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We review the current (as of Fall 2016) status of the studies
on the emergent integrability in many-body localized mod-
els. We start by explaining how the phenomenology of fully
many-body localized systems can be recovered if one as-
sumes the existence of a complete set of (quasi)local op-
erators which commute with the Hamiltonian (local inte-
grals of motions, or LIOMs). We describe the evolution of
this idea from the initial conjecture, to the perturbative con-
structions, to the mathematical proof given for a disordered
spin chain. We discuss the proposed numerical algorithms
for the construction of LIOMs and the status of the debate
on the existence and nature of such operators in systems
with a many-body mobility edge, and in dimensions larger
than one.

1 Introduction

With the aim of describing the energy transport in spin
systems, Anderson formulated in [1] a model of a quan-
tum random walker in a stochastic potential landscape,
now known as the “Anderson model”. He argued that
when the randomness is sufficiently strong, the quan-
tum random walker is localized by the quenched disor-
der, meaning that localized initial conditions do not de-
cay, and diffusive transport is suppressed. His theoretical
work laid the foundations for the theory of the quantum
dynamics in a strongly-disordered environment, with
implications that go far beyond the realm of solid state
physics; the occurrence of localization challenges indeed
the basic assumptions underlying the theory of equili-
bration and thermalization in isolated quantum many-
body systems [2, 3].

Whether localization occurs even in presence of in-
teractions between the constituent degrees of freedom
is a question of theoretical interest and practical rel-
evance, which motivated the search for the so called
Many-Body Localized (MBL) phase [4]. The stability of
the localized phase to the addition of weak scattering

has been addressed theoretically in [5, 6], by means of a
perturbative treatment applied to Hamiltonians of inter-
acting fermions in a disordered potential (similar argu-
ments have been extended to bosonic Hamiltonians [7]).
Subsequently, a large body of numerical works has re-
vealed the occurrence of localization in one dimensional
systems of interacting fermions on a lattice and spin
chains in random fields [8–18]. Signatures of this phe-
nomenon have been found in the structure of the highly-
energetic many-body eigenstates, for values of the in-
teractions that lie outside the perturbative regime. More
recently, there are claims of experimental observations
of MBL in artificial quantum systems of cold atoms
[19–21] or trapped ions [22]. Since these experiments
focus on the suppression of transport, it is still de-
bated how well they can distinguish MBL from single-
particle Anderson localization (a review of the experi-
mental situation can be found in another article in this
issue).

From the theoretical analysis it emerges that MBL
systems exhibit a strongly non-ergodic dynamics, char-
acterized by the suppression of diffusive transport of
the global conserved quantities (such as energy, spin
or particle number) and by the slow, power-law re-
laxation of local observables towards stationary values
that are highly dependent on the initial condition. Re-
markably, even in presence of interactions and at fi-
nite energy density, disordered quantum systems fail to
thermally equilibrate following their own dynamics and
remain permanently out-of-equilibrium. As such, they
open interesting possibilities for the storage of quan-
tum information, that can be locally manipulated and
retrieved [23], for the protection of topological order at
finite temperature, or for the realization of long-range
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order and finite temperature phase transitions in d = 1,
that would be forbidden by the equilibrium statistical
mechanics [24–26].

As it is well known, the breaking of quantum ergod-
icity is not an exclusive feature of disordered systems, as
it is realized in “conventional” integrable systems satisfy-
ing the Yang-Baxter relations [27]. For such systems, er-
godicity breaking is understood in terms of an extensive
set of non-trivial conservation laws. It is natural to expect
that a similar “integrable” structure emerges also in the
disordered case; such a structure needs however to ac-
count for the suppression of diffusive transport, which is
a distinguishing property of disordered systems. Many-
Body Localized systems may thus be considered as a
peculiar class of integrable systems, characterized by ex-
tensively many conserved operators (Local Integrals of
Motion, or “LIOMs” in this review) whose structure in
space prevents not only ergodicity and thermalization,
but also transport over macroscopic scales [28–30]. In the
following, we review the main efforts made to substanti-
ate this perspective.

This Review is structured as follows: In Sec. 2, we re-
call the main features of Many-Body Localized systems.
In Sec.3 we discuss how such features can be justified in
terms of the “emergent integrability”. In Secs. 4 and 5 we
review the main analytical and numerical constructions
of conserved quantities that have been proposed in the
literature. We devote Sec. 6 to the discussion of debated
issues concerning the fate of the conserved quantities in
the case in which a mobility edge is present, and in di-
mensions higher than one.

2 MBL systems: a multifaceted
phenomenology

In its most direct formulation, localization corresponds
to the fact that local excitations do not decay. In the sin-
gle particle setting, this was first shown to occur [1] for
the Anderson model on a lattice �, with Hilbert space
l2(�) and Hamiltonian

HA =
∑
x∈�

εxc†xcx − γ
∑
〈x,y〉

(
c†xcy + c†ycx

)
, (1)

where 〈x, y〉 are edges in �, γ is the kinetic (“hop-
ping”) amplitude, and εx are independent random vari-
ables uniformly distributed in [−W/2, W/2], defining a
stochastic process indexed by the sites x ∈ �. It was ar-
gued in [1] that the level width of a local excitation
at a site x ∈ �, given by �x(z) = −�Sx(z) with Sx(z) the
local self-energy defined by G x(z) = 〈x|(z − HA)−1|x〉 =

(z − εx − Sx(z))−1, goes to zero as the energy variable z =
E + iη approaches the real line. This holds in probability,
i.e. for almost all realizations of the random landscape.
It implies that the spectrum of local excitations remains
discrete in the thermodynamic limit. An analogous state-
ment can be formulated [5, 6] for many-body fermionic
Hamiltonians of the generic form

HMB =
∑

α

Eαnα + 1
2

∑
αβ,γ δ

Uαβ,γ δc†αc†βcγ cδ = H0 + U, (2)

with α labeling the eigenstates of a quadratic part (1). In
this case, �a(z) is replaced with the imaginary part �α(ε, t)
of the (Wigner transform of the) many-body self energy
associated to the retarded Green function G R

α (t1 = t −
τ
2 , t2 = t + τ

2 ) = −iθ(t2 − t1)
〈{

cα(t1), c†α(t2)
}〉

, and the limit
η → 0 is replaced by the limit of vanishing coupling with
an external thermal reservoir. A vanishing typical value
of �α(ε, t) implies that the irreversible evolution towards
thermal equilibrium is hindered, as it follows from the
fact that �α(ε, t) enters in the collision integral of the
quantum Boltzmann equation: in absence of an exter-
nal reservoir, the system fails to act as an heat bath for
itself.

In the theoretical works [1, 5, 6], the above crite-
ria given in terms of the level width of local excitations
are recast as a problem of convergence (in probabil-
ity) of the perturbative expansion for the decay rates
around the trivially localized limits γ = 0 in (1) and
U = 0 in (2). The mechanism for localization extends
nonetheless also beyond the perturbative regime, as
it has been shown by means of numerical analysis of
one-dimensional fermionic or spin Hamiltonians on the
lattice. Prototypical models for the numerics are XXZ-
chains in random longitudinal field [11, 13, 16, 31]:

HXXZ =
K ′−1∑

i=−K

[
J
(

Sx
i Sx

i+1 + Sy
i Sy

i+1

)+ JzSz
i Sz

i+1

]+
K ′∑

i=−K

hi Sz
i ,

(3)

or Ising chains in random transverse [14] and longitudi-
nal fields, among which the model considered in [32]:

HI =
K ′∑

i=−K

hi Sz
i +

K ′∑
i=−K

γi Sx
i +

K ′−1∑
i=−K

Ji Sz
i Sz

i+1. (4)

In both cases, Sα
i , α = x, y, z are Pauli matrices on sites

of a lattice � = [−K , K ′] ∩ Z, with Sα
i ≡ 1 for i /∈ �, γi =

γ�i with γ small and the random variables hi, �i, Ji are
independent and bounded, with bounded probability
densities.
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As a result of the effort to characterize MBL for these
models, several diagnostics have been developed and ex-
ploited. In the following, we briefly recap the main fea-
tures that are commonly considered as a signature of this
phase; as we shall argue in Sec. 3, all of these features can
be justified in terms of the “emergent integrability” of the
localized system, which thus furnishes a comprising def-
inition of MBL.

(i) Absence of DC transport In the single particle case,
Anderson’s criterion on the level width of local excita-
tions implies that local states |x〉 ∈ l2(�) are bound states.
Stronger statements on the dynamics of localized initial
conditions |x〉 can be rigorously proved, referred to as
“dynamical localization”. They correspond to the follow-
ing bound holding almost surely:

sup
t≥0

(∑
y

|y|2q|〈y|e−i H t|x〉|2

)
< ∞, (5)

implying that localized initial conditions |x〉 have, with
probability one, uniformly in time bounded moments of
all orders q > 0. Such a condition rules out the possibility
of transport, in particular of diffusive transport (which is
instead expected in the weak disorder regime for d ≥ 3).
The proof of (5) makes use of exponential bounds on ei-
ther the local matrix elements of the resolvent [33], or
on their fractional moments [34], or on the eigenstates
correlators [35]. Such bounds encode the exponentially-
decaying structure of the eigenstates φα of (1), whose en-
velope satisfies

|φα(x)| ∼ Aα exp
(

−|x − rα|
ξα

)
(6)

where rα is the localization center of φα and ξα its local-
ization length.

Arguments for the vanishing of the diffusion constant
are given also for the many-body case [5, 6]; similarly
to the single particle case, they rely on the exponential
decay of the correlations of the local density operators
ρr = c†r cr on the exact many-body eigenstates |En〉:

Lρ
nm(r) =

∑
r ′

〈En|ρr ′ |Em〉〈Em|ρr ′+r |En〉 � exp
(

− |r |
ξ (E)

)
,

(7)

where En ≈ Em ≈ E and ξ (E) is an energy dependent lo-
calization length. The absence of diffusion has been in-
vestigated numerically by analyzing the low-frequency
behavior of the dynamical conductivity and its dc limit
[36, 37] and the spin-spin or density-density correlation
functions in the infinite-time limit [9, 13, 38]. The van-

ishing of the transport coefficients is a peculiar feature
of MBL systems, which contrasts with the efficient trans-
port properties of clean integrable systems [39–41]. Nev-
ertheless, it is not an exclusive feature of this phase, as in
one dimension the delocalized phase also displays sub-
diffusive transport [42–46].

