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Abstract. We continue our program to establish the Higgs mechanism and 
mass gap for the abelian Higgs model in two and three dimensions. We develop 
a multiscale cluster expansion for the high frequency modes of the theory, 
within a framework of iterated renormalization group transformations .  The 
expansions yield decoupling properties needed for a proof of exponential decay 
of correlations. The result of this analysis is a gauge invariant unit lattice theory 
with a deep Higgs potential of the shape required to exhibit the Higgs 
mechanism. 
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1. Introduction 

We wish to establish the existence of a mass gap for the abelian Higgs model on the 
subspace of gauge invariant observables. Earlier work on this problem has led to a 
method to establish these results and to a partial solution [ 1 ,  2]. Here we continue 
this study with the development of a multiscale expansion suitable for the problem. 
The basic formulation of the model is given in [2]. We consider an action function 
se which is defined for a gauge theory on a lattice with spacing 8. We use the Wilson 
form of lattice action, which is gauge invariant. Thus it is important to consider 
gauge invariant observables such as loop variables 

u(y) = exp [
b
�y ietA(bl ( 1 . 1 )  

where y is a closed curve on the lattice, o r  string variables 

s(x, y, r) = cjJ(x) exp ( ier; I A(b)) cfJ(y) ,  
b
ET 

( 1 .2) 

where r is a lattice curve from x to y. These variables must be renormalized 
appropriately, by multiplying or subtracting c-dependent terms. For gauge 
invariant operators (but not in general) we expect exponential clustering in the 
equilibrium state defined by se. This state is given by the limit of normalized finite 
volume expectations 

( 1 .3 )  

(We assume periodic boundary conditions, but this is not crucial since as a 
corollary we establish the existence of the infinite volume limit. ) Thus for gauge 
invariant functions B, C we expect 

I<BC)- <B> < C)l;;:; 0( 1 )  exp [ - m dist(B, C)] , ( 1 .4) 

where 0 < m and dist(B, C) denotes the distance between the supports of B and C. 
For unit lattice models, ( 1 .4) was established in [3] and here we investigate the 
corresponding estimates uniformly in the lattice spacing 8. 

The exponential decay or mass gap is intimately connected with the Higgs 
mechanism. We see the Higgs mechanism at work through the evolution of the 
effective action as we proceed lower in momentum. The action on the c-lattice 
appears almost massless, but as we approach the unit lattice, the Higgs potential 
exhibits a pronounced ring of minima at 1¢1 = Q0, which leads to a mass term for the 
gauge field. The apparently massless rotational degrees of freedom of ¢ can be 
gauged away. 

To obtain decay, we need a convergent expansion with a small parameter. 
Thus, we restrict the coupling constants (e, /.) to be sufficiently small in order to use 
cluster expansions. Such methods yield a nonperturbative analysis of the vacuum 
state, by explicitly displaying the exponential decay ( 1 .4). Classically, the gauge 
field mass is of order ej }, 112, so we choose this ratio to be a fixed number of order 
unity .  

The general ideas of these methods were described in our earlier papers 
[ 1 ,  2, 4] . Gauge invariance enters in a crucial way, both in the Higgs mechanism 
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described above and in the control of ultraviolet divergences. By separating high 
and low momentum parts of the interaction in a gauge invariant way, we can 
choose convenient gauges to discuss renormalization of the high momentum part 
and to discuss the spectrum of the Hamiltonian in the low momentum region. 

In the present paper, we consider clustering properties of the high frequency 
modes of the model. Our goal is an exact expression for the effective action on the 
unit lattice. The expression is complicated by the need to treat large field or large 
action regions differently from the perturbative, small field regions. The effective 
unit lattice theory is, however, similar in spirit to the one considered in [3]. A final 
cluster expansion will be performed on this theory in another paper, and the proof 
of clustering and of the existence of the mass gap will then be complete. 

The dual requirements of clustering and of the renormalization group force us 
to develop a cluster expansion for each frequency mode separately. We formulate 
an inductive form of the model after k renormalization group transformations, and 
then the bulk of this paper is devoted to clustering of the (k + 1 )-st mode in the next 
renormalization transformation. 

The heart of our method is the way we accomplish changes of gauge without 
spoiling the exponential decoupling properties of the functional integral. We 
integrate out each frequency mode using a simple "tree" gauge on blocks (called 
axial gauge). After a number of modes have been integrated out, such gauges are 
not sufficiently regular to allow control of all the terms in the expansion. This is 
expected even in perturbation theory, where only gauges such as the Landau gauge 
are well behaved in the ultraviolet. Thus we must change the gauge in which those 
modes are expressed in the effective action. In keeping with the locality 
requirements of the cluster expansion, the change of gauge must be performed in 
patches, with slightly different changes on the overlaps. It turns out that the effects 
of the lack of alignment are small, and this way we avoid building up effects over 
long distances- something that tends to happen when changing gauges globally. 

A similar problem occurs in our treatment of the effective unit lattice model. 
We have to change from the Landau gauge to the unitary gauge that is best suited 
for exhibiting the Higgs mechanism. Again, this must be accomplished without 
spoiling decoupling. Thus the method for changing gauges is the crucial aspect of 
our analysis, both for high momenta and for low momenta. 

This paper is organized as follows. Having discussed Green's functions in [2] as 
global operators, we start by introducing localized forms of these operators which 
are better suited to the cluster expansion. We replace kernels G(x, y) with kernels 
G10c(x, y) = G(x, y)((x, y), where ( is smooth and supported in some neighborhood 
of x = y. This section also serves to review the roles of the various operators. We 
then briefly describe the cluster expansion in the first renormalization step. This 
leads to the formulation of the inductive hypothesis for the form of the model after 
k renormalization steps. Finally, we describe the expansion in the general 
renormalization step. Usually we are able to prove the necessary convergence 
estimates as we describe each part of the expansion. This has the advantage of 
allowing us to consider each part in isolation, without worrying about the overall 
structure. Unfortunately this philosophy cannot be applied to the large field 
estimates. For these we find it necessary to postpone the estimates of convergence 
until integration over the final set of fields on the unit lattice. However, using the 



260 T. Balaban, J. Z. Imbrie, and A. Jaffe 

expected small factors arising from terms in the action with large fields, we show 
how convergence will eventually be obtained. We also assume estimates similar to 
those proven in [5] on the perturbation theory for this model. 

2. Localized Kernels 

In the previous paper [2] , a number of operators arose from the application of 
renormalization transformations to the Gaussian approximation to the Higgs 
model. (Equation numbers from that paper will be prefixed here by I.) Exponential 
tails in the kernels of these approximately local operators are unavoidable. 
However, they are inconvenient for our analysis here, since they interfere with the 
decoupling of distant regions of space-time. Therefore, we introduce localized 
versions in which the tail has been cut off at a sufficiently large distance. In 
addition, for operators depending on an external gauge field, the dependence will 
be reduced to a bounded region. The use of the localized operators instead of the 
exact ones will introduce small error terms that are easily controlled. 

Let us consider gauge field operators first. The minimizer Hk maps unit lattice 
bond fields to ry-lattice bond fields, 17 = L- k . The configuration A= H kB minimizes 
the Landau gauge ry-lattice gauge field action under the constraint QkA =B. We 
define Hk starting with a large but fixed torus T0,, of size O(e- 1 ), say, in each lattice 
direction. [Recall our convention that subscripts on tori Tor T0 indicate the lattice 
spacing (in this case e); superscripts (k) indicate the number of times the initial 
lattice has been decimated.] This avoids spurious dependence on the lattice � on 
which we put our model, and so simplifies the infinite volume limit. (Alternatively 
we could take the limit T0_, 7' E 7La.) Construct a translation invariant localization 
function (k such that 

( (b b') = {0, if dist(b, b') �ir(ek) ,  
(2. 1 )  k ' 

1 ,  if dist(b, b') � 11 6 r(ek) ,  

and such that (k is a smooth function of b .  Here b E  7;,, b' E T1(
kl , and 

ek=(L'e)<4-rlli2e, },k=(Lke)4-a), (2 .2) 

r(ek) = flog ek- 1 lr, r > 1 . (2. 3 )  

Then the localized version of Hk has a kernel 

(2 .4) 

There is no ambiguity because (k permits a sampling only of b near b', relative to 
the size of T0.�; Hk is also translation invariant. Since (k is smooth, Hk. loc inherits 
the regularity and decay properties of Hk, see (1 .7 .2 .2) .  So we have 

IH k, loc(b, b') l � ce- cdist(b, b')
' 

Hk, loc(b, b')=O for dist(b, b') �ir(ek) , 

IH k, loc(b, b')- H k(b, b') l  � e -cr(ek)e -cdist(b,b')
' 

(2 .5) 

(2.6) 

(2.7) 
and similarly for oH k,loo ci* Hk. loc' and for Holder derivatives of H k, loc of order less 
than two. 
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Next we consider C(kl, the covariance of the k -th step gauge field. This is defined 
on the unit lattice TJ�l1• First define 

C(kl(b 1 , b2)= {C(kl(b 1, b2) , if dist
_
(b 1 , b2) � ± r(ek) , 

(2_8) 
0, otherwise, 

and extend by translation invariance to T?l. Then put 

q�� =(I_ Qs*Q)C(k)(l- Q*Qs); (2.9) 

this insures that q��, like c<k>, satisfies the constraints from the renormalization 
transformation and from the axial gauge conditions : 

I Cl��(b,b0)= I c)��(b0,b)=O. 
beFy, x beTy, x 

(2. 1 0) 

(2. 1 1 )  

(See [2, Chap. 2] for definitions of the block averaging operators Q, Q', and Qe.) We 
have estimates analogous to (2.5)-(2.7) for q��-

From q�� and Hk.loc we construct a localized ry-lattice gauge field propagator 
analogous to fZk: 

k - 1 k - 1 - " HLhJ cu).uryH*u - " cw-� loc- � j, loc Joe j, Joe== L. loc · j= O j= O 
(2.12) 

Superscripts IJry, IJ, etc. indicate the lattice spacing for operators rescaled to 
nonstandard lattices. This propagator derives its regularity and decay from that of 
C\�� and H k ,loc - Thus 

l(iz\.tocf)(b) l �ce-cdist(supptJ,bJ 11/11 ' (2. 13) 

and similarly for derivatives of fZk, Joe and Holder derivatives of order less than 2. 

Furthermore, 

and iZk.loc is close to iZk, see (5.4.3) below. 
The operator CJ k gives the quadratic form for the k-th-step field strengths 

f (kl(p) = ( ie,) -1 log u(p). As before we construct a localized operator on nkl from (Jk 
on TJ�l1: 

(2.1 4) 

where p 1, p2 are plaquettes of T?l. Recall from [2] that 

(Jk = Qk(I- ()Gk. Axo*)QZ* = Qk(I- ofii1*)QZ*' (2.1 5) 

the second equality following from the change of gauge, (!.5.2.6). Writing gk in 
hierarchical form as in (2. 1 2) and using the regularity of Hi' 0 �j < k, we see that 

(2.16) 

[The rapid decay of the terms with small j compensates for the scaling factors 
(llry) - 1 

.] For close p 1 , p2 the kernel of (J k can be large, of the order of 1J- 2 . However, 
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we shall only encounter situations where J<kl(p2) =(8A)(p2) for p2 near p1• Then we 
prove that 

(2. 1 7) 

as follows. Write j<kl = 80A + f', where 0 is the characteristic function of a 
neighborhood of p2• The distant part (ad')(p1) is easily estimated by IIJ<klllcc by 
(2. 1 6) .  The near part is similarly bounded since ak is a bounded operator on curls 
[2] . It was also shown in [2] that ak is bounded from below. In view of (2. 1 6) we 
have that 

so that (2. 1 6), (2. 1 7) hold for a k,loc• and 

ak,loc;;::::: c > 0 
as well. 

