x), 

f(p) = PK-ze-p21"\ 

g(x) = 8�(x). 

II L� liz +• � const x II f II L2 +'<liP) II g II L2 +••(JR2) 
� O ( I 8A -li)K-•I<Z+•l. 
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(2.29) 
(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
(2.37) 

(2.38) 

The Hilbert-Schmidt norm of L� is easily estimated using pointwise bounds, 
yielding (2.30). 

To deal with (2.29) we must get around the fact that Lemma 2.1 of [13] is not 
directly applicable to (1 +e)-norms. The kernel of (9� is given by 

Kz 
(9�(x ,y) = (cos (�(x) -�(y)) -1 )-e-"2(x-y)2/4. 

4n 
Let x be the characteristic function of A_ 1. Then 

and 

Now we write 

Now 

(9� = x@� + (9�x- x@�x, 

II (9� ll1 +. � 311 x@� ll1 +•· 

II x@� ll1 +• � II xSYo(i� + 1)(9� ll1 +• 
� ll xSIIzHII(i� + 1)(9� 11zH 
� const x II (i� + 1)(17� liz H· 

(i� + 1 )(9�(x , y) = K i ( x, y) + K �(x , y), 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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where the leading term is 
. 2 

I - lK 2( )2 K 1 (x, y) = 

4n-aa(x)· (x- y)�cx(x)e -K x-y ' (2.44) 

the kernel of an operator K� whose (2 + b)-norm may be estimated similarly to 
(2.38). The remainder K;(x,y) is the kernel of an operator whose Hilbert�Schmidt 
norm vanishes as K---+ oo, yielding the lemma. • 

Proof of Lemma 2.5. To show (b), we note that 
(2.45) 

This can be expressed as a sum of terms, some of which are of the form 
Tr (EK(�-(� EK)(!), with @Efi' 1, and hence vanish as K-+ oo. The remaining terms 
may be estimated by 

1 1 � 

J 2 112 ( 2 1121f(p-q)j(t-m(y))lxK(p)-x,(q)ld2pd2qd2y, (2.46) 
(p + 1) q + 1) 

where j is the Fourier transform of (0. Since ex is smooth, J decays rapidly. We t 
also have 

and thus F K,t is 0 (1 /K). 
We are left with (a). First we note that 

det3 [ 1 + S (�] exp E(t) 11 � 0 = 1. (2.48) 

To prove (a) we will show that 

so that 

a - r 
�log (det3[1 +S(�]expE(t))= -jjacxjj� at 2n 

as needed. 
Now 

lim � (det3 [1 + S(�] exp Tr BAS(�-(S(�)2 /2) ) K� a) at 

= lim {(Tr-_1:-0 (S(�f S((7)' + Tr SK((7)'-Tr SK(7 S((7)') K�OO 1 + S(t 

·det3 [1 + S(7J exp EK ,t } 
= lim {Tr ( -� SK(C7Y + SC7 SK(C7Y-SK(7 S(C7Y) K�a) 1 + S(t 

(2.49) 

(2.50) 
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·det3 [1 +S(�]exp EK ,t} 
= lim {Tr ( 1 

0 S" ((�)')det3 [1 + S(�] exp EK,t} K-00 1 + S(t 

429 

(2.51) 

since the difference Tr [S (� S"( (�)' -S"(� S( (�)'] can be estimated in the same 
fashion as F K,t was in Lemma 2.5(b ), and thus vanishes as K � 0. Explicitly writing 
out the last line of (2.51) above we see that the derivative (2.51) is equal to 

lim {det3 [1 + s(n exp EK,t·Tr ut-1SUtS-1SKS �( ut-1S-1 Ut)}. (2.52) 
"-oo a t  

Now 
a -1 -1 . -1 -1 . -1 -1 -(U1 S U1 ) =- uxy5U1 S U1 + zU1 S U1 rxy5, (2.53) 
at 

so that (using trace cyclicity) 
a Tr U1-1SU1 S-1S"S -( u1-1S-1 Ut) = Tr [S"(-irxy5) + s uts" u1-1S-1(irxys)J 
a t  

(2.54) 
since y 5 is traceless. 