(ii) Anderson localization in configuration space.
The perturbative treatment in [5, 6] is consistent with the
picture, originally proposed in the influential work [47]
(see also the construction in Sec. 4.2 in this review),
of MBL as Anderson localization on an abstract graph
whose sites correspond to the Fock states diagonalizing
the non-interacting part of (2), and whose geometry is
determined by the interactions. A similar picture can be
formulated for the spin Hamiltonians (3) and (4), with
the Fock states replaced by the tensor products of the
simultaneous eigenstates of the operators Sz

i . This sce-
nario entails that the many-body eigenstates are “weak
deformations” of the non-interacting states, a point of
view emphasized in [10]. This picture is corroborated
by several numerical diagnostics, such as the scaling of
the IPR of MBL eigenstates in the basis of non interact-
ing states [11, 16], or the expectation values of the non-
interacting occupation numbers or Sz

i operators, which
are shown to be close to their non-interacting value also
on MBL eigenstates [13]. The latter statement is rigor-
ously proven in [32] for the chain (4), see Theorem 1 in
Sec. 4.3.

(iii) Area-law entanglement in highly excited states.
A key implication of the above scenario is the low entan-
glement entropy in the excited eigenstates |En〉 of MBL
Hamiltonians. For one-dimensional systems, this is cap-
tured by the bipartite eigenstate entanglement entropy,
obtained by splitting the chain into a right half R and a
left half L, and by tracing the degrees of freedom corre-
sponding to one of the halves,

S = −Tr
(
ρR log2 ρR

)
(8)

with

ρR = TrL (|En〉〈En|) . (9)

It is shown in [10, 14, 16] that S does not scale with
system size but obeys an area-law, see Fig. 1. This is a
typical ground-state property for generic gapped Hamil-
tonian, which in the MBL case extends to the whole spec-
trum. It implies that MBL eigenstates of extensive energy
can be efficiently represented via Density-Matrix-RG or
Matrix Product States [48–51] and Tensor Networks [52].
Moreover, it allows to access to the dynamical properties
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Figure 1 Bipartite entanglement entropy SE de-
fined in Eq. (8) for the Hamiltonian (3) with J =
Jz = 1 and ha ∈ [−h, h], as a function of sys-
tem size L for different disorder strengths in the
middle of the spectrum (left) and in the upper
part (right). For strong disorder, SE /L decreases
signaling area-law. The figure is taken from Ref.
[16].

in the MBL phase adapting computational approaches
originally designed for the ground-state physics, such
as the strong disorder renormalization group exploited
in [24] to construct approximate many-body eigenstates,
and in [15, 53] to describe the dynamical evolution of
initial product states. Further signatures of MBL are en-
coded in the structure of the full entanglement spectrum
[51, 54, 55]: in particular, a distinctive feature of MBL is
the power-law decrease [51] of the size of the eigenval-
ues of the reduced density matrix (9).

(iv) Violation of the Eigenstate Thermalization
Hypothesis. The structure of the MBL eigenstates is in-
herently incompatible with the Eigenstate Thermaliza-
tion Hypothesis (ETH), formulated in [56–59] as a mi-
croscopic justification for quantum thermalization. The
ETH conjectures that the individual eigenstates |En〉 of
a thermalizing Hamiltonian locally reproduce the ther-
modynamic ensembles, meaning that the eigenstates
expectation values 〈En|O|En〉 of local observables O
depend smoothly on the energy of the state, and coin-
cide with the microcanonical expectation values at en-
ergy E ≈ En. This hypothesis, together with the assump-
tion of exponential decay (with the system size) of the
off-diagonal matrix elements 〈En|O|Em〉, guarantees that
out-of-equilibrium initial state relax to states that are
“locally thermal”.

Contrary to the ETH requirements, MBL eigenstates
in the same energy shell are locally distinguishable and
non-thermal: the expectation values of the local ob-
servables are far from their equilibrium value, and they
strongly fluctuate between states that are close in en-
ergy [60], see Fig. 2(a). ETH is also incompatible with
the area-law scaling of the bipartite entanglement, as it
requires the entanglement to be equal to the thermal
equilibrium entropy of the subsystem, that scales with
the number of its degrees of freedom. This dichotomy
has been exploited extensively to pinpoint the phase di-
agram of disordered systems by probing the violation of
ETH in individual eigenstates obtained from the exact
diagonalization; it is however useful to keep in mind that
while localization is a statement on the long-time limit

of thermodynamically large systems, the ETH ansatz de-
termines the stationary behavior of finite-size samples:
these two approaches are not necessarily equivalent [61].

(v) Absence of level repulsion. Starting from the ear-
lier works [62, 63], the absence of level repulsion, gener-
ically regarded as a signature of integrability [64–66], has
been extensively exploited as a characterization of the
MBL phase, see also [13, 31, 63, 67–69]. An extensively
used indicator of the absence of repulsion [8] is the av-
erage value 〈r〉 of the dimensionless ratio

rn = min {En+1 − En, En+2 − En+1}
max {En+1 − En, En+2 − En+1} (10)

obtained from the gaps between consecutive eigenval-
ues. In the localized phase, for increasing system size
the latter approaches the Poisson theoretical value 〈r〉 ≈
0.39, see Fig. 2(b).

(vi) Slow growth of entanglement and slow relax-
ation. Despite the structure of MBL eigenstates is not sig-
nificantly altered by the interactions, the latter strongly
affect the quantum dynamics. Their signatures are traced
in the real-time evolution of the bipartite entangle-
ment entropy S(t), obtained as in (8), with the substi-
tution of |En〉 in (9) with the time-evolved pure state
|ψ(t)〉 of the entire system. Numerical simulations per-
formed on disordered spin chains initialized in a low-
entangled/product state [9, 70, 71] display a transient
fast growth of S(t) (dominated by the direct nearest-
neighbor interactions across the cut and extending to
times of the order of the inverse interaction coupling),
followed by a slow logarithmic growth, see Fig. 3(a). The
increase in entropy is expected to continue indefinitely
for an infinite system, while for finite systems S(t) satu-
rates to a value which depends on the initial state only, it
scales with the system size but it is nevertheless smaller
than the one to be expected in the thermal regime
[72, 73].
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Figure 2 (a) Logarithm of the averaged difference between the local magnetizations m(n)
iα = 〈n|Sz

i |n〉α in adjacent eigenstates of the
Hamiltonian (3) with Jz = J = 1 andh indicated in the legend. The average is over the disorder realizationα and the pairs of eigenstates.
For large h, the differences remain large as the length of the chain L is increased. (b) Ratio of adjacent energy gaps defined in Eq. (10) for
different system sizes L indicated in the legend. For large h, the level statistics are Poisson. Figures taken from Ref. [13].

Figure 3 (a) Unbounded growth of the bipartite entanglement after a quench starting from a site-factorized Sz eigenstate of the Hamil-
tonian (3) with J = J⊥, ha ∈ [−5, 5], L = 10 and different interaction strengths Jz. The inset shows the same data with a rescaled
time axis and subtracted Jz = 0 values. (b) Growth of the particle number fluctuations of a half chain after the quench. The behavior is
qualitatively different than the entanglement entropy: the interactions do enhance the particle number fluctuations, but while there are
signs of a logarithmic growth as for the entanglement, this growth slows down with time. Figures taken from Ref. [71].

The logarithmic scaling is a peculiar feature of the
MBL phase1, that allows to distinguish it from the non-
interacting localized phase, where S(t) saturates to a
finite value independent of the system size. The un-
bounded growth of entanglement is perfectly compatible
with the absence of transport, see Fig. 3(b). It is ascribed
to the interaction-induced dephasing between the eigen-
states involved in the decomposition of the initial
product state. The same mechanism is at the root of

1 As opposed to the linear growth in clean integrable or non-
integrable systems [74, 75] and to the sub-ballistic growth in
disordered, delocalized systems close to theMBL phase [76–78].

other distinguishing dynamical features of MBL systems,
such as the power-law decay in time of the response to a
(properly designed) spin-echo protocol [23], the power-
law relaxation (towards non-thermal values) of the
expectation value of local observables [79] or of the con-
currence (a measure of the non-classicality of the sys-
tem) [80] after a quench, and the suppression, with re-
spect to the non-interacting case, of the revival rates of
single-site observables [81].

We discuss in the following section how these
different aspects of MBL can be understood by as-
suming the existence of extensively-many, non-trivial
conservation laws. The discussion is done assuming

C© 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (5 of 23) 1600278www.ann-phys.org
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the full many-body spectrum is localized, irrespectively
of the energy density. This assumption applies to lat-
tice Hamiltonians having a bounded local spectrum, as
pointed out in [8]; the corresponding systems are often
called ‘fully MBL’ in the literature. Comments on the oc-
currence of mobility edges are postponed to Sec. 6.

3 Quasilocal integrals of motions: a unifying
framework

It is a common expectation that the failure of ergodic-
ity in closed, interacting systems is related to some form
of integrability. Indeed, the phenomenology of MBL sys-
tems summarized in Sec.2 suggests that conservation
laws exist for strongly disordered systems. This expec-
tation has been made concrete in [28–30], where it was
suggested that MBL Hamiltonians are non-linear func-
tionals of a complete set of LIOMs Iα , of the form

Hdiag = h0 +
∑

α

hα Iα +
∑
α,β

hαβ Iα Iβ

+
∑
α,β,γ

hαβγ Iα Iβ Iγ + · · · , (11)

where the dots stand for higher order products. The Iα
are expected to be functionally independent and mutu-
ally commuting. The set is complete in the sense that ev-
ery many-body eigenstate can be labeled in a unique way
with the eigenvalues of the Iα .

While the expansion (11) is to some extent generic
(in particular, to specify Hdiag it is necessary to deter-
mine a number of coefficients which scales with the size
of the Hilbert space [82]), the fingerprint of localization
is the “quasilocality” of the operators Iα . The notion of
quasilocality extends, at the operator level, the structure
of the single-particle eigenstates ψα of (1), cfr. Eq. (6): the
operator norm of Iα is expected to decay exponentially
away from a compact region of space of a typical size ξop

around a center Rα . More precisely, let

Iα =
∑
I

A(α)
I OI (12)

be the expansion of Iα on a basis of local operators OI la-
beled by I. For the spin chains (3) and (4), a suitable ba-
sis is made by the tensor products of local spin operators
Sα1

i1
⊗ · · · ⊗ Sαn

in
with αi ∈ {x, y, z} and ik ∈ �, while in the

fermionic case (2) the normal-ordered tensor products
of creation and annihilation operators of single-particle
states can be considered, see Eq. (26). Let S(I) denote
the “support” of OI , i.e. the set of sites/local degrees of

freedom on which the operators acts non-trivially.
Quasilocality entails that

|A(α)
I | � Cα exp

(
−d [Rα, S(I)]

ξop

)
, (13)

where d[Rα, S(I)] is the distance between Rα and the fur-
thest degree of freedom in S(I). This encodes the prop-
erty of the Iα of being weak deformations of the local,
physical degrees of freedom (such as the local density or
spin operators).