(2. 1 8) 

(2. 1 9) 

Another important kernel is the one generating the gauge transformation : 

(2.20) 

The kernel Ck is constructed from the basic gauge transformation Dk which 
changes the minimizer from axial to Landau gauge (! .5 .1 . 1 ) :  

(2.21 )  

B y  changing gauge i n  each term in  the hierarchical sum defining �k and applying 
(! . 5 . 3 . 1 ), we obtain 

k-1 
ck = Dk + I DJ'qc(j).LJqHjvqa*Qk*a. 

j=O 
(2.22) 

The kernels of all these operators have an exponential decay on their respective 
length scales; for Dk the required estimate is (I.7.2.4). The sum over j is not well 
controlled for close points ; this will not be important for us. For more distant 
points, however, the rapid decay of terms with smal lj controls the scalings and the 
sum over j to yield a uniform bound 

ICk(x, b')l � ce-cdist(x, b')' dist(x, b') >c. (2.23) 

Here X E To. 
q
• b' E TJ�lt*. Of course there is no uniform bound on ack. The localized 

version of Ck is defined using another smooth cutoff: 

(' ( b') = 
{ 1 ,  for dist( x, b') � ±r( ek) 

k x, 
0, for dist(x, b') ;;:::::!r(ek) · 

ck,loc(x, b') = Wx, b')Ck(x, b'). 

Then Ck,Ioc also satisfies (2.23) and 

ICk,loc(x, b')- Ck(x, b')l � e -cr(ek) e-cdist(x, b'). 

(2.24) 

(2.25) 

(2.26) 

In the scalar field sector, we have the 17-lattice propagators Gk(Q, u) defined on 
subsets Q c Tq with Neumann boundary conditions. To localize the dependence on 
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u, we interpolate in a smooth fashion between operators with Neumann boundary 
1 

conditions on small cubes. Let {DJ be the collection of 
2L 

r(ek_1)-cubes that can 

be built from cubes of size M = 0(1)  as in [6]. Define 

Gk(u; X1, x2) = 2.: A.aGk(Da, u; X1, X2) (2.27) 
a 

as a convex combination of Neumann propagators. The convex combination 
varies smoothly with (x1 + x2)/2; it involves at most 2d terms and is concentrated 
on Q when (x1 +x2)/2 is near the center of Da· We then put 

Gk,Ioc(u; x1,x2)= 'k{x1,x2)Gk(u; x1,x2) ,  

where G(x1,x2) is a smooth function of x1-x2, 

(2.28) 

! 0, if lx1-x21�4� r(ek-d 
G(xl,Xz)= 1 

1 ,  if lx1-x21�8Lr(ek-1) 
(2.29) 

The boundary conditions are always at a distance O(r(ek)) from x1, x2, so a 
straightforward application of the random walk expansion of [6] shows that 

l(Gk,loJu) f) (x)l � ce -cdist(supptJ,x) I I f I !  oo, (2. 30) 

I(Gk,loc(u) f-Gk(Q, u) f) (x)l � e -cr<ek) e -cdist<supptJ, x) II f II oo, (2. 3 1 )  

for dist(x, Q<) � O(r(ek)). [Each Gk(Da, u) i s  close t o  Gk(Q, u) for the relevant x1, x2, 
therefore the convex combination and Gk,Ioc are close also.] We assume that u is 
smooth in the Da's entering the sum in (2.27); for (2. 3 1 )  we assume smoothness 
throughout the subset Q C T,. This means that in a neighborhood of each Da there 
exists an A, A. such that 

Here 

u = exp[ iekiJ(A + oA.)] with loA I, lo* AI� O(p(ek)). (2. 32) 

(2. 33)  

is our logarithmic scale for small fields. Bounds analogous to (2.30), (2. 3 1 )  hold for 
covariant derivatives and Holder derivatives of Guoc(u) of order less than two. 

We use Gk,Ioc to define a localized quadratic form for scalar fields, 

(2. 34) 

Here we have simply replaced Gk(Q, u) with Gk,Ioc in the definition of Llk(Q, u); see 
(14.6.4). Hence 

ILik,Ioc(u; X1, Xz)- Llk(Q, u; X1, Xz)l 
� e -cr(ek) e -c jx, -x2 1 for dist( { xl, Xz}, QC) > O(r(ek))' 

ILik,loc(u; xl, Xz)l � ce -c jx, -x21
' 

(2. 3 5) 

(2.36) 

(2. 37) 
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Again we assume u is smooth in the relevant regions ; Llk ,Ioc(u ; x1, x2) depends on u 
only in an O(r(ek))-neighborhood of x1, x2• Finally, in view of (2.35), the lower 
bound (17.3 .2) applies to Llk,Ioc(u) as well. Let¢ be supported in a region having an 
r(ek) neighborhood where u is smooth. Then 

(¢, Llk ,loc(u)¢) � c I \u((b_ ,b+))¢(b+)-¢(b_)\2-cetp(ek)2 I l¢(xW. (2.38) 
be T1(k)• xe T,'kl 

Finally, we need to construct a localized version of 

C�l(.Q, u) = [(Llk(Q, u) + aL- 2Q(u)*Q(u))IA] -1 , (2.39) 

the single-scale propagator for the scalar field in the k-th step. We have already 
replaced Llk(Q, u) with Llk,Ioc(u). Let us assume u is smooth in a neighborhood of A ,  
the region for the Dirichlet boundary conditions in (2. 39). We  define 

C�l(u) = [(Llk,Ioc(u) + aC 2Q(u)*Q(u)!Ar 1 . (2.40) 

This is of course a nonlocal operator, but by (2.38), C�l(u) -1 is bounded below and 
a random walk expansion as in [6] can be used to prove that 

(2.41 )  

We shall actually use a convenient resummation o f  this expansion. The basic 
expansion has the form 

(2.42) 

where w is a walk on a lattice of spacing M = 0( 1 ). We define the localized form of 
C�l(u) to be 

C�\oc(u; X1, x2)= I' Cro(X1, x2) ,  (2.43) 
w 

where the prime indicates that only w remaining within ir(ek) ofx1, x2 are included. 
Let X be a connected union of r(ek)-cubes, and let X0 be the cubes of X not at the 
boundary of X. We define 

C�\(u; X1,x2)= Ix Cw(x1,X2), (2.44) 
w 

where the sums runs over walks not included in I', which remain within X0 and 
which intersect each cube of X0• Then we define 

C(kl(u) = C(k) (u) + ' C(k) (u) A A,!oc L.. A,X ' X 
(2.45) 

and the convergence and locality properties of the random walk expansion imply 
the following facts about these operators. The local part c�:!oc(u ; x,, Xz) depends 
only on u in an O(r(ek)) neighborhood of x1, x2 ; it vanishes for \x1 -x2\ >tr(ek) and 
is bounded as in (2.4 1 ) . The operator c�:x(u) depends only on u in X. It vanishes 
unless both arguments are in X, and is estimated as follows : 

(2.46) 
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Here and elsewhere, lXI refers to the number of r(ek)-cubes in X, not the volume of 
X. This estimate can be summed over all connected sets X to show that 

IC(k) (u . X X ) - c<kl(u· X X )I< e -cr(ek) e -c lxl -x2 1 (2.47) A.Ioc ' 1' 2 A ' 1' 2 = · 

If X does not intersect Ac, then C�!x(u) does not depend on A; neither does 
C�!Ioc(u; x1,x2) depend on A ifdist({x1,x2},Ac)>!r(ek). In this case we write it as 

c(��(u;x1,x2)=C�!1oc(u;x1,x2), A large enough . (2.48) 

Note that all operators introduced through random walk expansions of C�l(u) or 
Gk(Q, u) transform properly under gauge transformations, that is, by the difference 
of the gauge transformation between the points of evaluation of the kernel. 

Lastly we note that the single-step covariance for the gauge field can be given a 
random walk expansion analogous to (2.45), with similar estimates: 

c<k) = c<k) + "' c<k) A A.Ioc L A. X· (2.49) 
X 

3. The First Renormalization Step 

In this section we briefly and informally describe the sequence of operators 
performed in the first renormalization step. This will serve to orient the reader in 
the more detailed descriptions for the general step, and it will motivate the 
inductive hypothesis for the general step. Most estimates will not be discussed here, 
since they are special cases of those proven for the general step. We avoid formulae 
in favor of verbal descriptions, except for the first few operations, which are special 
to the first step. 

We wish to give an expansion for the partition function, or for an unnormalized 
expectation of an observable F. Thus we consider 

(3 . 1 )  

where F i s  a gauge-invariant function, a product o f  terms like l¢(xW, 
(/i(b _)u(b)¢(b + ), Re(i ee2)-1(u(p) -1 ). Each such term may need to have an 
appropriate constant subtracted in order to obtain �:-independent bounds on the 
full expectation 

(F) = [F]/[1 ] . (3 .2) 

These "Wick ordering" constants are given by perturbation theory to a low order, 
and will be discussed carefully in a subsequent paper on the perturbation 
expansiOns. 

The action on 7',;, the �:-lattice, is 

Here - Ll�=D�*D�, and 

(3 .4) 
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We have taken the bare scalar field mass [coming from the radial curvature of 
P(</>)] equal to 1; other values can be achieved by scalings. We have included a mass 
renormalization 6m2= Jm2(e, 2, s) and a vacuum energy renormalization E 1 
= E1 (e,),,s, l 'f. l) . The constant E0 = E0(s, 'f.) normalizes the integral (3.1) so that 

lim [ 1 ]  = 1 . (3.5) 
A. e-o 

We will be considering subsets X of the lattice I:(kl obtained by decimating T. 
k-times and scaling the resulting lattice spacing to a. We denote by X* the set of 
bonds with both endpoints in X; then X** denotes the set of plaquettes with all 
four corners in X. A superscript c denotes complement, so that xc = Ya(k\X, X*c 
= 'Fa<kl*\X*, etc. Thus xc*c includes bonds with one or both endpoints in X. 

We rescale our expressions from T. to the unit lattice T1. The scalar field is 
multiplied by e- <d-2 )12 , and we have 

[F] = S�u�</>e0(u,</>) , (3.6) 

Q0(u , </>)= F exp [- I e02(1-Reu(p))-t<4>, -Llu4>) 
peTi* 

- I P0(</>(x))- I tbm2t:21</>(xW-tt0-E1 J · (3.7) 
xeT1 xeT1 

Here P 0 is the first in a sequence of scalar potentials forming the dominant term 
after k steps : 

(3.8) 

We use a rescaled coupling constant 

),k = (Lks)4-d ), , (3.9) 

and since e2/2=0(1) we have also eV2k=0(1), by (2.2). The constant 1!0 includes 
the scaling factors, 

(3.10) 

Each factor 4> in F acquires a factor e-<d-Z)/2, but we use the same notation. 
Ultimately these scaling factors will be cancelled by successive rescalings back to 
the original scale. 

We begin to compute [F] by integrating over u, 4> under constraints given by 
the block fields v, 1p on the L-lattice. This is the renormalization transformation, 
described in the previous paper. With the gauge fix JAx(u), it takes the density 
Q0(u, </>) to 

ef(v, 1p)= S �u�<f>J(vjQu)bAx(u)F exp [- � e02(1-Reu(p)) 

-taC 2< 1p- Q(u)¢, 1p-Q(u)4>) -t< </>, -Llu4>) 

- 2,:P0(</>(x))- 2.: iJm2e21</>(x)l2-lff0-E<0l-E1
J

· (3.11) 
X X 
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Here we define 

£<0) = -1 Tf l l l log (aLd-2/2n ), 

which normalizes the transformation so that 

[F] = S dvd1pet(v, 1p). 

267 

(3.12) 

(3. 1 3) 

The first operation is a decomposition of the lattice into large and small field 
regions. This is accomplished by means of a partition of unity, 

1 = L (A(O)cXA(O) • A(O) 0 0 
0 

(3.14) 

Here Ab0l c T1 is the small field region. It is composed of r( e0)-cubes , in each of 
which the factor XAco) enforces the following conditions : 

0 

IDu¢1 � p(eo) ,  11fJ- Q(u)¢1 � p(eo) ,  1¢1 � ),Q" 114p(e0) 
IJ<0l (p)l � p(e0) ,  where j<0l (p) = (ie0)-1logu(p) .  