Writing 
s-1r:t.Ys = YsYo(i�-1)rx 

= y5(rxS -1 -2y0rx + iy0�rx) (2.55) 
we see that 

Tr s utsl< ut-1S-1rxys = Tr(S"ysrx + 2Sy0 ut-1SKUtYsiY.-iSyO ut-1 SKVtYs(�rx)). 
(2.56) 

The first term is clearly zero, and the second term goes to zero as K � oo since it 
can be bounded, e.g., by II([!� 113. Similar computations with the third term lead to 

� (det3 [1 +S(�]expE(t))=det3 [1 +S(�]expE(t) lim TrSy0([!�(�rx). (2.57) 
at "-oo 

We can write 
0 2 

([!�(y, x) = �; e -"2<x-y)2/4 sin t(rx(x)- rx(y)) 

-itK2 
2 2 = -- e

-" <x-y) 14 [ (y - x)·orx + O ( (x -y)2)], (2.58) 
4n 

and the singularity of the fermionic covariance is 

(2.59) 
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so that the trace in (2.57) can be evaluated: 

lim Tr Sy0(1J�(�e>:) = lim- tK2 
J d2xd2ye-"2<x-y)2/4 

1 
[(x-y)·oe>:(x)]2 

K�OO K�OO 4n2 /X-y/2 

+ higher order terms which vanish 
-t 

= 2; J/oe>:/2d2x, (2.60) 

completing the proof. 
Finally, we obtain the following simple estimate on det3 [1 + Sy0(m(x)-1)]: 

Proposition 2.7. 

det3 [1 + Sy0(m(x) -1)] � exp [2/A - 1//n + O(/oA_1/)]. 
Proof. Let K = S(. In view of Proposition 2.2, we need only estimate 

/det3 (1 + K)/ = /det4(1 + K) exp [-Tr K4/4] I 

by Lemma 5.4. 

3. The Cluster Expansion 

� exp const II K II! 
�expO(/oA_1/) 

Let us consider the Fredholm minor 

(2.61) 

detik(gi, [y0(i� + m(x))J -1hk)udet3 [1 + Sy0(m(x)-1)], (3.1) 
where gi, hkEC�(lR2). The reduced Green's function of Theorem 1 corresponds to 
the special case where there are only two test functions, denoted g, h. 

Now the expression (3.1) is clearly equal to 

det (g.,U-1[l+Sr]-1SUh ) 2det [l+Sr]det3[1+Syo(m(x)-1)J
_ (3.2) jk J s k L 3 s det3 [1 + S(] 

The ratio of regularized determinants was calculated in Lemma 2.2, and is equal to 
(3.3) 

hence we will only need to perform the cluster expansion on the Fredholm minor 
(3.4) 

It will simplify the analysis considerably to work in Yf' = L2{lR 2) EB L2(lR 2) 
instead of Yf = Yf _112 EB Yf _112. This results in replacing the operator K = S( by 
D112S(D-112, where D = (-L1 + 1)112. Thus we have 
detjk(gj, u-1[1 + s(r1SUhdudet3 [1 + S(J 

=detjk(gj,[l +S(r1shk)udet3[1 +S(] 
= detik(D -112gi, [1 + D1i2S(D-1i2r 1 D112Shkb det3 [1 + D112 S(D-112], (3.5) 
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with 
(3.6) 

We wish to express the Fredholm minor (3.4) as a trace of an antisymmetric product 
k 

of [1 + S(r 1 multiplied by an operator on 1\ Yf'. This structure will be 
maintained throughout, and is necessary in order to obtain the proper estimates 
on the terms produced by differentiation. We write the expression (3.5) as 

cf! Tr" £·C�1 [1 + D1'2S(D-1'2r 1 Pj )det3 [1 + D1'2S(D-112], (3.7) 

where Pj is the operator on Yf' given by 
pj = (D-112gj;)D112Shj. (3.8) 

We now introduce decoupling parameters on the bonds of the lattice IZ2; for 
all sb = 1 we have the same equation as before, while we have complete decoupling 
across bonds with sb = 0. We only decouple bonds that are far away (0(1)- the 
specific distance will be chosen later) from regions where the mass is changing, i.e. 
far from the region where a(x) is changing. We denote the subset of bonds on 
which we decouple by .?4(a). 