This spatial structure implies that the expansion (11)
is not structureless, as the typical value of the coefficients
hαβ··· decays exponentially in the distance between the lo-
calization centers of the corresponding operators, on a
typical scale that we denote with ξint. This structure is at
the root of the genuinely many-body dynamical features
of MBL systems, as it entails that the dephasing between
the Iα induced by the interactions in (11) occurs over a
broad range of time scales.

The phenomenological models in [28–30] addition-
ally assume that (i) the Iα have binary spectrum, and
thus can be considered as effective spins or occupation
number operators (also termed “logical bits” or “l-bits”),
and (ii) the full spin (or fermionic) algebra can be con-
structed, with ladder operators I ±

α . This follows straight-
forwardly from the construction in [32], where the con-
served quantities of the disordered chain (4) are obtained
from the Pauli operators Sz

a by means of a quasilocal rota-
tion �, Iα = �Sz

a�
∗ and I ±

α = �S±
a �∗, that obviously pre-

serves the spectrum and the commutation relations.
This set of assumptions is sufficient to derive the full

phenomenology of MBL systems, as we shortly recap in
the following.

(i) Absence of DC transport: we report the argument
given in [83]. The Kubo formula for the dc conduc-
tivity σ associated to a local current-density Jr (sup-
ported on a finite set of sites in the vicinity of r)
reads:

Re[σ (ω → 0)] = πβ

|�|
∑
r ′r

∑
m�=m′

e−β Em′

Z ×

× 〈Em′ |Jr ′+r |Em〉〈Em|Jr ′ |Em′ 〉 δη (Em′ − Em) ,

(14)

where |�| is the system’s volume, Z is the partition
function at inverse temperature β, |Em〉 the system’s
eigenstates and δη(x) = π−1η/(x2 + η2) a regularized
δ-function. Since the set of LIOMs is complete, for
any pair m, m′ there is a Ĩ such that Ĩ |Em〉 = Ĩm|Em〉
and Ĩ |Em′ 〉 = Ĩm′ |Em′ 〉 and Ĩm′ �= Ĩm. If the LIOMs are
strictly local (in the sense that their support is finite
and compact, of size ξop), then for r > ξop, one of the
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two matrix elements

〈Em′ |Jr ′ |Em〉 = 〈Em′ | [Jr ′ , Ĩ
] |Em〉(

Ĩm − Ĩm′
) ,

〈Em′ |Jr ′+r |Em〉 = 〈Em′ | [Jr ′+r , Ĩ
] |Em〉(

Ĩm − Ĩm′
)

(15)

is exactly zero: in Eq. (14) the sum over r is re-
stricted to r � ξop. Furthermore, for any m the sum
over m′ is restricted to a finite set, since Jr ′ |Em〉 can
differ from |Em〉 only in a finite number of LIOMs.
As a consequence, in the thermodynamic limit,
when η → 0, the contribution to the δ-function van-
ishes with probability one, and Re[σ (ω = 0)] = 0.
For quasilocal conserved quantities, the matrix el-
ements 〈m′|Jr ′ |m〉 are not exactly zero also for those
eigenstates for which Ĩ is supported at distance xξop

from r ′: they are instead exponentially small in x.
Since there are also exponentially many states m, m′

which satisfy these criteria, some energy differ-
ences Em − E ′

m in (14) become exponentially small.
The competition between the matrix elements and
the energy denominators is however dominated by
the exponential decay of the matrix elements with
probability one: this is the key statement that guar-
antees the stability of the MBL phase as well as the
existence of quasilocal Iα . It follows that the con-
ductivity remains zero also when quasilocality is
properly taken into account.

(ii) Anderson localization in configuration space: the ex-
ponential decay of the amplitudes (13) can be inter-
preted as exponential localization in a space with
sites labeled by I, which can be put in one to one
correspondence with Fock states, see Sec. 4.2, or
non-entangled product states in the spin case. No-
tice however that contrary to the Anderson model,
in the many-body case an exponential decay of the
amplitude in Fock space starting from a reference
configuration does not imply O(1) participation ra-
tios for the wave function, due to the fast growth
of the number of configurations with the distance
from the reference configuration.

(iii) Area-law entanglement in highly excited states: all
the eigenstates of (11) are product states of the Iα ;
the bipartite entanglement entropy is thus area-law,
as it is effectively contributed only by those Iα that
are localized in the vicinity (within ξop) of the cut.

(iv) Violation of the ETH: as in conventional integrable
systems, the locality of the conserved quantities
implies that local memory of the initial condition
is preserved at any time, thus preventing ther-
malization. Moreover, since the many-body eigen-

states are simultaneous eigenstates of the Iα that are
weak deformations of the non-interacting occupa-
tion numbers nα (or of the spin operators Sz

a), it fol-
lows that the expectation value of the latter on ex-
act eigenstates does not depart significantly from
±1. It is thus non-thermal and it fluctuates signif-
icantly between states that are close in energy, as
such states differ by the eigenvalues of integrals of
motion having a large overlap with the local opera-
tor under consideration.

(v) Absence of level repulsion: the absence of level repul-
sion arises because adjacent states in the spectrum
typically differ by an extensive number of eigenval-
ues of the Iα , they are unable to hybridize and thus
do not repel at the scale of the mean level spacing.

(vi) Slow growth of entanglement and slow relaxation:
the interaction terms in (11) induce dephasing be-
tween the conserved operators; given a pair of op-
erators Iα, Iβ , their dephasing time τ scales with the
inverse of the interaction between them, and thus it
depends on the distance l between the correspond-
ing localization centers, τ ∼ H −1

0 el/ξint where H0 is
the typical interaction scale. It follows that at a given
time t, only the degrees of freedom that are within
the distance l(t) ∼ ξint log(H0t) are dephased. The
logarithmic growth of the bipartite entanglement
follows from the fact that the entanglement entropy
produced at time t (starting from a product state)
is proportional to the volume of degrees of freedom
that have dephased up to that time [72, 73]. A sim-
ilar argument implies that the expectation value of
operators O with finite support decays as a power-
law in time [79]. Indeed, when expanded in the basis
of the Iα, I ±

α , the operator reads

O = O + Oosc, (16)

where Oosc contains I ±
α terms, while O commutes

with (11), and can be written as

O = lim
T→∞

1
T

∫ T

0
O(t) dt =

∑
�α

C�α Iα1 Iα2 · · · Iαn (17)

where �α = (α1, · · · , αn) (due to the quasilocality of
the Iα and the locality of O, the coefficients C�α have
themselves an exponentially decaying structure).
Let |ψ〉 = ∑

I AI |I 〉 be an initial state expanded in
the basis of simultaneous eigenstates |I 〉 of the Iα . It
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is argued in [79] that the second term in

〈ψ(t)|O|ψ(t)〉 =
∑

I

|AI |2〈I |O|I 〉

+
∑
I,J

AI A∗
J ei(E J −E I )t〈J |Oosc|I 〉

(18)

decays as a power law in time, due to the random-
ization of the relative phases in the eigenstates de-
composition generated by the interactions of the
Iα, Iβ . For example, let Oosc = I +

γ , and consider for
simplicity the case in which |AI |2 ∼ 2−N with N the
number of spins. For any state |I 〉 with iγ = −1, let
|J 〉 = | Ĩ 〉 be the state with ĩγ = +1 and ĩα = iα for
α �= γ . The second term in the right-hand side of
(18) using (11),

1
2N

∑
I :iγ =−1

exp

⎡
⎣2i

⎛
⎝hγ +

∑
β

hγβ iβ

+
∑
β,δ

hγβδ iβiδ + · · ·
⎞
⎠ t

⎤
⎦. (19)

For any time t, (19) can be splitted into the sum over
quantum numbers iα whose operators are localized
within distance l(t) ∼ ξint log(H0t) from Iγ , and the
sum over quantum numbers of operators localized
at larger distance. Any of the terms at the exponent
involving quantum numbers in the first set is de-
phased at time t: (19) is therefore proportional to
a sum over N(t) ∼ 22l(t) random phases with zero
average, which scales as ∼ 1/

√
N(t) = (H0t)−ξint log 2.

The expectation value (18) thus exhibits a power
law relaxation to the constant (non-thermal) value∑

I |AI |2〈I |O|I 〉.

4 Construction of conservation laws: analytic
schemes

It was pointed out in [29] that, for an arbitrary many-
body system with N degrees of freedom, any bijec-
tion between the eigenstates and the 2N binary strings
|iα1 iα2 · · · iαN 〉 with iα = ±1 (or iα ∈ {0, 1}) defines a com-
plete set of conserved quantities Iα with binary spectrum
{iα}. The latter are simply the operators whose quantum
numbers iα label the eigenstates. They can be obtained as
Iα = ∑

I ′ |I ′〉〈I ′| − |I ′〉〈I ′|, assuming iα = ±1 and denot-
ing with |I ′〉 a many-body eigenstate with iα = +1, and
with |I ′〉 the state with all quantum numbers equal ex-
cept iα = −1 (see Eq. (54)). In [29] it was conjectured that,

for MBL systems, an optimal assignment exists that re-
sults in (quasi-)local operators Iα . Although this has not
led to a practical way to find LIOMs, that early work was
instrumental for further development of the idea.

In this section, we analyze the constructive analytic
recipes that have been proposed to construct the con-
served operators starting from microscopic models. The
discussion on numerical schemes is postponed to Sec. 5.