(3.15) 

The factor (A�?Jc forces at least one of these conditions to be violated somewhere in 
each r (e0)-cube of Abo)c. 

Later in this step we will introduce sets Al0l ,  A�0l ,  etc. , which are obtained from 
Abo) either by deleting r(e0)-cubes at the boundary of Ab0l ,  or by deleting r(e0)-cubes 
covering regions with "irrelevant" terms from the expansions. (These are terms 
bounded by a high power of rescaled coupling constants.) In the k-th step we will 
introduce analogous small field sets A�l , Alkl , etc. 

In the previous paper, we worked with the basic quadratic form <a A, 8A). This 
is obtained now by expanding the Wilson action in powers of e0. In Ab0l** we have 
small j<0l , so we write 

(3.16} 

We consider the expansion up to order ii in e0 explicitly, the remainder is called 
"irrelevant" because it is bounded by ce�p(e0y;+2�e£d+1 for ii large enough. The 
first term, summed over Ab0)**, gives rise to the quadratic form 1<Ah0l** j<0l ,  
Ab0l** j<0l). (We use  A** to denote the  set of plaquettes with all four corners in A; 
A* denotes the bonds with both endpoints in A .  The same symbols are used for the 
corresponding characteristic functions.) The low order terms in e0 are new 
interaction vertices. 

For factors (ie�:2)-1(u(p)-1)=(ie0)-1s-df2(u(p)-1) in the observable F, 
p E Ab0l**, we expand : 

(ie(s)) -1 B -df2(u(p) -1) = I B -d/2 (ieo)" -1 
Uo(p))" 

n� 1 n! 
= Frel(p) + Firr(P) · (3.17) 

The first three terms are relevant (for observables this means they do not go to zero 
with s.) The others are included in Firr(p). (Our use of the terms "relevant" and 
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"irrelevant" is different from standard renormalization group language.) We sum 
over these two terms for p E n(F)nAb0l**, where n(F) i s  the set of plaquettes having 
factors Re( ie�:2) -1(u(p) -1) in F (with multiplicity). Denote by f3(F), �(F) the bond, 
sites having factors :(j)(b_)u(b)¢(b+):, or :l¢(xW: in F. The result is the following 
expansion for F :  

F = I [J F;rr(P) [J Fr.,(p) fi 
S,Clt(F)nA\,0>** peS, peSf. pE7t(F)\A\,0>•• 

x Re( iee2) -1(u(p)-1) [J :(j)(b_)u(b)¢(b+): [J :j¢(xW:. (3.18) 
befJ(F) XE�(F) 

The irrelevant part of the gauge field action is Mayer-expanded : 

exp [- I W0(p)
J 

= I [J (e-Wo(Pl_1). (3.19) 
peAb0>** SpcACJl>** peSp 

We group together large-field regions and regions with irrelevant terms. Anticipat
ing the structure of the induction, we define Ai3'lc as the union of r(e 0)-cubes 
covering Abo)c and all plaquettes in SP or S,. We divide Ai3'Jc into connected 
components {Xw}, and define 

go(X,J = I I ri 
S1tcn(F)nAb0)**nX'&j SpcA'g>**nX�� peS1t 

X Firr(P) [J Frel(p) fi 
peS�nX:% pe(n:(F)nX��)\Ab0>** 

befJ(F)nXt, 

x fi :l¢(xW: [J (e-Wo(Pl_1) 
XE�(F)nXw pESp 

x exp [- I 1
2 
(1-Reu(p)) 

peX£"*c\Ab0)** eo 

x
e
x�

A
\,
o> 

(P0(¢(x))+�bm2e2l¢(x)I2+E1(x))J. (3.20) 

We have written E1 = I E1(x), E1(x) defined by fixing one vertex at x for each 
XETt 

diagram defining E 1. 
The remaining r(e0)-cubes covering the support ofF are divided into connected 

components {X0}, and we put 

peX;I.*nn(F) beX�nfJ(F) 

X fi :l¢(xW:. 

Our density now takes the following form : 

et(v, 1J.l) = I I s ::0uf0¢<3(vjQu)b AiuKA(O)XA(O) 
A\,o> {Xw) o o 

X fi go(Xw) [J F o , Joc(Xu) exp[ -�(Ab0l** j<0l,Ab0l** j<0l) 
(0 0' 

-�aC 2( 1p- Q(u)¢, 1p- Q(u)¢) -�( ¢, (- Llu)¢) 
- .9'o, Joc(Ab0l) - 0"o -E(O)J , 

(3.21) 

(3.22) 
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where the basic interaction terms have been included in 

:3"o,Ioc(Ab0l)= I (P0(¢(x))+iJm2�:2/¢(xW+E1(x))+ I V0(p). (3.23) 
xcAb0) pEAb0>** 

These expressions have a form similar to that of the inductive hypothesis for the 
general renormalization step, introduced in Sect. 4.1. Nevertheless, we continue in 
an informal fashion with the first step, in order to outline the conceptual ideas 
whose details are treated in the general case of the next chapter. 

We begin with a translation of the gauge field which takes the block field v out 
of the 6-functions of the renormalization transformation. Thus we put 

{u�ub., if b E  Bs(b')nAl0)* , 
ub = u�, otherwise. 

= u�(Ai0l*Qs*vh, (3.24) 
where the prefactor A0l* indicates that what follows is present only for b E A\0>*. 
From the restrictions on the fields, we have that u� = eieoAi,' with /A�/� cp(e0) in 
A\0>*. The axial gauge b-functions arc invariant under this translation. In A\0>, 
J(v/Qu) becomes proportional to b(QA'). 

In the general step, a gauge transformation is needed at this point. However, it 
is  unnecessary here. 

The quadratic form for the gauge field in A\0>** is 
(A\o>**po>, A\O)** po>) 

= (A\ol**(3A' + C2Qe*f),Ao>**(3A' + L- 2Qe*f)), 

where 

f(p)= (ie0) -' log v(p) .  

A second translation is needed to remove the term linear in A'. We put 

A'= A<Ol- A�l* C 2C\��3*Qe*f, 

(3.25) 

(3.26) 

(3 .27) 
which does not precisely eliminate the linear term. However, it is local, and away 
from aA�0! the linear term is extremely small. If we neglect terms at DA�0l and 
localized terms of the order of e-cr(eol, we obtain the main quadratic forms for 
block and fluctuation fields: 

(A\0!**aA<0>, A)0l**3A<0l) + (A�0!'**j; 1Ji,IocA0l'**f). 
The prime denotes decimation (taking the corners of blocks only) ; the superscript 
L indicates the block lattice spacing. 

Let us write the background gauge field in A�0l* in terms of A<0>. I t  is 

(3.28) 

We wish to expand in A(OJ in the scalar field quadratic forms, and in the 
observables F o, Joe' where this gauge field appears. This will give us scalar field 
forms that depend only on the block gauge field. Let 80 be the characteristic 
function of 11�01*. We expand in 00A<0>. For terms of zeroth order in 80A<0l we have 
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a background gauge field 

u1 = (A\0l*Q8*v) (A�0)*cu(0l ) exp(ie0A�l* C 2C(��o*Qe*f) . 

Here u(0l =exp(ie0A(0l ). Terms of first or higher order in 00A(O) will be treated as 
interactions. 

The expansion yields for the scalar field forms 

!aC2(1p-Q(u)¢, 1p- Q(u)¢) +!(¢, -LJu¢) =!aC2(tp-Q(ud¢, 1p- Q(u1)¢) 

+!(¢, -LJu,¢)+R(O)(u1,(;JoA(O))+ L W{0l (D) , (3. 29) 
0 

where R(O) contains the first ii orders in A(o) (or in e0) and the higher order, 
irrelevant, local terms are incorporated in W1(0l (0). (These terms can always be 
localized to some r(e0)-cube 0.) Similarly each factor F o, Ioc(X ") is written as a sum 
of two terms : the first m orders in e0, and the remainder which is  bounded 
uniformly in a for an appropriate choice of m. 

The next step is a scalar field translation to remove the term linear in ¢ in (3. 29). 
Again we make a local translation, 

¢ = ¢(0) + aL-2 A0>Cl��(u1)Q*(u1)1Jl. (3 .30) 

Neglecting terms at oA�0l and local terms [range O(r(e0))] of the order of e-cr(eo>, we 
obtain the basic quadratic forms in ¢(0) and 1p: 

1< ¢(0), (- LJu, + aL-2Q(u1)*Q(ul))¢(0)) +!(A0)'1p, LJ7_Ioc(u1)A0)'1p) · (3.31) 

In the small field region Ab0l we have small block fields : 

lv(p) -11 � ceop( eo), 11Jl(Y ) I � cp( e oP'o 114, 
I(Du,1Jl ) (b')l � cp(e0) , b' E Ab0)'* , 

(3.32) 

where ii1(b')= ii1((b'_ ,b'+)). We change nothing, then, by inserting a factor 
x 1, A<o>·(v, 1p) which enforces these conditions by means of approximate character
istic 0functions. Similarly, it can be shown that 

IA(O)I � cp(eo) in A\0)* ' 1¢1°)1 � cp(eo) in A\0)* ' (3.33) 

and we inset a factor x�ro> enforcing these bounds in A�0>. 
We now consider now the interaction terms &'o,Ioc(Ab0)) and R(O)(u1, BoA(O)), and 

reorganize them as follows. Vertices are restricted to A�0>, and terms whose 
combined order in e and }, 1;2 is greater than ii are removed. The result is a standard 
set of terms which will appear at each iteration step. Here they are grouped into an 
interaction V(0l (A�0>, u1, A (Ol , ¢(0>), a polynomial in A (O) and ¢(0>. All other terms are 
either localized near Alfl c or else are of high order in couplings. The other terms are 

written as I Wj0l (D), each term localized at an r(e0)-cube, and we have a bound 
0 

(3.34) 

Here f3 > 0 is a fixed small power, K > d is a fixed large power, and a0 is the lattice 
spacing to terminate the induction. 

(3.35) 
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The bound (3.34) is sufficient for a rough treatment of such terms, since (Lkr./e0t is 
summable on k even with an entropy factor (Lkaja0)-d. Terms satisfying such 
bounds are called irrelevant. 

We avoid any further consideration of the irrelevant terms by Mayer
expanding them as in (3. 1 9) . This includes terms W1<0>(D), Wj0\D), as well as the 
small terms neglected in obtaining the quadratic forms for A<0>, f, ¢<0>, and 1p. 
Grouping all irrelevant terms localized in D into WJ0>(o), we write 

(3.36) 

In a similar fashion we break off the low order terms in the observables, and we 
obtain a sum of terms, depending on whether the relevant or irrelevant parts of 
Fk,Joc(XIT) are chosen. (For observable terms, irrelevant  means bounded independ
ently of c.) 

We then avoid regions with irrelevant terms exp( - WJ0>(D))-1 or from 
Fk,loc(XIT). Subtract from A�0> all such regions; call the result A�0> and define A�0> by 
deleting an r(e0)-collar from it. 

The original characteristic functions XA<o> are inconvenient for our subsequent 
analysis because they couple block and fluct'uation fields. We remove them, relying 
only on x1 A<o>· and X�<o> for restrictions. This means we expand each characteristic 
function a� X0= 1 -xc. We obtain a sum of regions A�0> which contains only 1 -terms : 

(3.37) 

Here the function (�<D>c forces some field to be large (xc) in each r(e0)-cube of 
A�\A�0>. Then A\0d i; defined by deleting a collar from A�0>. 

We now are prepared to calculate the integral over ¢<0>, A<0> in A\0d. We write 
the integrals there as normalized Gaussian integrals with conditioning at the 
boundary of A\0d. This conditioning is given by ¢<0>, A<0> in A\0dc, and is a source of 
some nonlocal effects which must be dealt with. First of all the normalization 
factors for the Gaussian integral depend on the fields in A\0dc. These can be written 
as the normalization factors without conditioning, ZA<D>c*c' ZA<o>(u1) times quadra
tic forms in ¢<0> IA<o>c, A<0>iA<D>c· These forms are nonlo�al and 'they must be given 
random walk exp��sions. S�condly, there are cross terms between the fields in A\06 
and in A\0dc in the exponent in the normalized Gaussian integral. We take care of 
most of these with a translation localized near the boundary of Al0d. The residual 
linear terms, of the order of e - cr(eo). are left (resulting in an uncentered Gaussian) 
and produce small effects in the cluster expansion. 