We use the decoupling method of Balaban and Gaw'rdzki [1], with A on the 
/-lattice. Let A, A' be /-lattice squares, and take sE[O, 1]t�<o:>. Then define 

where 

CM(o:)\Y (A A') 
H(s, A, A')= L fl sb fl (1 - sb) ; , (3.9) 

finiteycal(o:) bey b¢y C(A, A ) 

cr(A, A')= f dx f dyCr(x, y), cr = (-A�+ m; ) -1; (3.10) 
Ll Ll' 

A� is the Laplacian with Dirichlet boundary conditions on r and me >  0 is a 
sufficiently small constant to be chosen later. 
Definition 3.1. Let A be an operator on Yf'. Then we define 

A.=LxLIAxLI+ L H(s,A,A')xLIAxLI .. 
Ll Ll *LI' 

The decoupled version of Eq. (3.7) is 

/! TrC�1 [1 + K(s)] -1 Pj )det3 [1 + K(s)] = Z(s), (3.11) 
where 

and where 
K(s) = (D112 SD1f2).(D -112).((D -112)., 

PAs)= ((D -1f2).gj,. )(D1f2 S).hj. 

(3.12) 

(3.13) 
Note that Z(s) factors on connected regions whose boundary consists of bonds 
with sb = 0. 

The Glimm-Jaffe-Spencer [5, 6] cluster expansion is essentially an application 
of the fundamental theorem of calculus. For a partially decoupled function F(s) 
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we have 

where 
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1 
F(1) = I f dsrasTF(s), 

Tei!D(a) 0 

a;= TI aSb' dsr= TI dsb 
beT beT 

(3.14) 

(3.15) 

and we set sb = 0 for all b�T. We can put this all together with the following: 
Proposition 3.2 (Cluster Expansion). The correlation function (3.11) satisfies the 
following convergent expansion: 

Z(l) = I f dsT8{Z(s) , (3.16) 
Tei!D(a) 

and for some constants c and ()' obeys the bound 

IZ(l)l � cf e-b'd({u1J,{hklleO<IoA-,1>. (3.17) 
The remainder of this paper will be dedicated to proving the above proposition; 
in addition to the factoring across bonds with sb = 0 the main fact we will need 
is a bound on cluster activities that is exponential in the size of the cluster. 

A typical term in our expansion will have the form 

k! Tr ( � [1 + K(s)J -1· G )det3 [I + K(s)] = rk(G), (3.18) 

k 
where G is an operator on 1\ :Yf' given by antisymmetric products of operators 
of the type A, E and P defined below. The result of performing one differentiation 
on rk(G) is then [3] 

(3.19) 

where 
(3.20) 

k 
and the operator d 1\ k identifies Es with an element of 1\ :Yf': 

d A k E = kE 1\ Jk -1, Ik- 1 = 1 A 1\l. (3.21) 
k-1 times 

We can now write down the generic term in the cluster expansion, 

8{Z(s) = 8{r ;c�1 P)s)) 
= I I 8"0Ty(P(np) 1\ A(nA)·d 1\ y E(nE)). (3.22) 

ne.cJ'( T) decomp n 

Here the set of derivatives that have been applied to the Fredholm minor is 
decomposed according to whether they result in a factor of type A, E or P, or 
produce a higher derivative of such a term, as follows: 