4.1 Infinite-time averages of local densities

It was pointed out in [84] that the infinite-time average
of any local operator O is a conserved quantity. If an un-
derlying algebra of quasilocal operators Iα, I ±

α exists, the
average (17) of operators with finite, compact support is
itself quasilocal. For a spin Hamiltonian such as (3), an
extensive set of LIOMs can be obtained as the infinite-
time average of the local energy- or spin-densities op-
erators, i.e. Oi → Sz

i or Oi → Hi ≡ J (Sx
i Sx

i+1 + Sy
i Sy

i+1) +
JzSz

i Sz
i+1 + hi Sz

i [84]. The conserved operators which re-
sult from this procedure are not pseudospins, as the
time-averaging does not preserve the spectrum. How-
ever, they have the advantage of being measurable in the
following sense: for a chain with N spins with Oi = Sz

i ,
the coefficients in the expansion

S
z
i =

∑
l,κ

Mκ
l Sκ1

l1
· · · Sκn

ln
, (20)

with κi ∈ {z, x, y}, can be obtained measuring multi-spin
correlations on a time-averaged density matrix ρ,

Mκ
l = 2−NTr

(
Sκ1

l1
· · · Sκn

ln
ρ
)
, (21)

where ρ at t = 0 describes the state with magnetization
one at site i and zero everywhere else, ρ = 2−N(1 + Sz

i ) ⊗∏
k�=i 1k. The S

z
i thus provide information on the spread-

ing of the spin through the infinite temperature ensem-
ble.

The alternative choice Oi → H i is used in [85] to de-
rive a Lieb-Robinson bound for the information propa-
gation in the MBL phase, with a logarithmic lightcone.
The bound implies that the growth of the bipartite en-
tanglement entropy is at most logarithmic. Its derivation
relies on a stronger condition of quasilocality for the H i

(formulated in terms of averages rather than of typical
values), requiring that there exists a constant ξ such that

E
(∥∥[H i, O

]∥∥) ≤ e−x/ξ ||O|| (22)

for any operator O whose support is at distance x from
the site i, where E[·] denotes the disorder average.
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4.2 Perturbative dressing of the non-interacting
occupation numbers

Consider the fermionic Hamiltonian (2): in the absence
of interactions U = 0, the occupation numbers nα as-
sociated to the single particle eigenstates φα are mutu-
ally commuting, quasilocal conserved quantities. Their
quasilocality follows directly from the spatial localization
of the single particle wave-functions. Indeed, the opera-
tor c†i c j contributes to the operator expansion:

nα =
∑
i, j

φ∗
α(i)φα( j)c†i c j (23)

with a weight φ∗
α(i)φα( j) which decays exponentially in

the distance between its support (the sites i, j) and the
localization center rα of φα . By truncating the sum (23) to
terms with support only within a neighborhood of mξ of
rα one obtains an operator whose commutator with the
Hamiltonian vanishes up to exponentially small terms.
As m → ∞ the operator rapidly converges (in the opera-
tor norm) to the conserved density nα . It is natural to ex-
pect that for weak U, quasilocal operators that are con-
served by the full interacting Hamiltonian can be built
as weakly dressed versions of the (23). In order to con-
firm this expectation, it is necessary to show that the
perturbation theory in operator space converges in the
regime of parameters corresponding to weak scattering
processes; this is argued in [83] for a fermionic Hamilto-
nian on a d-dimensional lattice.

Before summarizing the main steps of the argument,
we introduce the relevant energy scales in the problem.
The convergence of the perturbative expansion is argued
for a simplified version of the model (2), that is coarse-
grained at the scale of the localization length ξ of the sin-
gle particle states φα . As in [6], the lattice � is partitioned
into volumina of size ξ (henceforth called “localization
volumina”), and each single particle state is assigned to
a volume according to the position of its localization
center. An energy scale is associated to the localization
volumina: it is the average energy-gap between the
single-particle states belonging to it, δξ = 1/νξd with ν

the density of states. We assume δξ � W where W de-
notes the total width of the single particle spectrum. The
interaction matrix elements Uαβ,γ δ are taken to be non-
zero only if the corresponding single-particle states are in
the same volume or in adjacent ones, and provided that

|Eα − Eδ|, |Eβ − Eγ | � δξ or |Eα − Eγ |, |Eβ − Eδ| � δξ .

(24)

In this case, they are set equal to Uαβ,γ δ = λ δξ ηαβ,γ δ where
ηαβ,γ δ is a uniform variable in [−1, 1] and λ is a dimen-
sionless constant measuring the interaction strength.
Correlations between the single-particle energies Eα are
neglected.

The setup for the construction is the following: an ex-
pansion is assumed for the conserved operators Iα , of the
form:

Iα = nα +
∑
N≥1

∑
I �=J

|I|=N=|J |

A(α)
I,J

(
OI,J + O†

I,J
)

(25)

where I = (β1, · · · , βN) and J = (γ1, · · · , γN) are sets of
indices labeling the single particle states, and

OI,J =
∏
β∈I

c†β
∏
γ∈J

cγ (26)

is a normal ordered operator (an ordering between the
single particle indices is also assumed). The operator ex-
pansion (25) corresponds to a number operator dressed
with strings of excitations. It is non-generic due to the
constraint I �= J , which is imposed to ensure that the
coefficients A(α)

I,J are uniquely fixed by the conservation
condition [Iα, H ] = 0 (see the following discussion). The
resulting coefficients depend on the interaction strength
λ, and approach zero as λ → 0. Whenever the operator
expansion converges in norm, the Ansatz (25) defines a
complete set of conserved quantities that are expected
to be functionally independent at finite λ (as they are for
λ = 0) and mutually commuting (the commutation re-
lations [Iα, Iβ ] = 0 for α �= β are not explicitly enforced,
but assumed to hold due to the fact that the spectrum is
almost-surely non degenerate.).

The goal is to argue that for sufficiently small λ the ex-
pansion (25) converges in probability, that is, that there is
a λc such that, for λ < λc and for any ε > 0, the following
condition is satisfied:

lim
R→∞

P

⎛
⎜⎜⎝ ∑

I �=J
r(I,J )>R

|A(α)
I,J | < ε

⎞
⎟⎟⎠ = 1, (27)

where r(I,J ) is the maximal distance between the lo-
calization center of φα and any of the states φβ that
are acted upon by OI,J . This ensures that the series
defining the operator Iα converges almost surely, since
||OI,J || = 1 for all I,J . The arguments for the conver-
gence rely on a mapping to an equivalent single-particle
problem, obtained imposing [Iα, H ] = 0 and interpret-
ing the resulting linear constraints for the amplitudes
A(α)

I,J as the equations for a single particle hopping in
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“operator space”. The latter is a disordered lattice with
sites labeled by the Fock indices (I,J ) and links deter-
mined by the conditions (24) on the interactions. Within
this formalism, the exponential decay of the coefficients
A(α)

I,J corresponds to the localization of the effective sin-
gle particle in operator space. At the operator level, it im-
plies that the resulting operator Iα is quasilocal in the
sense of (13).

We now discuss in slightly more detail the main
steps leading to (27). We anticipate that the exponen-
tial convergence is proved within a “forward approxi-
mation” [1, 86–88] (henceforth FA), which in this set-
ting boils down to replacing each amplitude in (25) with
its lowest order expansion in the strength of the inter-
action λ. This approach, although approximate, has the
advantage of being explicit, and to allow one to obtain
analytic expressions for relevant quantities characteriz-
ing the MBL phase [89]. For an exact treatment that
goes beyond this approximation, we refer the reader to
Sec. 4.3.

4.2.1 Formal perturbation theory and the problem of local
resonances

When attempting to construct conserved quantities per-
turbatively, it is natural to consider the formal expansion

Iα = nα +
∑
n≥1

λn�I n
α , (28)

where �I n
α is determined recursively from �I n−1

α , as the
solution of the conservation equation

[
U,�I n−1

α

]+ [
H0,�I n

α

] = 0. (29)

This equation can be solved for �I n
α provided that the

commutator with H0 can be inverted; this requires that
at any order n, the operator [U,�I n−1

α ] does not belong
to the kernel K of the map (ad H0)X = [H0, X], which
can be easily shown to be true for time-reversal sym-
metric Hamiltonians. The condition (29) does not deter-
mine �I n

α uniquely: indeed, arbitrary terms �K n
α belong-

ing to K can be added to �I n
α , and the resulting operator

�I n
α + �K n

α would still satisfy (29). We may thus write

�I n
α = i lim

η→0

∫ ∞

0
dτe−ητ ei H0τ

[
U,�I n−1

α

]
e−i H0τ + �K n

α

= �J n
α + �K n

α ,

(30)

where the first term in (30) belongs to the space spanned
by the normal ordered operators (26) with I �= J (which
is the orthogonal complement of K ), while �K n

α ∈ K .
It is shown in [83] that there exists a unique choice of
�K n

α ∈ K that ensures that the spectrum of (28) is binary,
i.e. I 2

α = Iα , at the given perturbative order. This term can
be written as

�K (n)
α = (1 − 2nα)

[
n−1∑
m=1

�I m
α �I n−m

α +
{

nα − 1
2
,�J n

α

}]
.

(31)

Thus, the formal perturbative recipe uniquely defines a
set of conserved number operators obtained summing
(30). Let us now address the problem of convergence and
quasilocality.

Despite the perturbative equations are solvable at
any finite order, the resulting series (28) diverges al-
most surely, due to occurrence of terms with large norm
that, even if rare, appear repeatedly in (28), at any or-
der in λ, leading to a divergence. These are the same
“trivial” divergences affecting the perturbation theory for
the self energies discussed in P. W. Anderson’s work [1];
they signal the presence of rare resonances between al-
most degenerate states of the unperturbed Hamiltonian,
that are strongly hybridized by the hopping/interactions.
The presence of isolated resonances does not necessarily
entail delocalization, as long as they do not proliferate
in space; in [1], the corresponding divergences are ad-
dressed by means of the “multiple scattering technique”,
which consists in a re-summing the subsequences con-
taining repeating terms. As a result, a modified perturba-
tive expansion is obtained as a sum over non-repeating
terms, with self energy corrections arising from the
re-summed subsequences. The latter are subsequently
neglected in the so called forward or “upper limit”
approximation, which leads to an overestimate of the
critical value of the disorder for the onset of delocaliza-
tion. The arguments given in [83] for the convergence
of (25) are exactly at this level of approximation; how-
ever, to recover an analogous expansion in terms of non-
repeating terms, it turns out to be technically convenient
to drop the terms �K n

α in (30). The resulting operator
Iα − nα belongs then to the orthogonal complement of K ,
and so it admits the expansion (25). This choice guaran-
tees that the coefficients are uniquely fixed just by im-
posing [H , Iα] = 0, without any additional requirement.
The drawback is that the ansatz (25) does not define an
operator with binary spectrum; however, it is expected
that the statement on the finiteness of the radius of

1600278 (10 of 23) C© 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org



Review
Article

Ann. Phys. (Berlin) 529, No. 7 (2017)

convergence is not spoiled once the neglected terms are
reinserted and the “normalization” of (25) is imposed.