The result is a small-field integral of the following form : 

f d,u�(�>(A(O)", </J(O)")x��O) fi F�.Ioc(XITJ exp [- v<O)(A�0>, u l, A(O)' ¢<0))- I WJ0>(X)] 0 

ITl X (3.38) 
Here A<0>", ¢<0>" are the translated fields, and the terms WJ0>(X) come from the 
random walk expansion mentioned above. The complete expression for our 
density is of course much more complicated; we focus on this because it is the only 
remaining nonlocal effect. We give a cluster expansion for it now. 

Without going into details, it is worth remarking that if we pull out the terms in 
v<o> which are independent of ¢<0>, A<0> (call these V.,��51), all other terms are 
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uniformly small (bounded by a power of e0) because of the restrictions on the fields. 
The cluster expansion puts the integral (3 . 38) in polymer form, 

e-v��nst(A�O)) L TI g2(Xa) . (3.39) 
{Xal a 

The polymer functions g2 depend only on fields in Xa, and exhibit exponential 
decay in IXal. 

The clusters X a intersection A\0{< have some dependence on ¢<0liAjg>c, A<0liAig>c· 
The remaining clusters have completely decoupled from the large field region. We 
denote the region they cover by A\0d. In this region we resum the cluster expansion 
and use perturbative expansions to calculate the effective action for v, 1p. 

The resummed integral in A\0d is written as 

(A(Ol)- Zp(A\od) (1 (A(Ol)) Zp 12 - z(A\od) exp ogz 12 . (3 .40) 

The first factor is the expectation of the portion of the observable in A\0d in the 
interacting fluctuation measure. The exponent is the effective action, which is 
calculated as follows. We interpolate the interaction v<Ol- V::<.?Jst with a prefactor t. 
At the same time we interpolate away the characteristic functions x' in A\0d. The 
perturbative part of the effective action is 

- (0) - ii 1 aa 
(0) &"\(Au)- L - 1 -d a logz1(A12)11�o, a� 1 r:J.. t 

(3 .4 1 )  

and the remainder involves truncated expectation values i n  the interacting 
fluctuation measure with parameter t E [0, 1 ] .  These truncated expectation values 
can be given a cluster expansion exhibiting their locality properties. Since they 
involve at least n + 1 interactions, the estimate on the resulting clusters is 
improved ; there is a high power of couplings or a large field effect from a derivative 
of x' . Thus the remainder is expressed as L: WJ0l'(X), a sum of localized, irrelevant 
terms. X 

The perturbative terms involve a set of diagrams, the propagators of which are 
fluctuation covariances C�?o�, C�?o1(u1) with Dirichlet boundary conditions on A\0d. 
These nonlocal covariances2are replaced with our standard localized ones, Cl�� and 
Cl�Hu1), with the difference given a random walk expansion. Any term involving a 
covariance other than q�� or q��(u1) is extremely small, O(e-cr(eol), and localized 
with an exponential decay. For simplicity we extend the range of integration of 
vertices to all of A�0>; the difference involves only small, l ocal terms in A�0lnA\0{ 
As a result of these changes we have 

y<Ol (A(O))+� (A<Ol) =!!JL (A(O))+ "w,<Ol"(X) cons! 8 1 12 1, loc 8 L.., 6 · 
X 

(3 .41 ) 

A perturbative contribution to zp(A\0d)/z(A\0d) is also extracted through 
integration by parts. When the order in couplings is high enough, the expectation 
is calculated with the cluster expansion. Nonlocal covariances in the perturbative 
part are replaced with local ones as above. 

In a final operation, we Mayer-expand the irrelevant terms WJ0l' and WJ0>". 
The region A\0) is defined as the part of A\0d free of irrelevant terms, either from the 
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exponent or from the observable. All the terms associated with the connected 
components {X w} of the large-field region A)0lc are grouped into large field 
functions g 1 (X w). We rescale the L-lattice of blocks to unit lattice spacing. From 
the block field 1.p we get a contribution to the normalization energy : 

and we put 

E<OJI =(d-2) (logL) IT?ll, 

0"1 = 0'o +£<OJ + £(0)1. 

The result is the following expression for our density : 

i?1 (V, 1fJ)= L S qJu�cblc*X1 A<kl• [1 g1(Xw) [1 Fl loc(X")Z�cblc*cZ�??rJ)(u l) I 0 � ' 0 ' 10 10 �d w a 
X exp[ -�(A�O)I**f(l l, 0" UocA�O)I** j(l l) 
-�(A0l11fJ, Lll,loc(ul)A0l11fJ)- gouoJA�01)- 0"1J. 

(3 .42) 

(3 .43) 

(3.44) 
We write explicitly the integral over u<OJ in Ai06c* because in general, normalization 
factors Z�lj)(uk) will depend on uUliA<'lc* through the background field uk. We have 
also introd�ced the rescaled field st��ngth j (11(p) = (ie 1 ) - 1 logv(p). The expression 
(3.44) will serve as a model for our starting point for the general step. 

4. The Inductive Hypothesis 

Our starting point is an expression like (3.44) which depends on fields, u, ¢ on the 
unit lattice. These were the fields, v, 1p on the L-lattice in the previous step, but we 
have rescaled and renamed them. We assume that we have already performed k 
renormalization transformations and expansions of the type we are about to 
describe. Thus the unit lattice here corresponds to the I}l; lattice if we had done no 
rescalings. The original lattice T,; is now �. 11 = L-k, we assume that Lk0 < s 0 
=min{ 1 ,  (81cje2)112}eP, with [3 > 0 small and e� 1. Thus we are stopping the 
inductive expansion somewhat before either of the two lengths in the problem are 
reached. The length 1 comes from the curvature of the scalar potential, the length 
(8},je2)112 comes from the curvature of the vector field potential when¢ is replaced 
by a value minimizing its potential. When Lks � �>0, we apply a final cluster 
expansion designed to exhibit the Higgs mechanisms. This will be the subject of the 
next paper in the series. The expected correlation length is of order 
l =max{ 1, (8)je2)112}. 

Our k-step density has the form 
k- 1 

(}k(U, ¢) = L S [1 [.�u(j)IAulc*] Q�(u, (p, {X w}, { u<j)}) ,  
{Xw) j=O 

10 

X exp[ --�(A�k -1)1** j<kl, O"k, locA� -l)l**f(k)) 

--�<A�- 1 ) I¢, Llk. loc(uk) Ak -l)l rp)- .:Yt loc(A�k- 1l)- .tk] . ( 4. 1 ) 
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If we integrate this density over the u, ¢ variables, we obtain our original 
unnormalized expectation [F] . The measure du(j) is the normalized measure on 
U ( 1 ), J duUl = 1. 

We now explain the various elements of this formula. Each X"' is a union of 
r(ek_1)-cubes of the L -1-latticc, and the Xro's do not overlap. Each X"' also specifies 
subsets A�>nx w for 0 �j � k -1, 0 � o: � 13. These are unions of r(e)-cubcs of the 
Ilry-lattice. These sets satisfy compatibility conditions arising from our construc
tions. In particular, with A�lc= U (A�lcnXro), we have A�lcAY31l for j�1. We 

Ol 
have covered already the case j = 0, which is slightly different. For j� 1, :x = 1, . . . , 8, 
11 the sets A�l are determined by A�� 1 by subtracting collar neighborhoods of 
widthr(ej) in the Ilry-lattice. We have A�>cA�� 1. The sets Ayi, Ay� need not lose 
anything from AYL Ay�, though they may be smaller. The sets AV>, AVb lose a collar 
from A.�>, A.�>, which may be smaller than A�l, A�>. These sets will be defined below 
in a manner analogous to that in the first step. We define ;[�> as the set in TL- 1 
obtained as the union of Il-blocks at the points of A�>. The factors gk(X J represent 
the effect of large fields or irrelevant interactions from all previous steps. The 
factors gk(X0,) depend on u<i>, O�j�k-1 and on u, ¢. 

The external gauge field appearing throughout the initial densi ty i s  uk. It 
depends on all the uU> [or equivalently, the A(j) = (ie r 1 logu <il] ; but in ;r�-1>* it 
simplifies to 

where j<kl(p) = (iek) -1 logu(p). This is just a localized version of (1.4 .5 .4). 

(4.2) 

The form of uk in ;r�-1l*c is quite complicated; we will see it as we construct 
uk + 1 in the induction step. It is important now only to know that uk, b depends only 
on the fields uU>, u in a neighborhood of b of size r(ek_1)/2L on nk>. Furthermore, 
the configuration is smooth in the sense that for each j < k (and lattice spacing 
( = L-i), and for each r(e)-cube D in ;ry>, there exists a gauge transformation 
uk--+ut such that 

in 0. In the k-th step the behavior of uk in ;r�-1J*c matters only in operations 
involving the Gaussian normalization factors. 

The configuration uk on �* gives a configuration iik on nk>* by taking a 
product along the bond in T1(kl*, i.e . ,  

(4.4) 

The factor Xk A<k-1 >• gives restrictions on u, ¢ in A�-1>'. The following are 
implied by the s�o

0
othed characteristic functions in Xk A<k -1)·: ' 0 

lf<kl(p)l � cp(ek), 
I(Duk¢)(b)l � cp(ek), 

pEA�-1)'**, 
bEA�-1l'* , 

l¢(x)l�c),k"114p(ek), if (Lk-1c:)d<.A, xEA�-1>', 
(4. 5) 

ll(¢(x)l-(8).)-1f2(Lke)<a- 2)121 � cWc:)-1 p(ek), if (Lk-1<l � ). , x E A�-1)'. 
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We have incorporated some rescaling factors (powers of L) and the difference 
between p(ek) and p(ek-d into the constant c. 

The Gaussian normalization factors are given now, in a rescaled form. 

where A lies on the llry-lattice. The subscript to �A indicates where an A-field is 
integrated; the subscripts to 6 Ax and 6(QA) indicate which blocks have axial gauge 
conditions and which block bonds have conditions on QA. We have Dirichlet 
boundary conditions in AV�*- We have included a constant factor to take care of 
the scalings and make thi s independent of k. It is  defined using 

EV,lv= - log [;� (llry)(d-2)/2 J, 
IIAY�*cll = IAV�*ci-IAY�I (Ld-1)-IAYI{c*cl. 

(4.7) 

(4. 8) 

Here IIAY�*cll i s  the number of free integrations in AY�*c after enforcing the 
6-functions . 

Similarly for the scalar field we have 

Z�lAuk) = S !!fi¢ AIJ> exp ( -t <AVb¢, (L11�'1�c(uk) + aC2 P(uk))AYb¢)- EPlsiAYbi), 10 10 ' ' 

with 
P(uk) = Q(uk)*Q(uk), 

EV,ls= -(d-2) logllry. 

(4.9) 

(4. 1 0) 

( 4 . 1 1 ) 

The interactions of u, ¢ are in &k , loc(A�- l l). The subscript loc indicates that the 
terms therein couple fields no farther than O(r(ek _1 )) apart. .9'k,loc is given by a 
perturbation expansion up to some fixed order n, which we describe in detail in a 
later paper. For the present analysis, it is sufficient to describe a few basic features 
of &k, loc· 

[ The gauge field propagator in f!lk, loc is 'l.&k,loc except for some renormalization 

k-l 

J transformation vertices, where it is i� G\��q, see (2. 12) and the scalar field 

propagator is  Gk,loc(uk). The fields u, ¢ appear in the diagrams through the ry-lattice 
minimizers uk and 

cPk = akGk, !oc(uk)Qt(ud¢, 
Np)=(iekry2)-1loguk(p) . 