(3.23) 
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and &J(T ) denotes the set of partitions of r. The other terms appearing in (3.22) 
are: 

P(np) = ( fl a:)P 1 (s) A · ·· A P ,t(s) 
')'E7tp 

(3.24) 

(where each a: acts on a different P;(s)), 

A(n1) = 1\ K 1(s)a:K(s), (3.25) 
YE1tA 

dAr E(nE) = fl d' A '(1 - K(s))a:K(s), (3.26) 
}'E7tE 

where r = f + In A I and the d' A means that terms where E derivatives precede A 
derivatives (according to an arbitrary ordering of the bonds) are omitted, and finally 

a"o =naY· s' (3.27) 
)IE1tQ 

each a: acts on an undifferentiated K(s) in an A orE factor. 
We will be estimating (3.22) by fixing all the localization squares in the 

decoupling (Definition 3.1). To indicate a term so localized we write A1, E1, etc. 
We re-write (3.22) to make this explicit: 
Lemma 3.3. The derivative a[Z(s) may be written as the following sum over localized 
terms: 

a;z(s) = L L L a"0r,(P,(np) 1\ A,(nA)·d 1\ r E,(nE)). 
ne£?'( F) decomp n localizations 

{LI;} 

4. Combinatoric Estimates 

We will estimate the sums in Lemma 3.3, primarily using the following lemma: 
Lemma 4.1 (Method of Combinatoric Factors). Given two sequences {an} and {en}, 
ifLicnl-1 < 1, then n 

n 
First we see that 

la[Z(s)I � I41"1 sup I lo"0r,(P1AA(d'A'E1)1. (4.1) 
n decomp localizations 

We can localize the A factors (this means choosing a particular square from each 
of the sums over characteristic functions implicit in the definition of the decoupling) 
with a combinatoric factor 

since 

0 (1) IY 1°(1) n exp ad(L1k , y) 
k 

1 -I; exp [ - ad(L1 , y)] < 0(1) for d> l. 
IYI Ll 

(4.2) 

(4.3) 
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Similarly we can localize the P factors with combinatoric factors 
0(1) exp e[d(Ll j• K) + d(Llj, Llj)], 

where Jj and Jj are the supports of the test functions hj and gj. 

(4.4) 

For the E factors, in addition to fixing a localization we wish to fix a choice 
of terms in the exterior derivative. For the localization we proceed just as we did 
for the A factors, yielding a combinatoric factor like (4.2). 

Combining the above we get the following: 
Proposition 4.2. 

I a{Z(s) l �I 0(1)1 Fl sup I 8"0r,(Pe A A(d' A 'Ee)l 
1t decomps, 

localizations 

Y
E
"�L

E 
( 0(1)1yi0<1> Q exped(Llk, y)) 

· rl 0(1) exp e[d(Ll j• Jj) + d(Llj , Llj)]. 
j; 1 

We now want to use additional combinatoric factors to restrict the internal 
structure of the A, P and E terms. These estimates involve exponential pinning; 
see for example [1] p. 301. To fix a term in the exterior derivative, let edLl) be 
the number of E terms with left-most localization square Ll. Then the number of 
terms is bounded by 

2J'+IF1f1eL(Ll)!�2"0(l)IFI fl exped(y,LlL), (4.5) 
Ll 

Y
E1tE 

where LlL is the left-most localization square corresponding to the E factor being 
differentiated (by y3b). Now we consider restricting the sum over the P derivatives. 
There are/ factors and lnpl derivatives, so there are less than (2/)I"PI possibilities 
(the 2 comes from the choice of the bra or ket). We have the estimate 

}'E1tp 

where Lie is the localization square corresponding to y chosen via (4.4) and the 
choice of the bra or ket, and Lle is the corresponding test function square. We also 
restrict our choice for the distribution of derivatives of n0. There are less than 
[0(1)(1nAI + lnEI)JI"ol factors, so we get an estimate similar to (4.6), 

[0(1)(1nAI + lnEI)J1"ol � 0(1)1"1 TI exp [emin {d(y, Lie), d(y, Ll;)}], (4.7) 
)IE1t"Q 

where Lie and .1; are the localization squares chosen via (4.2) or its equivalent that 
surround the factor being differentiated by y. 