4.2.2 Mapping to a single-particle problem and forward
approximation

The condition [Iα, H ] = 0 translates into a set of linear
constraints for the amplitudes A(α)

I,J , cfr. Eq.(40) in [83].
They define an effective non-hermitian hopping prob-
lem on a lattice with sites labeled by (I,J ), on-site dis-
order EI,J = ∑N

n=1(Eβn − Eγn) and hopping given by the
interactions: precisely, two sites (I,J ) and (I ′,J ′) are
connected if their index sets differ by indices belonging
to a non-zero matrix element Uαβ,γ δ . A pictorial repre-
sentation of the resulting lattice is given in Fig. 4. The
main feature is its hierarchical structure: sites are orga-
nized into generations N according to the length of the
index sets, and the hopping is only within the same gen-
eration or from one generation to the next; in the lat-
ter case, it is unidirectional (hence the non-hermiticity
of the hopping-problem). The typical connectivity is es-
timated accounting for the space (particles need to be
in the same or in an adjacent localization volume) and
phase-space restrictions (24) imposed to the interaction
matrix elements. For hoppings Uαβ,γ δ between consecu-
tive generations, it scales as

K = 4
W
δξ

. (32)

Such hoppings indeed require a particle (or hole) α in
(I,J ) to scatter to the state γ within the localization vol-
ume that is closer in energy (above or below α), while an-
other particle-hole pair of levels (β, δ) with adjacent en-
ergies is created. The particle β can be chosen in W/δξ

ways, and there are two choices for γ and δ, respec-
tively, hence (32). In contrast, hoppings to sites of the
same generation correspond to processes where each
member of a pair of particles (or holes) scatter to one
of the two closest energy levels: there are order O(1)
possible final states to which a fixed given pair can
decay.

The forward approximation consists in neglecting the
links connecting sites in the same generation of the lat-
tice, which is justified provided (32) is large. This sig-
nificantly simplifies the lattice topology, as some sites
are eliminated (the corresponding amplitudes in (25) ap-
proximated to zero), see Fig. 4. The equations for the am-
plitudes on the retained sites become recursive equa-
tions for increasing generations, with initial condition
A(α)

α,α = 1; this allows to derive a closed expression for the

amplitude at the sites (I,J ) as a sum over all directed,
non-repeating paths [88] from the root (α, α) to the given
site:

A(α)
I,J =

∑
directed paths
(α,α)→(I,J )

(−1)σpath

N−1∏
i=1

λ ηαiβi ,γiδi δξ∑i
k=1 Eαkβk,γkδk

≡
∑

directed paths
(α,α)→(I,J )

ω
(N)
path,

(33)

where the factor (−1)σpath is a global sign. The expres-
sion (33) is of order λN−1, which is the lowest possible
order for amplitudes of operators involving 2N particle-
hole indices. Thus, for any N, any term in (25) that is
of order O(λN) or smaller is set to zero. The remaining
terms satisfy r(I,J ) ≤ Nξ due to the locality of the inter-
action; it follows that within this approximation r(I,J )
in (27) can be replaced by N, so that the convergence
is controlled by the generation N. By eliminating intra-
generation hoppings, the FA addresses the problem of
arbitrary repetitions of small denominators; further in-
sights on its meaning is derived from the diagrammatic
representation of paths illustrated in Fig. 5. The expan-
sion in directed paths corresponds in fact to selecting
only the processes where at each vertex an additional
particle-hole pair is created; this is similar to the imagi-
nary self consistent Born approximation exploited in [6].

4.2.3 Issue of factorials and re-summation of correlated graphs

Within the FA, the number of sites (I,J ) at distance
N from the root scales exponentially, as ∼ KN. More-
over, the typical path weights in (33) decay exponen-
tially with N for small enough λ; thus, one might
expect that a transition occurs, arising from the compe-
tition between these two exponentials. Although this will
turn out to be precisely the case, an intermediate step has
to be performed. The sum (33) is indeed over a number of
terms which grows faster-than-exponential with N, since
to any given path of length N, one can associate a class
of O(∼ N!) other paths corresponding to graphs sharing
the same interaction vertexes, but occurring in different
order, see Fig. 5. Due to the structure of the energy de-
nominators, each such graph has a different weight con-
tributing to (33). A crucial step in arguing the exponen-
tial decay of (33) consists in showing that this factorial is
compensated, as cancellations occur between the differ-
ent terms that are due to their statistical correlations. For
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Figure 4 Structure of the operator lattice before (a) and after (c) making the forward approximation. Vertices correspond to Fock indices
(I,J ); links are drawn between index pairs, which are connected by the interaction U.

Figure 5 Directed paths in the operator lattice and associated scattering graphs: the sites along the path are intermediate states of
the graph, the hopping terms correspond to vertices Uα1α2,β1β2 in the graph (denoted with the simplified notation U1, U2, U3), and the
energy EI,J is the sum of the energy differences Eα1α2,β1β2 = Eα1 + Eα2 − Eβ1 − Eβ2 associated with all preceding scatterings. The
three highlighted paths form loops in the lattice, associated to graphs differing only in the order in which the interactions U1, U2, U3

act.

instance, in the case of Fig. 5 it holds

[
1

E3(E3 + E1)
+ 1

E1(E1 + E3)
+ 1

E1(E1 + E2)

]
1

E1 + E2 + E3

= 1
E3 E1 (E1 + E2)

,

(34)

where Ei is the linear combination of single particle en-
ergies associated to the interaction vertex Ui . This prob-
lem of factorials can be dealt systematically, giving an

integral representation of the sum over path-weights dif-
fering by permutations of the interactions, and optimiz-
ing on the sequence of pole integrations that can be
performed on the representation. As a result, the sum
over the factorially-many paths is explicitly rewritten
as a sum over only exponentially-many terms ω̃

(N)
path =

O(λN) having a similar structure as (33), termed “effective
paths”:

A(α)
I,J =

∑
effective paths
(α,α)→(I,J )

ω̃
(N)
path. (35)
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4.2.4 The estimate of the convergence radius

For large N, the generating function of the random vari-
ables ω̃

(N)
path (analogous to the quantity in (47)) is com-

puted by means of a transfer matrix technique, account-
ing for the correlations of energies in the denominators.
The tail of the distribution of the (effective)-path weights
is obtained by inverse Fourier transform, within a sad-
dle point approximation. It is shown that the (effective)-
path weights are heavy-tailed distributed, so that the
sum (35) is dominated by the maximal summand. The
typical value of (35) is then estimated with a calculation
that is close to the one performed in [47] for the Hamil-
tonian (1) on a Bethe lattice: neglecting the residual cor-
relations between the effective paths, one finds that for
z < 1

log P

⎛
⎜⎜⎝ ∑

I �=J
|I|=N=|J |

|A(α)
I,J | < zN

⎞
⎟⎟⎠ ≈ −NN P

(
|ω̃(N)

path| > zN
)

≈ −exp
(

N logG(λ, z,K) + o(N)
)
,

(36)

where the function G(λ, z,K) combines the exponential
growth (with N) of the number NN of effective paths
of length N with the exponential decay of the large-
deviation probability P(|ω̃(N)

path| > zN). The number NN is
determined by means of a combinatorial estimate of
the number of diagrams representing the scattering pro-
cesses with fixed final state, which accounts for the local-
ity of the interactions by enforcing that only particle-hole
pairs in nearby localization volumina can be involved in
the same interaction vertex. Imposing G(λ, z,K) < 1 for
z → 1, the following condition for the convergence ra-
dius is obtained:

λc = C
νF (1 − νF )

1
K logK , (37)

with C a numerical constant estimated to be 18 < C <

37, νF the filling fraction and K given in (32). The many-
body nature of the processes involved is evident in the
fact that λc → ∞ when νF → 0, while the divergence at
νF → 1 is a Fermi blockade effect. Thus, we conclude
that for λ < λc and within the set of approximations
made, quasilocal conserved quantities for the interact-
ing Hamiltonian (2) can be constructed as weak pertur-
bations of the non-interacting occupation numbers nα .

The estimate (37) is in agreement with the perturba-
tive results in [5, 6], where a finite temperature transition
is predicted. Indeed, so far the convergence of the con-

struction was analyzed at the operator level, with no as-
sumption made on the occupation of the single-particle
energy levels. When acting on some typical many-body
states at temperature T , some terms in (25) get annihi-
lated when attempting to create particles on occupied
states or holes on already empty states. This translates
into a reduction of the phase space associated to the de-
cay processes, which in turns implies that K → Keff ∼
T/δξ : substitution into (37) gives the condition for the
critical temperature in [5, 6]. The agreement is not sur-
prising, as the class of diagrams that are statistically ana-
lyzed is the same as within the forward approximation. It
is however argued in [90] (see also the discussion in [83])
that this scenario of a finite-temperature transition be-
comes unstable beyond this set of approximations, due
to rare fluctuations within typical, putatively localized
states, that are argued to restore ergodicity in the long
time limit. We comment further on this point in Sec.6.

4.3 Nonperturbative construction of local integrals of
motion

We now come to the discussion of the nonperturbative
construction of local integrals of motion given in [32].
The work contains a rigorously proof of many-body lo-
calization for the spin chain (4) (which we denote sim-
ply with H in the following) in its strongly disordered
limit, following from a physically reasonable assumption
on level statistics. The proof proceeds by constructing a
sequence of quasilocal unitary rotations that diagonalize
the Hamiltonian; the conserved quantities are obtained
as a by-product of the diagonalization procedure. We be-
gin by reviewing the construction in [32, 91], and sub-
sequently discuss its implications for local integrals of
motion.

As the spin flip interactions in (4) are of order γ �
1, the Hamiltonian is effectively in the strong-disorder
regime. In the present discussion the focus is on the dis-
order in the random magnetic field hi : the randomness
is added to the other two terms in the Hamiltonian as
it helps with level separation arguments, but should not
be essential to the physics of this model. For small γ , the
Hamiltonian is close to one that is diagonal in the basis
given by the tensor products of Sz

i eigenstates. The MBL
transition in this model can be thought of as a many-
body version of what happens for a single spin: when �

is a single site, the Hamiltonian reduces to

(
h γ

γ −h

)
, (38)
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having eigenvectors close to (1, 0) and (0, 1) for small γ ,
whereas for large γ , they are close to the fully hybridized
vectors (1, 1) and (1,−1). The result in [32] extends this
picture to the many-body Hamiltonian, demonstrating
(under the assumption on level statistics) the existence
of an MBL phase where the eigenstates of H resemble
the basis vectors, i.e. they are largely unhybridized. Pre-
cisely, the following statement is proven:

Theorem 1. Assume that for some ν, C, the eigenvalues of
H in boxes of size n satisfy

P
(

min
α �=β

|Eα − Eβ | < δ

)
≤ δνCn, (39)

for all δ > 0 and all n. Then there exists a κ > 0 such that
for γ sufficiently small,

E Avα

∣∣〈Sz
0〉α

∣∣ = 1 − O(γ κ ), (40)

for all �. Here E denotes the disorder average, 〈·〉α denotes
the expectation in an eigenstate α of H , and Avα denotes
an average over α.