(4. 1 2) 

( 4. 1 3) 

Propagators and external fields are connected together at vertices which arise from 
an expansion of the ry-lattice action. Vertices are restricted to /f�k-J); for vertices 
involving the gauge field the restriction is accomplished by means of a function hk 
multiplying each vector field leg at the vertex. The function hk changes smoothly 
from 0 to 1 in a neighborhood of ;r�-J)*c. 
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The dominant term for the scalar field is Pk(4>k) , where 

Pk( 4>) = ltk 1¢14 - t (Lke)2 1¢ 12 + 6�). (i!'e)d . (4. 1 4) 
Under the restrictions in Xk• IPk(¢k) l � cp(ek)4. At Pk-vertices with l external legs, we 
have its 1-th derivative 

IP�l(¢k) l � dU4p(ek)4 -1 , for (J!< c)d � JI. ,  

JP�l(¢k) l � c(Lkc) lp(ek)4 - z
, for (Lke)d > )� .  

(4. 1 5) 

In fact all terms except Pk( ¢k) in £?1>k, loc obey bounds O(efl - a(J!<cjc0) 1 14 - a), with IX > 0, 
small, IX < [3. If 4> or u obey better bounds, then there is a corresponding 
improvement in bounds on terms in &k,Joc· We will prove a general theorem on 
estimates on perturbation expansions in a later paper. 

Also in &>k, Joc are vacuum energy and mass renormalization counterterms, 
properly localized. In c&'k we keep track of normalization energies occurring over 
the whole lattice. This includes the basic normalization counterterm E0, and 
factors from scaling and from normalization of renormalization transformations. 

The observable is treated in a manner analogous to 2/'k , Joc · Each factor 
F k,loc(X ") is  a perturbative expansion to order m of some of the factors in F [those 
located in X", a connected union of r(ek _ 1 )-cubes] with the same propagators, 
vertices, and external fields as before. The only difference is that the connected 
diagrams have at least one vertex from the observable F(X "). Also the expansion is 
taken to a lower order in coupling constants for most F's . The order depends on 
how singular F is .  The sets X" are the connected components of the smallest union 
of r(ek - 1 )-cubes covering all vertices of all diagrams in the expansion for F(A �k3- 1 l) . 

As in the case of the effective action, the remainders from the perturbation 
expansion for F(X ") were included in the hole functional gk(X oJ In the case of the 
effective action remainder terms, this was possible because of a sufficiently high 
power of efl - a(Lke/e0) 1 14 - a ;  in the case of the observable it is  possible when terms 
obey bounds uniform in k and e .  The bounds may depend on the numbers of fields 
of various kinds in F, and how close they approach one another. The perturbative 
terms in F(X11) are considered more carefully to show that they obey bounds 
independent of c. Cancellations with "Wick ordering" subtractions must be 
performed to obtain bounds which depend only on Lke. For example, as long as 
(Lkc)d < It, we expect for the expansion arising from : l ¢(xW : a bound of the order of 
(Lk - 1 cff - d + ),;_1 i2p(ek _

1
) 2  (with the first factor replaced by logLk - l c if d = 2). 

According to our convention, the perturbative terms in F(X ") and .o/'k,loc are called 
"relevant" because in each case they contain insufficiently many powers of 
coupling constants for brute force estimation. 

Finally, we assume that every factor or term in our starting expression is gauge 
invariant in the following senses. Gauge transformations 

uk, b �uk, be - ie"�(B"). ) (b) '  cf>(x) � cf>(x)eiek).(x) (4. 1 6) 
leave each expression invariant. We will need to use only gauge transformations 
supported in /fik3- 1 ) , so the terms in question are scalar field forms, interaction 
terms in 2/'k, Ioc renormalized observables Fk,Ioc• characteristic functions Xk . A� - , . , 
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and the normalization factors Z�L>(uk). However, all expressions possess this 
invariance, even those that are buri�d in the inductive definition of g,. Note that ), 
above is any real function on �, although only its values on T1<kl are relevant for ¢ .  
We call these transformations background gauge transformations, because the 
integration variables uUl, u are not involved. In fact, transforming these fields 
would affect the axial gauge conditions and the gauge field renormalization 
transformations. These are invariant under only a very restricted class of 
transformations, which we describe now. 

The second kind of gauge in variance is called block field gauge in variance, and 
is invariance under 

ub -+ ube - iek (o).) (b) , ¢(x) -+ e iek).(x) , 

uVl -+uVl exp[ �- ieklJiJ{(P�Q�*_ /) (b)] ,  if b E AVJ*c , 
uVl -+uVl , otherwise , 

( 4. 1 7) 

for ), a function on nkJ. Here Q� denotes the averaging operator for real-valued 
functions on sites .  The dependence of uk and u and the uW is such that the above 
transformations induce the gauge transformation uk. b -+uk, b exp[ - iekiJ(o�Q�* ),)] , 
and thus we have in variance in the previous sense. Here, however, the variables u 
and uUl are also transformed, but in a way that does not affect the 6-functions 
giving the axial gauge conditions and gauge field renormalization transforma
tions. We remark that the first translation of uUl in AVl* accounts for the lack of a 
transformation there in ( 4. 1 7). 

In both types of gauge transformations we would have rotations of the earlier 
fields ¢<j) l ,1 r 1 ) ,  which are integrated over in gk. But since the measure d¢Ul 1s 
rotationally0 invariant, no account need be made of these rotations. 

5. Renormalization and Decoupling in the General Step 

5 . 1 .  Renormalization Transformation 

A density of llt + 1 (v, 1p) is obtained by applying the renormalization transfor
mations of [ 1] to  Q� as follows : 

-L ( ' )- " 'T' [ \·  kf1- 1 
d Ul T ' ( ,.�-. rx I f Ul })l Qk + 1 Z:, 1J! - L, 1 L . UAfJ i'* a , L , u"Qk U, '+'• l w f •  \ U 

{Xo,} } � O  1 0 
k - 1 

= I S ::1Ju6(v/Qu) S TI §u�LI'* S ::t¢ 
{X ,0) j � O H 

x exp [ - taC 2 (1j! - Q(ud¢, lp - Q(uk)¢) - ECkl] Q�(u, ¢, {Xw}, {uUl }). 
(5 . 1 . 1 )  

Here a � 1 i s  fixed throughout, and the normalization is 

E(kJ= - log(aL d - 2/2n). 

We normalize the 6-function on U( 1 )  so thai 

S dub(u).f(u) = f(1) , S du = 1 . 

( 5 . 1 .2) 

(5 . 1 . 3) 
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Under gauge transformations ), of u, ¢, u<j) that vanish on points of T{k + l l , we see 
that the <>-functions and Q� are invariant. Since uk also transforms by ),, we have 
Q( uk )¢ invariant as well. Thus no change is made if we insert the axial gauge 
conditions 

<>d u)= IT fi o( u(ry. J ) 
y E T \k)• x E B(y) , x * y  

into the u-integral above. 

5.2. Restrictions on the Fi elds 

We insert a partition of unity under the integrals : 

X IT X� IT Xx IT X� IT Xy 
x e Px x e A�� - l ) ' \Px y e Pv y e A �� - 1 )"\Py 

where we denote 

{x (2k p( ek ), l ¢(x )l ) , if (Lkc )d < 2 
Xx = X ((Lk s)- tp( ek ), l l ¢1 - (8). )-t f2(Lk s)<d - 2)f2[ ) , if (Lk s)d � ). 

=1 -x� . 
Xy = x( p( ek ), I(1JJ -Q( uk )¢)(y )l ) = 1-X� , 

Xb = x(p( ek ), I ( D"" ¢) (b )[ )= 1-xL 
XP = x (ek p( ek ), l u(p) - 1 [) = 1 - X� . 

(5 . 1 .4) 

(5 .2. 1 ) 

(5 .2 .2) 

At each x ,  y , b , or p where a t  factor is present, we expect to obtain small factors 
exp( - c p( ek )2) � ek ,  for any K, using the positivity of terms in the action. 

The function x (p, x ) is defined as follows : We let x( 1 , x ) be an even, coo function, 
equal to zero for lx l � 1 , and equal to one for lx l � 9/ 1 0, and with 

Then we put 

I� X (1 X) I < c"ncn for all n X (5 .2 .3 )  
dx" ' = ' · 

x (p, x ) = x( 1, x /p) . (5 .2.4) 

The restrictions on 1 ¢1 are best understood by looking at the leading term in 
&k, loc• Pk (¢k )� Pk( ¢), where 

Pk (¢)=2k l ¢14- t(Lk s? l ¢12+ 6�A (Lk s)d 

= 2k ([ ¢1 -e o)4 + ( 2A.k )1 12(1 ¢1 -ea )3 +t (Lk sf (l ¢1 -eo? , 
d -2 

Q o =(8), )- l f2(Lks )_2_ .  (5 .2 .5 )  
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For (Lke)d < },, the quartic term gets larger before the quadratic term, whereas for 
(Lke)d > },, the quadratic term gets large first . It is easy to see that for l ¢(x) l in the 
support of x�, Pk(¢(x)) � O(p(ek)2) . 

We define the small field region A�) as the union of r(ek)-blocks, none of whose 
points are in A �k3- 1 )1c, Px, or in bonds, plaquettes, or blocks in Pb , PP, PY. The 
regions A�k), 0 ;;;; cc� 8 are thus determined. We resum the partition of unity to 
obtain 

where 

XAiJ<l = fi Xx · · · fi Xp · 
x e A �k ) p eA I,k l•• 

Here the sum is over subsets compatible with A�lc, Al\- 1 > . 
Our density now has the form 

k - 1 
et+ I (v;rp) = L: L: s f:&u£&¢6 Ax(u)6(v/Qu) S fi f?&u�Lc.(A (k)cXA (k ) 

{Xw) Abk) j = O 10 o o 
k - 1 

X Xk , A (k - 1 ) •  [1 gk(Xw) [1 Fk, Joc(X") [1 [Z�L)c•cZ�)n(Uk)J o co a j =  0 1 0  1 0  

X exp[ - t (A� - 1 )1 * *  j<kl, o-k , JocAk - 1 ) 1 * *  j<kl ) 
- taL- 2( tp - Q(uk)¢, tp - Q(uk)¢ )  

(5 .2 .6) 

(5 .2 .7) 

- t (A� - 1 ) 1¢, Ll k, Joc(uk)A� - 1 ) 1¢ ) - .?J>k, Joc(A� - 1 )) - §'k - £(k)J · (5 .2 .8) 

Let us remark that having imposed the axial gauge conditions, we resign from 
all but the following restricted block field gauge invariance : 

'l/)y � 'l/)yeiekJ.(y) , 1>x � ¢xeiek(Q'*).)(x) . 

vb' � vb.e - iekL(oi·).) ( h ' ) ' ub � ube - iek(oQ'*J.) (b) , ( 5 .2.9) 

u�l �u�) exp( - iekilry(ovqQ�":_ j + 1 .l.) (b)) , b E AV)*c only. 

These transformations represent exactly the gauge in variance that was not broken 
by the axial gauge conditions but was broken by the renormalization transforma
tion. By compensating with transformations of the block fields v, tp, we again have 
an invariance. This restricted gauge invariance we intend to preserve in all 
subsequent operations. For example, it is easily seen that the characteristic 
functions we have inserted are invariant . After integrating over ¢, the ¢-rotation 
becomes irrelevant and we will obtain the block field in variance at the next scale, as 
described in the induction hypothesis. 

In an analogous fashion, tp must be rotated when performing a general 
background gauge transformation. After integrating over 4> we will obtain the 
invariance (4. 1 7) at the next scale. 
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5 .3 .  First Gauge Field Translation 

The first translation is done in A ik) * ,  and it removes the v-field from the <5-functions 
there. As in (3 .24) we put 

(5 . 3 . 1 )  

cf. also (1 .6 .2) .  (The reader may wish t o  refer t o  chapter 6 o f  [2], where the effects of 
the translations are followed without the complications of the large field regions.) 
Using the restrictions l u(p) - 1 1  � ekp(ek) in A�l * * ,  and the axial gauge conditions, 
we obtain that 

u� = eiekA;, with IA� I � cp(ek) ,  for b E  A\k) * . 