Finally, because each K(s) has three decouplings each term can actually be 
differentiated a number of ways, so that the partitions nA, nE and n0 must be 
divided into sub-partitions. However, this simply gives a factor of 0(1)1 Fl, and we 
will leave our notation unchanged for the time being. 

The above discussion can be summarized by the following proposition: 
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Proposition 4.3. 

/ o[Z(s) / � I;O(l)IFJ+J' sup sup 
decomps, np-derivatives 

localizations no-derivatives 
exter. derivs 

y
E
n�L

E 
( 0 (1)/y/0(ll iJ exp cd (L1k , y)) 

)' - -
· [1 0 (1) exp e[d (Llk, Llk) + d (Ll�, Ll�)] 
k=l 

· [1 exped (y, L1L) [1 exp [cmin{d (y, L11), d (y, J1)}J 
YE1t

E 
}'E7tp 

· [1 exp [cmin{d (y, L11), d (y, L1;)}], 
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where the primes on n0,P1,A1 and d ' 1\ 'E1 indicate that we take only one term from 
each summation. 

5. Estimates on Kernels 

In order to prove convergence of the cluster expansion we must now prove 
analytical estimates on the expressions I o"oT,(P; 1\ A;· d' 1\ 'E;) 1 appearing in 
Proposition 4.3 above. Each of these terms is of the form 

r! Tr ( N[l +K (s)] - 1 , Q i ' 1\ Qi2 1\ ... 1\ Q:') det3 [1 +K (s)], (5.1) 

where each Qi' takes the form 

or 
Q 

1 2 3 ,k ;· = AY; £Y. £Y . .. . £Y;' 

and each A, P or E is fully localized as indicated above. 
Let 

G1 (y, b)= L: exp -6/IO' (y)/, 
<TESI:'I 

(5.2) 

(5.3) 

(5.4) 

where s" denotes the permutation group on n elements, and where the "size" / lAy)/ 
of the linear ordering of}' determined by the permutation o-ESIYI is defined in [3], 
page 12, and let 

Gp (Qf') = {1, 
( " 1 - 2 -, ) exp -c56 'T d (L1;pL1;) + d (L1;j' L1 J , if Qf'is of the form (5.3) 

if Qi' is of the form (5.2) (5.5) 

where Llfj, Ltt are the localizations associated with the P factors. 
The required estimate is as follows: 

Proposition 5.1. Choose m0 the decoupling mass in (3.10), sufficiently small. Then 
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there exist () t, ... , 66 > 0 such that (uniformly in s) 

r! I Tr ( N[l + K(s)r t, Qi' A Qi2 A · · · A Q;') det3 [1 + K(s)] I 
� 0(1)  exp (0( 18A- tl)) Q ( Gt (y{, bt) exp ( - <52lly{l) exp (- <53d(y{, a A- t))Gp(Qi') 

·exp ( -<54 � d(A�i' y{)) exp (<55 1 y{l) exp ( O(l))} 
where { A�J are the localization squares associated with the differentiation of y{ , and 

fi = u y{. 

Note that the y{ correspond to the different ways the derivatives in Y; can be applied 
within each factor, as explained preceding Proposition 4.3. Also, since the P factors 
do not contribute to decay away from 8A_t, we indicate by a prime on the product 
that the 63 term is absent for differentiations arising from P factors. 

Proof . We have, using Lemma A.2 of [3], 

r! I Tr( N[l + K(s)r \ Qi' A Qi2 A ··· A Q;') det3 [1 + K(s)] I 

� II N[l + K(s)] -t·det3 [1 + K(s)] II f1 II QJ' lit· (5.6) 

We complete the proof with the following two lemmas. The first contains the 
nonperturbative bound on the determinant; the second is a perturbative bound 
on the kernels Q;. 