The normalized average Avα over the eigenstates of
H can be taken with thermal weights (const) exp(−β Eα),
which at infinite temperature becomes a uniform
weighting. Thus with high probability, most states have
the property that the expectation of Sz

0 is close to +1 or
−1, just like the basis vectors. This would contrast with
a thermalized phase, with states approximating thermal
ensembles, as expected from the Eigenstate Thermaliza-
tion Hypothesis recalled in Sec. 2. Indeed, at infinite tem-
perature thermalization would imply that eigenstate ex-
pectations of Sz

0 would go to zero in the infinite volume
limit; the bound (40) implies a failure of thermalization,
a key feature of the MBL phase.

The level-statistics assumption (39) specifies that
with high probability the minimum level spacing should
be no smaller than an exponential in the volume. Phys-
ically, one expects to see (39) satisfied with ν = 1 in a
localized phase (Poisson statistics) or with ν > 1 in a
thermalized phase (repulsive statistics). Although these
bounds are expected to hold, the tools for proving them
are not yet available in the many-body context (see [92]
for a potentially useful approach in the one-body con-
text). We discuss in the following the main steps in the
diagonalization procedure.

4.3.1 A multiscale procedure to diagonalize an MBL Hamiltonian

The proof proceeds by diagonalizing H through succes-
sive elimination of low-order off-diagonal terms as in

Newton’s method. Elements of the tensor product ba-
sis can be labeled by classical spin configurations σ =
{σi}i∈�, with σi = ±1 indicating the eigenvalue of Sz

i . Ini-
tially, the only off-diagonal term is γi Sx

i , which is local.
This operator flips σi → −σi . Let σ (i) denote the result of
flipping the spin at i in the spin configuration σ . Then the
spin flip produces a change in energy

�Ei ≡ E(σ ) − E(σ (i)) = 2σi(hi + Jiσi+1 + Ji−1σi−1). (41)

The site i is said to be resonant if |�Ei | < ε ≡ γ 1/20 for at
least one choice of σi−1, σi+1. Due to the small energy de-
nominator, resonant sites may require a rotation that is
far from the identity, and perturbation theory is not use-
ful. A site is resonant with probability ∼ 4ε, so resonant
sites form a dilute set.

Ignore the resonant sites, for the moment. A rotation
can be designed that eliminates the off-diagonal terms
J (i) ≡ γi Sx

i in the Hamiltonian. Let H = H0 + J , where
H0 contains the diagonal part of H (first and third terms
of (4)) and J contains the off-diagonal part (second term
of (4)). Then define an antisymmetric matrix

A ≡
∑

i

A(i), where A(i)σσ (i) = J (i)σσ (i)

Eσ − Eσ (i)
. (42)

This is a local operator, which can be used to generate
a basis change e−A. The result is a rotated (or renormal-
ized) Hamiltonian:

H (1) = eA H e−A. (43)

This rotation is correct to first order in perturbation the-
ory, because

[A, H0] = −J ; (44)

this enables the cancellation of the off-diagonal terms to
leading order:

H (1) = eA H e−A = H + [A, H ] + [A, [A, H ]]
2!

+ . . .

= H0 +
∞∑

n=1

(
1
n!

− 1
(n + 1)!

)
(ad A)nJ

≡ H0 + J (1). (45)

Here (ad A)B ≡ [A, B]. See [93] for a similar construction.
See also [35], where this method is used to diagonalize
the Anderson model Hamiltonian with weak hopping.
The new interaction J (1) contains terms that are at least
second order in γ . Note that A(i) commutes with A( j) or
J ( j) if |i − j| > 1. One can write J (1) = ∑

g J (1)(g ), where
g is a connected graph specifying a nonvanishing term
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of (ad A)n J . A graph involving � spin flips has � − 1 energy
denominators and is bounded by γ (γ /ε)�−1. Thus the size
of terms in J (1) decay exponentially with their range: the
interaction is quasilocal in the sense of (13).

If there are resonant sites present, then one may re-
strict the sum over i in (42) to nonresonant sites, thereby
avoiding any small denominator Eσ − Eσ (i) . Then the ro-
tation (43) eliminates terms of order γ in the nonreso-
nant region. To handle the resonant region, define res-
onant blocks by taking connected components of the
set of resonant sites. As in quasidegenerate perturbation
theory, one performs exact rotations in resonant blocks
to diagonalize the Hamiltonian there. These rotations
can be far from the identity, as resonances can lead to
significant hybridization of spins. Thus, the notion of
quasilocality has to be broadened to include the possibil-
ity of a dilute set of sites where a nontrivial basis change
is required.

Introducing a sequence of length scales Lk = (15/8)k,
the procedure continues by defining the kth rotated
Hamiltonian H (k), which has off-diagonal terms elimi-
nated up through order γ Lk . (As in Newton’s method, the
iteration converges at a rate that is close to quadratic.)
In each step, the diagonal elements of H (k) are renormal-
ized by interactions up to the kth scale; they are denoted
E (k)

σ . In step k ≥ 2, one needs to work with a graph-based
notion of resonance. By definition, a graph g is resonant
if

A(k+1)
σ σ̃ (g ) ≡ J (k)

σ σ̃ (g )

E (k)
σ − E (k)

σ̃

(46)

is greater than (γ /ε)|g | in magnitude. Here |g | denotes
the number of spin flips in g . For nonresonant graphs,
the generator (46) is used to generate the next rotation.
Then the ad expansion (45) produces the next inter-
action J (k+1), which is again given by a sum of graphs∑

g J (k+1)(g ). This is a recursive construction. As in the
first step, we may use the condition of nonvanishing
commutators to enforce connectivity. Unwrapping the
expansions, one finds that each g corresponds to a se-
quence of spin flips at a set of sites that is nearest-
neighbor connected. At each stage of the procedure,
quasilocality of the interaction is preserved.

The set of resonant blocks in the kth step is obtained
by taking the connected components of the set of sites
that belong to resonant graphs g . In order to preserve the
diluteness of the resonant region (an essential part of the
notion of quasilocality), one needs to maintain uniform
exponential decay on the probability that g is resonant.

To this end, one proves that for s = 2
7 , there is a bound

E |A(k)
σ σ̃ (g )|s ≤ γ s|g |

E

∏
τ τ̃∈g

∣∣∣E ( j)
τ − E ( j)

τ̃

∣∣∣−s
≤ (cγ )s|g | (47)

on the fractional moment of the rotation generator. Then
Markov’s inequality implies that

P
(
|A(k)

σ σ̃ (g )| > (γ /ε)|g |
)

≤ (cε)s|g |. (48)

The number of graphs containing a given site is expo-
nential in |g |, so (48) controls the sum over collections
of graphs connecting one site to another. Then it is clear
that resonant blocks are dilute and do not percolate. As in
the first step, rotations are performed in resonant blocks
to diagonalize the Hamiltonian there.

4.3.2 Going beyond the forward approximation

However, there are complications in obtaining (47) if the
graph g involves a significant number of repeated spin
flips. With repeated spin flips, energy denominators can
appear to a high power, or there can be a large num-
ber of relations between them. If this is the case, then
the fractional moment will no longer be finite, because
of the lack of integrability of |h|−sp for p ≥ 1/s. In effect,
(47) is valid only in the forward approximation, wherein
graphs looping back to previously visited sites are not al-
lowed. In order to handle the troublesome graphs, one
relies on previously obtained bounds |A( j)

σ σ̃ (g̃ )| ≤ (γ /ε)|g̃ |

for j < k. By induction, these can be used in the non-
resonant region, and they lead to exponentially decaying
estimates on A(k)

σ σ̃ (g ). Such estimates would tend to de-
generate with k, were it not for the fact that graphs with
many repeated spin flips do not span as great a distance
as “self-avoiding” ones. One can, however, obtain uni-
form decay in the span of the graph, and this is sufficient
for quasilocality and convergence in subsequent steps.

Similar arguments allow control over the factorial
number of terms in the ad expansion (45). Even in the
first step, there are ∼ n! choices for indices {i1, . . . , in}
such that

∏n
p=1(ad A(ip))J (i0) �= 0. This is compensated

in perturbation theory by the inverse factorials in (45).
However, in the Markov inequality, one needs some im-
provement, because the available 1/n! has to control two
sums: (1) the sum over graphs in the ad expansion and (2)
the sum over events {A(k)

σ σ̃ (g ) is resonant}. Improvement
is possible for graphs with few repeated spin flips, be-
cause in that case the number of graphs grows only as an
exponential in n. As explained above, inductive bounds
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Figure 6 A block-block resonance.

are sufficient when working with graphs with many re-
peated spin flips.

4.3.3 The role of dimensionality

In later steps, graphs may connect resonant blocks with
nearby sites or with other blocks. For graphs connect-
ing different blocks, the fractional-moment bound de-
pends on having some control over the probability that
an energy difference in a block is close to that of a given
nearby transition. See Fig. 6. One can obtain the nec-
essary bounds using the level-spacing assumption (39).
See [32] for details.

For a block B of diameter L, connections to sites at a
distance d have size ∼ γ d. This needs to be smaller than
2−L = 1/(number of states in B) if they are to be treated
perturbatively. So B needs to be expanded to B̄, which
includes all sites within a distance d = O(L) of B. Then
exact diagonalization in B̄ will eliminate the problem-
atic nearby interactions. Expanding the blocks leads to
enhanced connectivity, as nearby blocks have to be com-
bined. The extended blocks may be thought of as con-
nected clusters of a percolation problem. One can show
that the probability that sites i and j lie in the same
extended block decays as (γ κ )1+(log |i− j|)2

. This provides
quantitative control over the size of regions where rota-
tions far from the identity may be required, i.e. a quanti-
tative statement of quasilocality.