Let us define f(p) = (iek) - 1 log v(p). The restrictions on u(p) and the fact that 
v = Qu imply that lf(p) l � cp(ek) for p E A�l ' * .  Under the translation we have 

where p0 is the portion of p intersecting some B•(b'), b ' E A�l' * , and p� is formed by 
replacing each bond in p0 with the block bond b' in A\k) ' * ,  whose B•(b') contains it. 

After this translation the background gauge field is 

uk = (A\k) *cQk\ 1 v) exp iekiJ [Qk* A\k) *  A' - �k. loeo *Qi:*(A\k) * *( iek) - 1 logu'(p)v(p�) 

+ A\kJ * *(oA' + C 2Qe*f))] , (5 . 3 . 3 )  

for b E A� - 1 J * .  The background field fk appearing at some vertices in f!lk, Joe and in 
F k . Ioe is transformed accordingly. In /:f�kJ*  this simplifies to 

uk = (Qk\ d exp iekiJ [Qk* A'  - EZlk, Ioeo*Qi:*(oA' + C 2Qe*f)] , (5 . 3 .4) 

cf. (1 .6 .2 .3) .  The quadratic form j<kJ transforms into 
1. (A<k - 1 J ' * *J<kJ (J A<k - 1 ) ' * *f<kJ )  2 5 ' k , Joe 5 

= 1 <A� - 1 ) '* * A\k) * *c(iek) - 1 logu(p)v(p�) 

+ 2A\k) * *  A�)c* *(oA' + C 2Qe*f), CJk, loeA� - 1 ) ' * *  Aik) * *c( iek) - 1 log u(p)v(p�) )  

+ ! <A�J* *(oA' + C 2Qe*f), CJk, JoeA\k) * *(oA' + C 2Qe*f)) 

= ,2 1 + ,2'1 ° 

The translation affects the <5-functions as follows. 

where 

bAx(u) = bAe(u') , b(v/Qu) = b A)kJ ••c(vjQu)b A)kl •• (;� QA') , 

b A (k ) ' *  (;k QA') = T1 b (;k (QA') (b')) 0 1 n b ' E A )kJ •• n 

( 5 . 3 . 5) 

(5 . 3 .6) 

(5 . 3 .7) 
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5 .4 .  Gauge Transformation 

We need to make an A'-dependent gauge transformation to put uk into a proper 
form. The purpose of this operation is to keep the operators Hk appearing in uk and 
in Gk, Ioc in a good gauge, i .e . ,  Landau gauge and not axial gauge. The axial gauge 
operator Hk, Ax would arise more naturally in our procedure, but it does not have 
the necessary regularity. properties. This operation is not performed in the first 
step, since H 0 = H 0 , Ax = I. 

The unlocalized form of the gauge transformation is based on the identity 
(2.20), 

(5 .4. 1 )  

The operator Ck has a n  exponential decay, but Ck and ack can have local 
singularities which is why the term ack must be removed. 

To do this in a way that does not introduce nonlocal dependence on A' ,  and in a 
way that does not change uk in .J�>c* , we make background gauge transformations 
on individual terms that depend on uk in .J�>c*c . Up to some small errors, the scalar 
field rotations can be removed using the rotational invariance of �</J, �lp. 

The expressions XA<k> ,  Xk A<k - I > • ,  Fk Ioc(X11), Z�L(uk), < 1p - Q(uk)<jJ, 1p - Q(uk)<jJ) ,  0 • 0 ' 1 0  
<A�k - 1 ) '</J, Ll k , loc(uk)A� - 1 )' </J) , and i?llk , Ioc(A� - 1 >) are the ones  depending on uk in  
.J�>c*c . The dependence is through some simple, localized expressions like 

(ipQ(uk)</J) (y) ,  Gk , loc(uk ; b _ , b + )uk(b) , 
((/)Qj(uk)Gj, loc(uk)Qj(uk)</J ) (x 1 , x2) ,  ik(p)4, 

or in similar expressions for the diagrams in ;?llk , Ioc or  Fk, Ioc · The Gaussian 
normalization factors are written as in (4.9), and the dependence on uk is in the 
operators 

Ll j, loc(uk) = ai - aJQiuk)Gj, loc(uk)Qj(uk) and P(uk) ,  
and we have terms of the above type. However, a slightly different procedure is 
applied to normalization factors ; we describe it later . Let us fix a set of sites where 
fields 1p or <P sit ; then the dependence on uk , b  is only for b in some cube Do enclosing 

all points closer than 2.� r(ek _ 1 ) to the fixed sites. [There are at most some fixed 

number of propagators Gi, loc(uk) or �k. Ioc• and each has a range less than 

4.� r(ek _ 1 ) . Thus we can choose L such that Do is a cube of size ir(ek) .J For the 

diagrams without external ¢, 1p fields, we have to localize one vertex in a unit cube 
and consider the localized diagram as a separate term. We define an appropriate 
Do containing all relevant bonds for the propagators in the localized diagram. 

The gauge field appearing in any one term can be written as 

Uk = (Qf� 1 v) exp iekiJ [(m* - �k. loca*m*J)DA' - C 2�k. loca*Qr! d]b , (5 .4.2) 

where D is a i-r(ek)-cube in Yfk>* containing a collar neighborhood around D0. We 
extend D to a component of a i-r(ek)-neighborhood of A�>*c\A�>c* for all terms 
such that D o  intersects A�>*c\A�k)c* . The values o f  A '  outside D d o  not matter 
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because ::0k, Ioc has a range 
2
� r(ek _ 1), and so uu doesn't depend on them for 

b E  D 0. We now write 

(m* - ::0k, Io co*Q�*o) DA'  = (Q�* - .qj;kQf*o) D A' + w '1A' . (5 .4 .3)  

The kernel w'1 = (27k - §k. IoJo*Qto D involves only the tails not included in the 
expansion (2. 1 2). Using the regularity and exponential decay of Hj, Hj, Ioc • along 
with (2.7) and scaling properties of these kernels, we find that 

k - 1 
j(ow'd (p, b')l � L (IJry)- I - (d - 2 ) - 1 + (d - 2 ) e -cr(e1 ) e -cdist(p ,b' ) 

j = l 
� e -· cr(ek) e - c dist(p , b ' )

' 

and similarly for w'l l o*w'1 • Also, w'1 is finite ranged in the sense that w'1 = w'1 0 ;  we 
use w'1 (b, b') only for b in Do C  0 .  

The nonlocal gauge transformation (5 .4 . 1 )  is  n o w  applied and w e  have 

(m* - £i!k, Ioca*Q;;*o)D A' = (Hk + oCk) OA'  + w\ A' 
(5 .4.4) 

We have put w 1 = w'1 + HkO - Hk, Ioc• and it satisfies the same bounds as w'1 . 
The background gauge transformation 

uk ,  h -. u� . b = uk, b exp( - iekry(O.A�1CkDA ') (b)), 

¢(x) -> ¢(x) exp(iek(A�1Ck DA') (x)), (5 .4 .5) 

1J!(y)->1J!(Y) exp(iek(A�
k1CkD A') (y)) , 

is now performed on the term localized in D0. The background field becomes 

u� = (Q�� I v) exp iekry [Hk , locA' + o/f�)cCk DA'  

+ w 1A' - L- zq;k. Ioca* Qk! 1fJ , ( 5 .4 .6) 

for h E  A�1c*c ;  in /f�lc* it is unchanged from the expression (5 . 3 . 3) , obtained after the 
first translation. This field depends on the term considered, but we shall remove the 
term w 1 A'  from this expression later (only in /f�Jc*c). Without w1A '  the field u� is 
independent of the term. 

There are still the phase factors at ¢ and 1p. We define 

c/J'(x) = c/J(x)eiek(A�' lCk, JocA ' ) (x) , lp'(y) = ljJ(y)e iek(A�k)Ck , JacA ' ) (y) . 

By (2.26), Ck, roc(x, b') approximates the phase factors in (5 .4 .5 ), while being 
independent of D0. The measure d¢ is rotationally invariant, so we can replace d¢ 
with d¢' and drop the prime. We have not yet integrated over 1p, so a different 
density is obtained by replacing 1p' with 1p. However, the new density 12f + 1 (v, 1p) still 
has the property that S dvd!pQf + 1 ( v, 1p) = [ F] . 

After these rotations, the scalar field still have small, term-dependent phase 
factors. The scalar fields appear as ¢(x) exp [ iek(w2A ')(x)] , 1p(y) exp[ iek(w 2A ') (y)] , 
where w2 = A�1Ck, roc - A�

k
1Ck D satisfies a bound 

j w2(x, b)l � exp( - cr(ek)) exp( - c dist(x, h)) , (5 .4 .7) 
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[this follows from (2.26)] . Like the w 1 A' terms, the w2A '  terms will be expanded out 
of all expressions. 

The same constructions apply to fk(p) = ( iek1J 2) - J  loguk(p) , and we end up with 
R(p) = ( iek1J2) - 1 logu�(p) . Of course, the term o/f�kJcCkDA' disappears. The terms 
involving w 1 A' will be separated out later. 

The constructions described above were motivated by a desire to preserve 
locality, and to avoid effects of the gauge transformation from reaching the hole 
functionals gk(Xw) or the large-field regions. The Gaussian normalization factors 
Z�)Jl(uk) are intrinsically nonlocal objects ; all regions are essentially tied together. 
on'fy after some expansions can some small terms be localized. Thus at this point 
we must resign from a local form of the gauge transformation. Recall from (5 .3 .4) 
that uk has been written as 

(A�)*cuk) (A�l*Qf� 1 v) exp iekiJJ�l* (Qf* A' - flflk, loco*QZ*(oA' + L- 2Qe*f)) . (5 .4 .8) 

We put 

Here 

/f�l*( Qf* - flflk, loco* Q�* o)A' = J�l*( Qf* - flflk, loco* Qk* o)A �kl *c A' 
+ (Qf* - flflk,Joco*Qk*o)A�l* A' = A�l* (Q%* - flflk,Joco* Qk*o)A�l*cA' 
+ Hk, locA �l* A'  + oCkA�l*A '  + w5A' . (5 .4 .9) 

is another small, exponentially decaying kernel. We can gauge away the term 
oCkA�l* A', leacing us with the following background gauge field for the 
normalization factors : 

(A�)*cuk) (/f�l*Q�� 1 v) exp iekiJ [ /f�l*( Q�* - flflk, locoQk* o)A �)*c A I 
-L- 2 /f�l* flflk, loco* Qk";_ 1 f + H k, locA �k)* A' + W sA '] · (5 .4 . 1 0) 

The term w5A'  will be removed later on ; it couples A ' to bonds everywhere in J;,. 

5 .5 .  Second Gauge Field Translation 
We translate a second time to eliminate most of the term in j?'1 linear in A'. This is 
analogous to what is done in Sect . 1 .6 . 1 . The linear term is almost equal to 
(A\kl* *  C 2Qe*f, QZiJHkA') ,  since by (1 .6 . 1 . 5), (2. 1 5) we have 

( 5 . 5 . 1 ) 

So we eliminate most of the linear term by a translation approximately equal to 
A�l* L- 2C<kl HtiJ*Qkt J. 