Lemma 5.2. There exist c1, c2 > 0, independent of s, so that 

II /\'[1 + K(s)]-1·det3[1 + K(s)] II �  c� exp c2 IDA-tl · 

Lemma 5.3. For me sufficiently small the kernels Qi' satisfy 

II Q[' lit � Il Gt(y{, bdexp (- ()211 y{ l )exp ( - ()3d(y{, aA_t))Gp(Q[') 

·exp ( - 64 � d(A�i' y{)) exp (b5l y{ l) exp ( 0( I a A_ tl )) exp ( 0(1)), 

where ()t . . · b6 > 0 (<53= 0 if')'; comes from a P factor) are independent of s. 

The fundamental estimates required to complete the proofs of the above lemmas 
are the estimates on kernels given in [1]. We quote them here for convenience. 

Let 
K(A, A', A", Alii ;f)= xi- f + l)D- 'x A.D-112lXA"D -112xA"" (5.7) 

Lemma 5.4 (Proposition A.l.l of [1]). Let p > 2. There exists 8 > 0 such that 

II K(A, A', A", Am ;.f) llv �II fxA" IILx exp- s[d(A, A')+ d(A', A")+ d(A", Am)]. 

Proof. [1], page 388. 
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Lemma 5.5. Let H(s, Li, .1') be given by (3.9). Then 

(a) 0 ;£ H(s, L1, .1') ;£ 1, 
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(b) I a;H(s, Li, .1')1 ;£ exp(O(Q) exp(2mcd(L1, .1')- JmAy, Li, L1'))G1 (y, <51) exp(c- Jzl) IYI· 
Proof. [1], page 314. 

Proof of Lemma 5.2. By standard determinant estimates, we have 

Now 

II /\'[1 + K(s)] -1·det3 [1 + K(s)] II 
=II /\'[1 + K(s)] -1·det4 [1 + K(s)] II exp[- Tr K4(s)/4] 
;£ c� expc2ll K(s) II!-

II K(s) II!= Tr K*(s)K(s)K*(s)K(s) 

L Tr[K*(s; .111• .112• L113, Li14; J)K(s; .121• .122• .123• Li24; J) 
4ijc:.IR2 

· TI H(s, L1k1• L1k2)H(s, L1k2• L1k3)H(s, L1k3• L1k4) 
k 

L\;j:L\14; Ll21o j 
Lh4= L131,Li34= L141 

· TI H(s, L1k1, L1k2)H(s, L1k2• L1k3)H(s, L1k3• L1k4). 
k 

Now by Lemma 5.5(a) and Lemma 5.4, this is less than 

(5.8) 

(5.9) 

(5.10) 

L n II' X Llj,IILoo exp- B[d(Lijl• L1j2) + d(L1j2• L1j3) + d(L1j3• L1j4)] (5.11) 
L1ij:L1t4= ...:121, j 

Li24; Ll31' L134; L141 

;£ 0(1 oA_1/), 

since supp ( c oA _1. 

Proof of Lemma 5.3. We estimate 

Recall that 

IIA;E;£; ... £;111 ;£ IIA;11111 E;II ··· IIE;II , 

IIP;E;E; ... £;111 ;£ IIP;II111 E;II .. · II E;II. 

A= oY'KoY2KonK, 
where y1, y2 or both may be empty; 

E = (1- K)oYK or E =- oY'KonK, 

and P = Pi(s) or derivatives thereof. Thus 

(5.12) 
(5.13) 
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n 
{i :y; uy0 uy] = y, 

r� uy5 uyf; = Y2 
Y7 uy;. uy;, = Y3) 

� L IIK(s; L11, Liz, L13, L14; b) 11311 K(s; L14, As, L16, L17; b) 113 

. n II K(s; L17, As, Lig, L110; b) 1 131 tJY;H(s, Ai , Ai + 1)1. 