In dimension 2 or more, the proof of MBL breaks
down, because for L large, there is no d such that γ d is
smaller than 2−volume(B̄). It is argued in [94] that this issue
destabilizes the MBL phase at very long times in dimen-
sion 2 or more. We postpone further comments about
this problem to Sec. 6.

4.3.4 Eigenstate labels and local integrals of motion

Taking the limit as k tends to infinity, all off-diagonal
entries of the Hamiltonian are eliminated. Thus the cu-
mulative rotation from the procedure diagonalizes H .
The columns of this rotation matrix are the many-body
eigenfunctions.

Let us discuss how diagonalization of the Hamilto-
nian with quasilocal rotations leads to a complete set
of local integrals of motion. As explained above, diag-
onalizing H can be accomplished with small, quasilo-
cal rotation generators throughout most of �. One may
call this region the perturbative region. There is a di-
lute, nonpercolating set of resonant blocks where rota-
tions far from the identity may be required. The reso-
nant blocks constitute the nonperturbative region. In the
perturbative region, the cumulative rotation is close to
the identity. Thus each eigenstate arises as a small rota-
tion performed on one of the tensor product basis vec-
tors; hence one can unambiguously label it by the spin
configuration σ that defines that basis vector. Adding in
the nonperturbative region, it is evident that the eigen-
state labels have to be supplemented with additional in-
formation in each resonant block. The need for state la-
bels arises when rotations are performed in blocks to
diagonalize the Hamiltonian there. The choice of labels
is rather arbitrary, as we saw earlier in the 2 × 2 exam-
ple (38). In [32], the labels are called “metaspins.” For a
block of size n, the metaspin takes 2n values. The follow-
ing discussion assumes a choice of 1:1 correspondence
between the metaspins of a block and the spin configu-
ration σ in that block.

Having assigned spin labels to the eigenstates of H ,
one may proceed to define the local integrals of mo-
tion. Let � be the rotation that diagonalizes H , so that
H̃ = �∗ H � is diagonal. Note that the columns of � are
the eigenvectors. As the eigenvectors are labeled by spin
configurations σ , one may use σ as the column index for
H̃ . Similarly, the rows of H̃ are indexed by spin configu-
rations. Thus H̃ is a diagonal matrix that can act on vec-
tors in the original tensor product basis. Although there
is some arbitrariness in how this action is defined, the
ambiguity is limited to a dilute set of resonant blocks.
Note that the spin operators Sz

i are also diagonal in this
basis. Therefore, [H̃ , Sz

i ] = 0 for each i ∈ �. Transferring
the rotations in this equation to the spin operators, one
obtains that [H , Ii] = 0, where

Ii ≡ �Sz
i �

∗. (49)

The rotations that diagonalize H have been used to ro-
tate the spin operators Sz

i into local integrals of motion
Ii .

Note that Ii is defined by acting on Sz
i with the ro-

tation opposite to the one used to diagonalize H . The
forward rotation �∗Sz

i � produces the matrix elements
of Sz

i between eigenstates. In particular, [�∗Sz
i �]σσ gives

the expectation of Sz
i in the eigenstate with label σ . Away

from resonant blocks, this rotation is close to the identity.
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Thus the eigenstate with label σ resembles the basis vec-
tor with the same label: we have that 〈Sz

i 〉σ = σi + O(γ κ )
for some κ > 0. The probability that i lies in a resonant
block is O(γ κ ) as well. This explains the conclusion (40)
of Theorem 1.

One may get another perspective on this construction
of local integrals of motion by considering the analogous
problem in the context of the Anderson model (1) on a
rectangle � ⊂ Z

d, with weak hopping 0 < γ � 1. In [35],
a sequence of quasilocal rotations were constructed to
diagonalize HA. This work served as a model case on
which the many-body construction of [32] was based.
Paralleling the constructions in (41)-(48), one may spec-
ify that a site x is resonant if |εx − εy| < ε = γ 1/20 for any
y with |x − y| = 1. Then, away from the set of resonant
sites, one may define an antisymmetric matrix

Axy = Jxy

εx − εy
, for x �= y, (50)

where

Jxy =
{
γ, if |x − y| = 1;
0, otherwise.

(51)

contains the hopping terms of HA. Then A may be used
to generate the first-step rotation. On the dilute set of
resonant blocks, large rotations may be needed to di-
agonalize the Hamiltonian locally. Continuing with the
multiscale procedure outlined above in the many-body
case, one obtains again a rotation matrix � generated
via quasilocal operators. Away from resonant blocks, the
rotation is close to the identity, so as before one can la-
bel eigenstates by the original basis vectors (allowing for
some arbitrariness in the choice of 1:1 correspondence in
resonant blocks). Writing ψx or |ψx〉 for the eigenfunction
with label x, one finds that |ψx(y)| ≤ γ |x−y|/2 for |x − y| >

R. Here R depends on the disorder, but Prob(R > L) ≤
εL .

As above, one finds that H̃A = �∗ HA� is diagonal, and
�yx = ψx(y). Let |x〉 denote the basis vector which is 1 at x
and 0 elsewhere. Then |x〉〈x| is the projection onto func-
tions supported at x. As it is a diagonal operator, it com-
mutes with H̃A. As in (49), one can define

Ĩx ≡ �|x〉〈x|�∗ = |ψx〉〈ψx|, (52)

and then [HA, Ĩx] = 0. So in this case the local integral
of motion Ĩx is simply the projection onto the subspace
spanned by the eigenstate with label x.

In an analogous fashion, one may rewrite (49) in the
many-body case. Write |σ 〉 for the basis vector associated
with the spin configuration σ , and |ψσ 〉 for the associated

interacting eigenfunction. Then

Sz
i =

∑
σ

sgn(σi)|σ 〉〈σ | (53)

and

Ii =
∑

σ

sgn(σi)|ψσ 〉〈ψσ |. (54)

5 Construction of conservation laws:
numerical schemes

Beside being the suitable framework in which to prove
rigorously the occurrence of MBL, the schemes to diag-
onalize quantum Hamiltonians iteratively are amenable
to be implemented numerically [95]. They give prescrip-
tions to construct sequences of rotated Hamiltonian
H (n+1) = U†

n H (n)Un converging to a diagonal form; each
such prescription defines a set of conserved quantities
(as in (49)), that are expected to be quasilocal in the
MBL phase. Similar iterative schemes are also at the ba-
sis of the RG procedures used to characterize the MBL
phase: conservation laws emerge naturally from this set-
ting as well. Approximately conserved operators can also
be obtained by means of variational procedures mini-
mizing the (Frobenius) norm of their commutator with
the Hamiltonian. We shortly review these numerical ap-
proaches in the following.

5.1 Conserved quantities obtained from diagonalizing
flows

Unitary rotations can be repeatedly applied to diagonal-
ize the Hamiltonian by means of the systematic elimi-
nation of its strongest off-diagonal term with respect to
some chosen basis, in analogy with the Jacobi algorithm
for the diagonalization of matrices [96]. The extension of
the Jacobi algorithm to fermionic Hamiltonians has been
proposed in [97] and discussed, with specific reference
to the MBL problem, in [98]. The off-diagonal terms of
the Hamiltonian are in this case strings of fermionic op-
erators (in the local basis of single-particle states) that
cannot be rewritten as products of only number oper-
ators. Each partial rotation eliminating an off-diagonal
string generates new strings of equal or longer length, al-
lowing to eliminate the off-diagonal terms order by order
in the length of the corresponding operator. The trans-
formation preserves the many-body Hilbert space as no
degree of freedom is integrated out after each partial
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rotation: as a consequence, terms eliminated at a given
step are typically regenerated at subsequent steps, with
renormalized coefficients whose distribution flows to
zero if the method converges.

Alternative, continuous diagonalizing flows have
been discussed in [95, 99, 100]. The Wegner-Wilson flow
has been exploited in [99] to diagonalize the Heisen-
berg chain (3) with J = Jz = 1/4 and random fields hi ∈
[−w/2, w/2]. The distribution Fr,w(h) of the coefficients
hi j··· in (11) is analyzed as a function of the maximal dis-
tance r between the sites i, j, · · · . Evidences of a “flow” of
the distribution Fr,w(h) with r towards a 1/ f law are given
for the MBL phase, while the distribution appears to be
scale-free (independent on r) in the critical regime. An
adaptation of the Toda flow to random spin chains, hav-
ing the advantage of preserving the sparsity of the Hamil-
tonian, has been proposed in [95].

5.2 Conservation laws emerging from the RG schemes

The RG approaches to MBL are a direct extension of the
Strong Disorder Renormalization Group (SDRG) scheme
developed to capture the low-temperature thermody-
namical properties of random magnets [101–103]. In its
conventional form, the renormalization is performed on
the system’s Hamiltonian by means of an iterative elim-
ination of its largest coupling constant, whose magni-
tude � defines the decreasing energy-cutoff. The cor-
responding spin subsystem is diagonalized, projected
onto the lowest local energy state (or manifold), and
decimated from the chain by introducing an effective
coupling between its neighboring spins (that accounts
perturbatively for the transitions induced by quantum
fluctuations involving the virtual occupation of the ex-
cited state of the subsystem). The outcome of the RG pro-
cedure is an effective ground state, built as an approxi-
mate tensor product of few-spins lowest-energy states.

This procedure has been adapted in [24, 53] to access
the properties of the exited states of a one dimensional
interacting transverse field Ising model

H =
∑

i

(
J z

i Sz
i Sz

i+1 + hi Sx
i + J x

i Sx
i Sx

i+1

)
, (55)

with uniformly distributed couplings J z
i , hi with com-

parable size, and perturbatively small interactions J x
i .

The generalization consists in keeping track of the pro-
jection of the decimated subsystem on both its lowest
and higher energy manifold. A full set of approximate

eigenstates is thus constructed by progressively resolving
energy gaps of the order of the running cutoff �2.