The translation we actually use is localized, and is given by 

A' =  A<kl - A<kl * L- 2 C<kl H* o*Qe* f 4 loc k, loc k + 1 · ( 5 . 5 .2) 
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Our construction of a C\�� satisfying (2. 1 0), (2. 1 1 ) ensures that 6 Ax(A') = 6 Ax(A (kl) , 
6(QA ') = 6(QA<kl) . The quadratic form ,qz'1 becomes 

,qz't = !<A)kl * *oA <kl ,  O"k . locA\kl * *oA<kJ 
+ (A)kl * *  L- 2Qe*f - oA�l* L- 2C\��Ht_ 1oco*Qr";. J, O"k , locA)kl * *oA<kl ) 
+ !L -4(A)kl * *Qe*f - oA�l *CI��Ht, 1oco*Q�";. J, O"k , loc(A\kl * *Qe*l 
- oA�l*CI��Ht. loco*Qr! t f)) . (5 . 5 . 3 )  

In the second term we isolate a term localized near A�l c  and a small term. We 
write 

.?2� = (A)kl * *  L- 2Qe*j; O"k, locA\k) * *oA�)*c A (k) ) ' 
and in the term with A�l* instead of A�k)*c we put 

O"k . locoA�kl *  A<kl = O"k . locoA�l* DA<kl = O"koA�l* DA<kl + w�A<kl 
= QZo�HkA�l* DA<kJ +  w�A <kl 
= Qro�Hk , loc;j�l* A(k) + w�A(k) . ( 5 . 5 .4) 

The !r(ek)-cube D is centered near the plaquette that we are evaluating 
O"k , locoA�l* A<kl at. The kernels w�, w� have range less than !r(ek), and we have 

(5 . 5 . 5) 

In (5 . 5 .4) we have applied our usual method for obtaining formulas for localized 
kernels analogous to those valid for unlocalized ones [in this case, (5 . 5 . 1 )] .  The 
precise form of the error terms will be unimportant ; only bounds like ( 5 . 5 . 5) will 
matter. The f · A<kl cross-term is now 

!?2' + (A<kl * *L- zQe*f w" A<kl ) - (j" Qe o'1H c<kl L- zA <kl *o*O" oA<kl ) 2 1 1 . ' 3 ' k + 1 ; k . loc loc 4 k , loc 
+ (f, c 2Qr +  I o�Hk , locA�)* A(k) > . ( 5 . 5 .6) 

We insert the decomposition f = A�kl ' * *f + A�k)' * *�f in the last two terms. The 
terms with A�l' * *j will be denoted by £?;. The first A�l' * *  term involves 

(5 . 5 . 7) 

with another small, short-ranged kernel w�. The term with the identity operator 
cancels the second A�l * *  term. Thus if we define 

( .f; w3A (kl ) = (A)kl * *  L - zQ�*.f; w�A <kl ) 
- (A�)' * *  L- 2f, Qk + I a�Hk, locw�' A(k) > ' (5 . 5 . 8 )  

(5 . 5 .9) 

then we have written the cross-term as .?22 + (f, w3A(kl ) , with :12 large but localized 
in a !r(ek)-neighborhood of A�lC, and with w3 very small and having a range !r(ek) . 

Next we do a similar analysis on the third term in :1'1, the term quadratic in f 
The important contribution is when f is localized in A�l' * *, in which case we 
obtain the quadratic form O"t + l . loc for .1; plus small errors. The analysis here 
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parallels that of [2] , Sect. 6. 1 ,  with adjustments for localized kernels. Using ( 5 . 5 .4) ,  
( 5 . 5 .7), and 

ak . Joe � m(J - of0k, JoJl*)Q�* ,  

f0k , Joe + H k , Joe Cl��Ht. Joe = 9Jf: + 1 ,  Joe ' 

we may write the A�kl ' * *f terms as 

i <A�l ' * *f, (Jf+ 1 , JoeA�l' * *f) + i <J, w4j ) , 

( 5 . 5 . 1 0) 
( 5 . 5 . 1 1 )  

with w4 a small, short-ranged kernel. All terms involving at least one A�l' * *) are 
assembled into a quadratic form .,q3 .  

To summarize the effect o f  the two translations, we  have 

1. <A<k - 1 l ' * *'f<kl (J A<k - 1 l ' * *'f<kl ) = .,q + :!2' 
2 5 ' k , Joe 5 1 1 

= .,q l  + ! <Aikl* *oA<kl ,  (Jk , JoeA ikl* *oA(kl ) + ! <A�l' * *f, (Jf+ 1 , JoeA�l' * *f) 
+ .,q2 + .,q3 + <J, w3A (kl ) + ! < J, wJ ) . ( 5 . 5 . 1 2) 

Here .,q;, i = 1 ,  2, 3 ,  are large linear or quadratic forms, localized near A�Jc . They can 
be written as sums over the components X�' of A�kJc, i .e . ,  .,qi = I .,qi(X �'). The kernels 

I' 
w3, w4 are not localized near A�Jc, but are small, have a range approximately r(ek), 
and become independent of the A�kl in A�l, say. 

After the translation, the background gauge field looks as follows. For 
b E /f�k)c*c, (5 .4 .6) becomes 

u� = (Q�� 1 v) exp iekry [(w 1 + Hk, JoJ (A <kl _ A�l *L - 2 Cl��Ht, Joea*m! J) 
+ o.J�Jcck o A<kl _ C 2f0k, Joeo*Q�! JJ · 

In A �l* we apply ( 5 . 5 . 1 1 )  to obtain 

( 5 . 5 . 1 3 ) 

u� = (Q�� 1 v) exp iekry [Hk, JoeA (k) - C 2f0g+ l , loeo*Qk! J + w 1 A '] . ( 5 . 5 . 1 4) 

The same formula holds in .J�l* for the gauge field in the normalization factors, 
except that we have w5 instead of w 1 . 

5.6 .  Expansion with Respect to the Fluctuation Field 
Let ek be a function on T,* that equals 1 in /f�l* ,  0 in /f�kJ *c, and changes smoothly 
from 0 to 1 in a neighborhood of .J�l* of thickness M = 0(1 ) . We expand most 
terms in our density with respect to 8kHk, JoeA<kl = 8kAk> and with respect to w 1 A ' . 
This produces a number of important vertices for A<kl ,  as well as irrelevant terms. 
We also expand in the small kernel w2 appearing in phase factors before scalar 
fields. This produces only irrelevant terms. After these expansions, the background 
field will have the form required for the next step in .J�l* ,  with dependence on v 
only. In the next section we consider the expansion of the normalization factors. 

The new background field for the action and observables is denoted uk + 1 , and 
for b E .J�l*  it is given by 

uk + 1 = (Q�� 1 v) exp iekry [( 1 - 8dHk, JoeA<kl - C 2 f0g+ 1 , Joeo*Qk! J] . (5 .6 . 1 )  
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In /T�l* the A<kl term is absent, and except for scaling, this reduces to the form in the 
induction hypothesis, (4.2). 

To summarize all the changes we have made on the background field, the final 
form oU ik + l  is given by (5 . 3 . 3 )  in ;r� - t l * n /T�l", by (5 . 5 . 1 3 ) in A�lc* cnA�kHc (but 
without the w1 terms), and by (5 .6 . 1 )  in /[�k1*. We will not need to define Ltk + 1 

anywhere else. The corresponding background field strength is given by 

l�� 1 (p) = (iekry2) - 1 1 oguk + 1 (p) . ( 5 .6.2) 

Later we will define Uu 1 which will be slightly changed from uk + 1 in ;r�>*n/T�)*c, 
but which will be defined everywhere because i t  appears in the normalization 
factors. 

We need to check the regularity condition on uk + 1 . It states that there exists a 
gauge transformation uk + 1 -+ut+ 1 in each r(ek)-cube O c A)k> such that ut+ t 

= exp ( iekryA ;·) with lkl ,  1 8  A1 1 ,  I D* A ; I ;£ cp(ek)r(ek). In A)kl *c we have uk + 1 = uk. so the 
condition follows from the induction hypothesis ( 4. 3) . 

We verify the bound by first checking it for uk, then noticing that all the 
operations changing uk into uk + 1 did not destroy the bound. We use the new 
bounds on u(p) in Abkl** to estimate 

(5 .6 . 3) 

with constants uniform in k. [There are bounds from the (k - 1 )-st step, but these 
would not yield uniform constants.] Thus we can assume that I J<k1(p) l ;;;; cp(ed for 
p E A�>**. 

Fix D C A)kl for estimating uk + 1 • In D '  [a neighborhood of D of width -.!-r(ed] 
we can write u = exp[iek(D} + B)] with I B(b) l ;;;; cp(ek)r(ek). We have J<kl = oB in the 
cube, and so 

(5 .6 .4) 
1 . ' .  

We have used the fact that '3k, Ioc has range -
2L

- r(ek _ 1 ). Note that Q�*e'c,c/ is a 

gauge transformation (generated by Q�* ),), so we can delete it from uk. 
Our desired bound now follows because by (5 .4 .4), 

(Q�* - :!!Jk, Joco*Qk*a)O 'B = (Hk. Ioc + oCk + wd 0 ' B .  (5 .6 .5 )  

The kernels Hk, Joc• w 1  and their derivatives are bounded, so A ; ,  DAJ, D*A; arc 
finally all bounded by cp(ek)r(ed. 

The first operation we performed was a translation, which of course does not 
spoil the regularity of uk. We then made a gauge transformation and removed the 
small kernel w 1 .  The gauge transformation does not change the regularity, and 
ow1, o*w1 are small, so the bounds remain valid. After another translation we 
removed the field GkHk. JocA <k>. This field satisfies o(8kHk. tocA <k>) ;£ cp(ek) because A <kl 
;5; cp(ek) and because oHk, toc• Hk,Joc• and derivatives of fJk are bounded. Similarly 
3* ( GkH k, Joe A <kl), 8kH k, toeA <k> are bounded by cp( ek). Thus removing (JkH k, JocA (kl does 
not spoil the regularity, and uk + 1 satisfies the regularity condition. In an analogous 
fashion we can check that the j -th regularity condition for r(ek)-cubes remains 
valid. 
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We now proceed with the expansions. We do not expand in the characteristic 
functions XA<k > .  Xk A <k + ' l ' · We take terms which came from the original expres-o , 0 
sions F k . ioc• 

< 1fJ - Q(uk)¢, 1fJ - Q(uk)¢) , <A�k - l )' ¢, Llk , ioc(uk)A� -
1
) '  ¢) ,  

and .oi'k, Joc(A� - 1 1), and write the background field as 

- - - · [n H A (kl A '] - iek�A. uk + 1 u = uk + 1 exp rek'1 uk k , ioc + w 1  = Uk + 1 e · (5 .6 .6) 

The scalar fields appear with factors eiekw2A ' before then. All expressions depend on 
A (k l , f only locally, or at most within a component of A� lc . 

The first expansion we give is for uk + 1 u itself. (We derive some expansions for 
the j-th step objects for use in the next section. The expansions are modeled after 
ones in [7] , so we will be brief.] 

We have with ( = L- j' A scaled to the (-lattice, 

uk + 1 i1 = uk + 1 ( 1 + J1 (ieiA)"jn !) = iik + 1 ( 1 + F 1 JA)) . (5 .6 .7) 

Next we expand Qz(uk + 1 ii), l = 1 or j, j < k, 

(Q ,(uk + 1 u)¢) (y) =  I C 1dfik + 1 (r��lx)¢(x) ( 1 + I  (iej(A(r�}x))"fn !) x e Bz(y) n = 1 
= (Q1(iik + 1 )¢) (y) + (F 2 , 1(A, ilk + r )¢) (y) . (5 .6 . 8) 

Inserting this formula into 1 (1J.l - Q(uk + 1 u)¢) (yW, we obtain the vertices new to this 
step. For the covariant derivative on the (-lattice, we have 

(5 .6 .9) 

For the basic quadratic form with Neumann boundary conditions on Q giving rise 
to GiQ), we have 

(5 .6 . 1 0) 

where Vj(Q) is obtained by inserting ( 5 .6 . 8), (5 .6 .9) into the left-hand side. This leads 
to an expansion of the scalar field propagator in a fixed region Q: 

(5 .6. 1 1 ) 

The terms in Vj are small (O(e} - a)), bounded kernels, either alone or applied to 
D"

k
+ 1 or Dt

k
+ , . Thus the regularity properties of Giuk + 1 ), D"

k
+ 1 Gj(uk + 1 ) imply that 

we can develop this expansion to any order. 
We insert this into Gj, Ioc(uk + 1 i1) to obtain 

Gj, Joc(uk + 1 ii)(x1, X2) = Gj. Ioc(uk + r ) (x 1 , x2) 
+ (j(x i ,  x 2) I J.a(Gi Da, uk + i )VPi Da, uk + 1 £i)) (x 1 , x2) . 

a 

The second term can be changed slightly by changing the set Da in G i and changing 
the tails of the operators. The difference is w�, a small ( O(e - cr(e1 l)) , local kernel with 
small covariant derivatives, and depending only locally on ilk + 1 , u. We obtain 

G1, Ioc(uk + 1 fi) = Gj, Ioc(uk + 1 ) + G i. toc(uk +  1 ) VjG i . loc(uk +  1 u) + w� .  
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This is now iterated to yield 
li 

Gj, loc(iik + 1 il) = L Gj, loc(Uk +  1 ) [ VJGj, loc(ilk + 1 )J n 
n = O  

with another small kernel w6.  
These expansions are inserted in Fk, Ioc• < JP - Q(uk)¢, 1p - Q(uk)¢ ), ,qpk , Ioc• and in 

L1k. loc(uk + 1 U) = akl - a;Qk(uk + 1 u)Gk , Ioc(uk + 1 u)Qt(uk + 1 u) .  
We expand the phase factors as 1 + (eiekw2A' - 1 ), the second term being extremely 
small. We also have the field strength expanded as 

R = h\ 1 + ow 1 A' + o(BkHk , locA (k)) 0 

Any term involving w1 or w2, and terms of higher than n-th order in ek are 
irrelevant and will be treated separately. The lower order terms are polynomials in 
A<kl . All terms are local. 