Using Lemma 5.4 and Lemma 5.5(b) this is bounded by 

exp- c[d(L11, Liz)+ d(Az, L13) + · · · + d(L19, L110)] 
· il exp [2mAL1;, A;+ 1 ) - <5mcd(y;, A;, A;+ 1 )] 

· exp ((c- bzOI y; I )Gl(y;, b1). 
The E terms are estimated by 

11(1-K)OYKII � llt3YKII + IIKoYKII 
� 11 tJYK 113 + 11 KoYK 113· 

Using the same techniques as above, this is bounded by 

n exp [2mcd(L1;, Ai + 1) - bmcd(y;, A;, Ai + 1 )] 
{i :y'1 uy0 uy] = y) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

Finally, to estimate tJYP; we note that (recall that the h's and g's are localized in 
blocks Li', and y= Y1 uyz) 

tJYP;(") = (XA2D-112gi, · )XAP11zShioY'H(s, L11, Li)OY2H(s, Liz, Li') 
= (Gi, · )HioY' H(s, L11, Li)on H(s, Liz, Li'), (5.19) 

where 

Now by straightforward arguments (e.g. Theorem 2.2 of [13]) 

IIHj II.Yf" � exp -ad(L11, Li) II 'hj II yt, 

II G j II yt· � exp -cd(Az, Li') II gj II£; 
while 

(5.20) 
(5.21) 

(5.22) 
(5.23) 
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Combining (5.22)-(5.24), we get by Lemma 5.5 

as needed. 

II arp ll 1;:::; exp(2mc-s)[d(Ll1, .d)+ d(Az, J')J 
·exp[- bmJd(y;, L11, .d)+ d(yi, L12, Li'))] 

·llhjllxllgjll?f fl exp((c-bzl)ly;I)G1(yi,bl) (5.25) 
i� 1.2 

6. Convergence of the Expansion 

We now want to complete our proof of the convergence of the cluster expansion. 
First we take me small so that, for example, (2mc-s) < 0 in (5.16), (5.25). Then we 
take l sufficiently large so that (c- bzl) < 0 in (5.16) and (5.25) with enough left 
over to beat the 0(1) 1 rr in Proposition 4.3. Then we can combine Proposition 4.3 
and 5.1 to give 

I a; Z(s) I ;:::; exp ((- b�d(Ag, Ah))) exp ( 0( I oA -1 1) - (j� IT I) 
I 

·I sup fl [G 1 (y{, b1) exp (- b3d(y{, oA _ 1 )) exp (O(I))]. (6.1) 
n {y{J 

Here we consider for simplicity the case of the reduced Green's function, as in 
Theorem 1, with only two test functions g, h supported in L19, Llh. The decay between 
L19, Ah can be extracted from the factors in Proposition 5.1, assuming we allow for 
an increase in 0( I 811_11) to compensate for a possible lack of connections going 
all the way from L19 to Llh. 

Let us insert this bound in the starting expansion (3.16), so that we may 
complete the proof of Proposition 3.2. We obtain 

I 

I Z(l) I ;:::; exp ( - b' d(L19, Llh)) exp (O( I 811_11)) I exp (- b'l r I) I sup fl 
r n {y{J 

{ � exp (- b'll,(y{) I ) exp (- b' d (y{, oA _ 1)) exp ( 0(1)) l (6.2) 

where we have written G1 out using (5.4). Now rather than sum over n we can 
just as well sum over all partitions of r into { y{} - the original partition n can be 
reconstructed from the structure of differentiations in { y{}. Furthermore, we sum 
freely over the y{'s, reconstructing r as their union. To sum over a single y{, we 
use the estimate 

L L exp (- b'lla(Y{) I) exp (- b' d(y{, oA - l l) exp (O (l));:::; 0 (1 oA- 11). (6.3) 

The first bond yields the factor 0( I oA -11 ), since it is localized to oA-1 only. 
Subsequent bonds are localized by ll" (y{) l. The factor exp ( O(l)) is beaten by the 
decay in d(y{, (M_1)- for this we choose !:?B(1X) so that d(!:?B(1X), oA_ d > O(l). This 
may not be possible at L19, Llh, however, so there will be two exp ( O(l)) factors left over. 