Conserved pseudospin emerge naturally from the RG
scheme, as the operators whose eigenvalues ±1 label the
energy subspaces selected at each RG step. For exam-
ple [104], assume that at a given RG step the strongest
coupling in (55) is |J z

j | = �, and let H� = J z
j Sz

j Sz
j+1, V =

H − H�, and v be the magnitude of the largest coupling
in V, (v < �). The local two-sites Hilbert space at j, j + 1
is partitioned into two almost degenerate energy man-
ifolds (spanned by | ↑↑〉, | ↓↓〉 and | ↑↓〉 ± | ↓↑〉, respec-
tively) separated by a gap of order �. The decimation is
performed by means of a unitary transformation H ′ ≡
ei A H e−i A chosen in such a way that [H ′, H�] = 0; fol-
lowing the standard SDRG, this program is realized per-
turbatively by expanding the generator A to lowest or-
der in v/�. Two different renormalized Hamiltonians are
obtained projecting the second order truncation of H ′

into the subspaces corresponding to a fixed eigenvalue
of Sz

j Sz
j+1,

H ±
ef f = V ′ ± 1

J z
j

(
hj+1 J x

j+1 Sx
j+2 + hj J x

j−1 Sx
j−1

)

± 1
J z

j

(
hj J x

j+1 S̃x
j Sx

j+2 + hj+1 J x
j−1 Sx

j−2 S̃x
j

)

+
(

J x
j ± hj hj+1

J z
j

)
S̃x

j ± J x
j−1 J x

j+1

J z
j

Sx
j−2 S̃x

j Sx
j+2,

(56)

where V ′ contains all terms in V not involving the spins
at the sites j, j + 1 and S̃x

j is an effective spin operator
breaking the internal degeneracy in the subspaces. Anal-
ogous steps are performed when the largest coupling is a
local field. As a consequence of the projection, the effec-
tive dynamics within each energy manifold decouples.
The operator Ĩ j = e−i A(Sz

j Sz
j+1)ei A is an emergent con-

served quantity for H (approximate since its dynamics is
suppressed with the decimation), and the full set of ap-
proximate many-body eigenstates is clustered into two
subgroups labeled by its eigenvalues, and separated by
a gap of order �. At the end of the procedure, the full
spectrum is constructed with the resulting eigenstates
given as product states in the basis of the approximate
conserved quantities. Since resonances between distant

2 This approach admits a natural dynamical interpretation [15, 53], as
the renormalized Hamiltonian can be interpreted as the operator
giving the effective dynamics at the largest time-scales,when the
fastest degrees of freedomoscillating at the scale t ∼ �−1 have
been integrated out. The phenomenological Hamiltonian (11) is re-
covered as the fixed point of the renormalization.
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degrees of freedom are not accounted for, the scheme is
expected to provide accurate results in the strong disor-
der limit.

An alternative real space RG scheme has been pro-
posed in [82], based on a block renormalization running
on an increasing sequence of length scales Lk = 2k. At
each step k, a conserved quantity τ

(k)
i is produced in par-

allel for each of the partitioning block, as a pseudospin
operator whose eigenvalues label the degenerate energy
manifolds obtained diagonalizing an intra-block Hamil-
tonian. The interaction between the blocks is renormal-
ized assuming that the pseudospin operators are con-
stant of motion, producing an effective Hamiltonian at
a larger length scale.

5.3 Local operators that are approximately conserved

If quasilocal conserved operators exist, a good approxi-
mation for them can be obtained by cutting off the ex-
ponentially decaying tails, truncating the operators to a
finite region of size L � ξop. The resulting operators are
approximately conserved local operators, or “ALIOMs”,
as they commute with the Hamiltonian up to terms that
are exponentially small in L. In [105], a set of ALIOMs
supported on a finite interval of length L is constructed
by expanding them in a complete basis of local opera-
tors, and by fixing the coefficients by direct minimiza-
tion of the Frobenius norm of the commutator with the
Hamiltonian. The problem is equivalent to an eigen-
value problem for a (4L × 4L − 1) matrix, whose low-
eigenvalue manifold maps to the set of approximately
conserved operators and their products. Similar quanti-
ties have been constructed heuristically in [106], where
a quantum Monte Carlo approach to the highly excited
MBL eigenstates is proposed.

An alternative approach has been adopted in [107], by
diagonalizing the one-body density matrix defined on in-
dividual many-body eigenstates. In the MBL phase, the
resulting eigenvalues {nα}α=1,...,L have been found to be
close to either 0 or 1, with eigenvectors that are spa-
tially localized. A step-like discontinuity in the occupa-
tion spectrum is present in the MBL phase, analogous to
the one of Fermi liquids. This suggests that the operators
ñα = c†αcα , have large overlap with the exactly conserved
LIOMs.

6 Discussion and conclusive remarks

In this section we discuss recent works on the exten-
sion of the idea of LIOMs beyond their original inception.

Although some of these works are not universally ac-
cepted in the community, we discuss them anyway for
their possible important implications.

6.1 Many-body mobility edges and LIOMs

Firstly, we should mention that it is not completely
clear how to reconcile the interplay of an extensive
mobility edge (separating the lower-energy, localized
many-body eigenstates from the higher energy, extended
ones) with the existence of LIOMs. In the approximate
perturbative constructions of [5, 6, 83, 108, 109], the
temperature dependence of the critical interaction is
obtained by considering, in the perturbative analysis,
typical non-interacting states at the given temperature,
which are treated within the forward approximation (or
its analogues). This treatment leads to a temperature or
energy-density dependent critical value of the interac-
tion λc(W, T) (where W is the disorder), which, by par-
allel with the critical disorder in Anderson localization,
defines a mobility edge ε(λ, W).

Signatures of mobility edges have been found in
numerics of infinite-dimensional and 1d systems [14,
16, 108]. Recent works [90] maintain however that, for
any λ > minT λc(T), rare spontaneous local fluctuations
in the energy-density within putative localized states
(termed “bubbles”) are sufficient to restore the conduc-
tivity of the system at any temperature, as they can
move resonantly through the system and act as a mo-
bile bath. This argument rules out the scenario of a tran-
sition driven by temperature; it is reconciled with the
perturbative treatment discussed in Sec.4.2 or analogous
ones (which instead entail a finite-temperature transi-
tion) by noticing that bubbles are not captured within
the forward approximation exploited in those contexts3.
The authors of [90] provided evidence for the absence of
many-body mobility edges following from the “bubbles”
scenario, which is however still subject to debate.

If on the other hand a mobility edge is present, it is
natural to expect that certain conservation laws are re-
covered once a projection onto the localized portion of
the Hilbert space is performed. One step in this direction
has been made in [110] for a Heisenberg chain (although

3 Within the operator formalismof Sec. 4.2, transport driven bymo-
bile bubbles would correspond to a divergence of the expansion
(25) due to a subsequence of operators having support that is com-
pact (with bounded index level N), but localized at increasingly far
distance from the localization center of Iα . These processes are not
accounted for in the forward approximation.
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for values of the parameters corresponding to a fully MBL
phase), by projecting the local spin operators onto a sub-
space H1− f of the total Hilbert space H = H1− f ⊕ H f ,
spanned by a finite fraction (1 − f ) of eigenstates. Con-
served quantities are obtained from the resulting pro-
jected operators by performing an infinite-time average
of the operators evolved with the (non-local) Hamilto-
nian governing the dynamics in H1− f , in analogy with
the recipe discussed in Sec.4.1 of this review. The result-
ing operators are argued to be local in the sense that their
“weight” in compact regions of the chain remains finite
in the thermodynamic limit, although there is a global
dressing of the operators, whose total weight grows with
f 4.

6.2 Higher dimensions

Effects of the dimensionality on (even a fully) MBL region
have been discussed in [6]. However, since in that work
(as well as in [83]) only typical diagrams are considered,
not much difference is seen in the MBL phase in differ-
ent dimensions, nor in the critical properties (which in
[6] are paralleled to those of a directed polymer). On the
other hand, some non-typical effects can spoil the phe-
nomenology of LIOMs: this was considered in a particu-
lar setup in [61], and in a more general setup in [94]. The
starting point of both works is that of identifying (either
by construction, or by estimating its probability of ap-
pearance) a rare region in which the disorder is anoma-
lously low so that, if the region were typical, it would be
ergodic.

In [94], rare “ergodic grains” within regions of local-
ized spins, generated by atypical disorder fluctuations,
were considered. Exploiting a random-matrix descrip-
tion of such “bath-like” regions, it was argued that full
MBL is destabilized by the ergodic grains in any dimen-
sion d ≥ 2. This implies that transport is restored at large
times, and that the non-perturbative construction of LI-
OMs discussed in Sec. 4.3 would break down in dimen-
sion higher than one.

4 More precisely, the locality of the projected operatorsO is
understood in the followingway: given the decomposition
O = OA + O⊥, whereOA is supported on some compact interval
of the spin chain of size NA, the ratio of the Frobenius norms
λ = ‖OA‖2/‖O‖2 remains finite (of the order of 1 − f ) as the
thermodynamic limit is takenwith NA kept fixed.However,‖O⊥‖
does not decay to zero exponentially as NA is increased, as it would
be required for the operator to be quasilocal.

In the setup of [61], instead, such an ergodic region
was the d − 1 dimensional face of a cube of side L of
fully MBL spins (characterized by the existence of Ld LI-
OMs). This region of size Ld−1 has typical level spacing
e−aLd−1

, which in d > 2 is much smaller than the typical
matrix element e−bL of an operator coupling a spin in the
bulk with a spin on the boundary (irrespective of a, b).
This implies that any spin in the bulk can thermalize us-
ing the boundary, and therefore the eigenstates should
look thermal. However, eigenstates are the infinite-time
limit of a finite-size system: it was argued in [61] that a
timescale diverging with L arises, which hinders trans-
port on macroscopic distances. This phenomenology is
described, in the words of [61], by means of l∗-bits I ∗

α ,
namely approximately conserved, quasilocal operators,
whose commutator with the Hamiltonian is not exactly
zero but vanishing in the thermodynamic limit:

[I ∗
α , H ] = O(e−bL ). (57)

This discussion can be framed in that on coupling MBL
systems to an external bath. This is only tangential to the
topic of this review, and we refer the interested reader to
the existing literature [111–113].

6.3 Conclusive remarks

The aim of this work was to illustrate how the notion
of emergent integrability has clarified the phenomenol-
ogy of MBL systems, and to review the main recipes
proposed in the literature to construct the conserved
operators. Besides the topics already mentioned in this
section, there are other possibly relevant implications
that have not been touched in the review. For instance,
it may be interesting to re-consider the implications of
MBL on well known protocols in quantum computation
(such as the quantum adiabatic algorithm [114, 115])
in view of this characterization in terms of the emer-
gent integrability. Moreover, although several construc-
tive schemes are available, few attempts have been made
so far to exploit the LIOMs to explicitly compute phys-
ically relevant quantities (see [89] for an example). The
existence of many non-trivial conserved quantities in
quantum interacting, disordered systems has potential
implications that are not only of theoretical interest but
also of practical relevance, in view of the potential use
of MBL systems in quantum devices; it is thus certainly
worth to keep investigating the problem discussed in this
review.

Key words. many-body localization, local integrals of motion.
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