440 J. Z. Imbrie, S. A. Janowsky and J. Weitsman 

Now in summing freely over N r{ 's, we count each partition of T N! times. 
Hence we have an estimate 

This completes the proof of Proposition 3.2. It is worth noting that all differentia
tions were ultimately linked to a A_ 1, there being no interaction away from 8A _1 
after the chiral transformation. Hence it was not necessary to exploit factoriza
tion of Z(s) or to compute a ratio of expansions with and without observables. 

To complete a proof of Theorem 1, we have only to multiply back the ratio 
of regularized determinants that we split off in (3.2). This yields the additional 
factor exp (21A-11/n). 

Appendix: General Masses 

When lm(x)l takes on values other than 1, we can prove a result analogous to 
Theorem 1. We suppose m(x) takes on finitely many values; for definiteness 
suppose m(x) is real and constant on cubes of some size. The chiral case 
m(x) = fl(x) exp (iy58 (x)) can be treated similarly. By rescaling we can assume the 
largest lm(x)l is 1. Corresponding to each value of m(x) there is a region in 1R2, 
where m(x) takes that value. Each of these regions now has a different vacuum 
energy (but explicitly calculable, as in [7], p. 333), and the bound in Theorem 1 
has to be adjusted by the appropriate factors exponential in the volumes. For 
simplicity we assume m(x) = 1 at infinity, but the more general case can be handled 
as well by taking a limit on volumes, normalizing so as to cancel the vacuum 
energy of the phase at infinity. Constants and decay rates in Theorem 1 will of 
course not be uniform as the minimum I m(x) I tends towards zero. 

The chiral transformation can be performed as in the constant lm(x)l case. We 
obtain a Fredholm minor as in (3.4), only now the function C as defined by (2.9), 
no longer vanishes away from suppt aa. To remedy this, we perform a Neumann 
series to bring the mass into the propagator S. Putting b(x) = y0(1-lm(x)l), we 
can define 

S' = (S -1 -b) -1 = S + SbS + SbSbS + · · · .  (A.l) 
This is convergent since II S II � 1 and 1 1 -I m(x) II �()max< 1. Then with (' = ( + () 
we put A= S'(', B= -Sb, C= A+ B+ AB= S( and by Lemma 2.3, 

where 
det3 [ 1 + S(J = det3 [ 1 + S' ('] det3 [ 1 -Sb] exp (Tr T), (A.2) 

(A.3) 
As in [7], Sect. 5.5, we can analyze the series for log det3 [1 -Sb] + Tr T and break 
it into a sum over the values of m(x) of vacuum energies x volumes, with corrections 
associated with the length of boundary. 

It remains to analyze det3 [1 + S'('J and the corresponding minors with a cluster 
expansion. The new perturbation (' vanishes except near boundary regions. The 
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only essential new feature is the interpolation of S'. By analogy with (3.12) we put 

K(s) = (Dll2 SD112),(D -112){ n �o (bS)" )s C(D -1!2)s. (A.4) 

Note that in contrast with [7], we decouple after the mass shift. While this is 
inconvenient for some purposes it does enable us to get the necessary propagator 
estimates. Specifically, the new estimates required are on II x.1(bS)"x s 11 . Using the 
Combes-Thomas method [2], we conjugate bS by exp (IJx) (x = x0 or x1). For 
small enough 1J the resulting operator still has norm less than 1. (Near the diagonal 
the conjugation is multiplication by 1 + O(IJ), while far from the diagonal the decay 
of S takes over.) Hence the series converges and a decay exp ( - 0(1J)d (t1, ,1')) can 
be extracted. 
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