Let us summarize these expansions as follows. In the action we have written 

faL- 2 < 1jJ - Q(u�)(fi, 1P - Q(u�)$) 
+ t <A� - l l ' $, L1 k , loc(u�)A� - 1 J ' $) + Y'k, Ioc(A�k - l J$, u�) 

= taL - 2 < JP - Q(uk + 1 )¢, IP - Q(uk +  1 )¢ ) + t <A� - 1 l ' ¢, L1 k, Ioc(uk +  dA � - l J' ¢) 

(5 .6 . 1 3) 

The tildes on ¢ and 1p indicate the presence of the phase factors. Here Wfkl( D) is 
localized near 0, an r(ek)-cube in A�l, and I W1lkl( D) I :;;; ez - t - a . (Two powers of ek 
may be needed to beat the bounds on ¢.) If we define 

R-<kl( - a H A<kl) Uk + t • Uk k , loc 

(5 .6 . 1 4) 

then R<kl can be obtained by replacing propagators Gi D, uk + 1 ) with Gk, Ioc(uk + d 
and eliminating extra kernels '� explicitly (not in Gk , Ioc(uk + 1 )). 

In a similar fashion we put 

All remainder terms are in Fk. loc(Xu), and we have IFk , Ioc(Xu) l ;;;; c(F) . 

(5 .6. 1 4) 
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5 . 7. The Gaussian Normalization Factors 
The expansion with respect to the fluctuation field A<kJ must be performed with 
special care in the Gaussian normalization factors. Nonlocal terms naturally arise, 
which must then be organized properly and treated with random walk expansions. 
At this point, the background field in the normalization factors is given by (5 .4 . 1 0), 
which simplifies to ( 5 . 5 . 1 4) in .A�l* .  We express it as uk + 1 u, with 

(5 .7 . 1 )  

I n  this way the field uk + 1 is defined, and after A i s  expanded away, i t  remains i n  the 
normalization factors for the next renormalization transformation. One could 
apply (5 .4� 1 0) inductively to obtain a complete formula for uk + 1 on the whole 
lattice. We will only need to use the fact that it agrees with ilk + 1 in _A�kl*, cf. ( 5 .6 . 1 ). 
The regularity conditions can be checked for uk + 1 in the same manner as for !Jk + 1 . 

In the integral representation for the normalization factor Z�!D>(uk), rescaled to 
the unit lattice, we have the quadratic form (with Dirichlet boundary conditions) 

C�)j)( uk +  1 ZJ) - 1 
= Ll1· loc(uk + 1 ZJ) + aC 2 P(uk + 1 fi) 1 0  • 

= Ll j, loc(uk + 1 ) + aL- 2 P(uk + 1 )- w<il 
= C�l o(uk + 1 ) - 1 - w<il .  (5 .7 .2) 1 0  

All the terms from our expansions of the last section for Ll j , loc' P, with ilk + 1 replaced 
with uk + 1,  il replaced with u, are included in wuJ. Thus we have 

and so 

C�L(uk + 1 !Jr 1 = C�L(uk + 1 ) - 112(1 - C�lj)(uk + 1 ) 112 W<il 1 0  1 0  1 0  
x C�lj)(uk + 1 )1 12)C�lj)( uk +  d - 1/2 , 1 0  1 0  

Each term in wuJ has a t  least one factor ei, and all fields are logarithmically 
bounded. Thus the operator after the identity is bounded by a very small number. 
Thus the determinant can be expanded as 

[ <X) 1 (') ( ") lJ exp 1 �1 21 tr(C;{ \Jluk + l )W 1 ) . (5 .  7.4) 

The operator C�l�(uk + 1) is our first encounter with nonlocal effects. To treat it 
we apply the generalized random walk expansion (2.45), modified slightly to use 
cubes of size Lk - ir(ek) in TL - J · We need a similar expansion for wuJ into terms 
defined in regions X with appropriate decay estimates. 

For example, we have in F 1 JAb) a series involving powers of (w5A'h, with a 
nonlocal kernel w5 •  We put these powers in the form of a sum on X of quantities 
defined in X only. To each b E � and each collection of bonds b1, . . . , bm E r<kJ we 
associate in some arbitrary manner a set X (a connected union of r(ek)-cubes 
containing them). Then we put 

m 
L n (ws(b, bz)A'(bz)) ' 

(b 1 . . .  b�) 1 = 1 
compatible with b, X 

( 5 . 7 . 5) 
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where compatible means that b 1 ,  • • •  , bm, b were associated to X as above. We have 
I A '(bz) l � cp(ek), l w s(b, bz) l � e - cr(ek) e - c dist (b .  b , ) and so 

(5 .7 .6) 

We may use (5 .7 .5 )  to analyze the interaction terms generated in the expansion 
with respect to A = GkHk,locA<kl + w5 A'. Treating for the moment only the high 
order terms, we obtain an expansion for F l ,j i n  (5 .6 .7) : 

with IF l , j, b(X)I � e' ;+  l - a e - cr(ek) I X I - . (Here lX I - i s  defined as max {O, IX I - 1  } ,  and A 
has been rescaled to the ' = L- i lattice.) In a similar fashion we can write 

with 

"'�; d ( ') "' ( (Fz , i(A , uk + dcfJ)(y)= I ' uk + l(rv� xh' x) 
X E  BJ (y) 

IF zJX ; y, x)l � 'de' t 1 - a e - cr(ek) I X I - . 

These expansions can be inserted into Vj, yielding 
(ii) ( ) Vj = Vj + I  Vj X ' 

X 
(5 .7 .7) 

the first term containing the expansions to order ii in ei, the second containing the 
remaining terms. Both terms involve small, bounded kernels (of order eJ -a for v<nl, 
of order e� + l - a e - cr(ek) I X I - for V(X)) alone or applied to D or D* . I ' Uk + 1 Uk + 1 

Next we examine the propagators, and expand in Vj to all orders : 
00 

GiQ, uk + l u)= GiQ, uk + l)+ I GiQ, uk + l )[ V)GiQ, uk + l)r . 
n � l 

Thus we have 

Gj, loc(uk - 1  u)(x l ,  Xz) = Gj. loc(uk + d (x l ,  Xz)+ ''f(x l , Xz) I (Gi D(x l ,  x2), uk + d n = l  
x [ V}GiD(x1 , x2), uk + 1 )] ")(x1 , x2). 

We insert the expansion for Vi into this formula, and insert expansions for 
Qj(uk + I u), Q(uk + I u), Gj, loc(uk + I ut into Ll j, loc(uk + I u) + aC

2 
P(uk + I u). Terms whose 

order in ei (or equivalently in A) is between 1 and ii are considered as part of 
- wu. nl . Terms of higher order, or involving F 2jX) or Vj(X) are grouped into an 
expansion I - W<il(X), with I W(i)(X ; x 1 ,  x2) l � e' t 1 - a e - cr(ek) I X I - .  Thus we have 

X written the interaction term in (5 .  7 .2) as 

w(j) = wu. n) + I ww(x) . 
X 

The lower order terms need to be resummed by gathering terms with differentj 
into a perturbative expression. This is because e - cr(ekl is not small enough to 
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compensate for having only a few powers of ei .  We must replace GlD(x 1 ,  x2), uk + 1 )  
with Gj(Q, uk + 1 ) for some fixed Q .  This i s  accomplished with a random walk 
expansion for GiQ, u). Such an expansion is given in [6] . It takes the form 

GiQ, u) = I G(w) , 
OJ 

where w is a walk on the lattice of M-cubes in TL . , . Each G(w) has regularity as in 
(2 .30), as well as an exponential decay in the length of the walk. By summing over 
an appropriate subset of walks that remain inside X, a union of Lk - ir(ek)-cubes, 
we obtain G/Q, X, u). [An analogous construction for C�l(u) is described in (2.42) 
-(2.45) .] Walks that stay within D (x 1 ,  x2) n Q  define Gj. loc(Q, u; x 1 ,  x2), which is 
then nonzero only if l x 1 - x2 1  � O(Lk - jr(ek)). A convex combination as in (2.27) is 
used to preserve regularity across boundaries of M -cubes. The result is the 
expansiOn 

G/Q, u) = Gj, loc(Q, u) + I G/Q, X. u) . (5 .7 .8 )  
X 

Of course, GiQ, X, u ;  x 1 , x2)  = 0 unless both x 1 and x2 are in X. All operators obey 
the usual regularity bounds, provided dist({x 1 , x2 } , Qc) > c. The bound on 
GiQ, X, u) has in addition a factor e - cr(e"w - j 1 x 1 .  The dependence on u is in X only ; 
for G i, loc it i s  only in an Lk - jr(ek)-neighborhood of x 1 ,  x2 •  Also, when x 1  and x2 arc 
farther than Lk - jr(ek) from Qc, Gj, loc is independent of Q. 

We have developed expansions for C�l(u) , w<j) ,  and Gi(Q, u). We now put them 
together to analyze the expansion of the normalization factors. In the expansion 
(5 .7 .4) we put wul = WU, nJ + I W(j)(X). In terms with l � ii  we separate from 

X 

_!_l tr (C�l J l(uk + 1 ) W<i , »l) the terms of order � ii in ei. We can write the sum of all these 
2 ! 0  
terms as 

ij 1 [ d" 
(") • I ,_, l J1 ;.;f de'" log ZJ 1 g{uk + 1 exp (re ej(A )) e ' � o · 

These will be treated carefully by a resummation. In the other terms we insert the 
expansion for C�L(uk + I ) ;  they then take the form I w(j) '(X), with ! O  X 

(5 .7 .9) 

We can take K arbitrarily large by increasing ii. The high power of ei beats the big 
factor (r(ek)L

k - i)d, the volume of an elementary cube measured on the j-th scale. 
This is to account for one free summation on T?l ; all but one such summation is 
controlled by exponential decay on the j-th scale. 

We return to the perturbativc terms. Resummation in j will be possible only if 
A is localized to sets like .J�ln.J� +  l lc . Thus we write 
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Here 13 = 1 and each A .  is a smooth small field supported in lfUl n/fU + 1 lc (!fCkl if - 1 ' J ' 5 6 5 
j = k). The low order terms can be written as 

I �,· [ rl ( I d-�-) logZ�OJ ) (uk + 1 exp ( iej( I e;A)))J . 
n = 1 n . a = 1 Ix = o e jrx 1 0  l = o ei = o 

Note that Z�L1( . . .  ) depends only on e 1 for I s ). Thus we can write the last 10 
expressiOn as 

(5 .7 . 1 0) 

We write all terms in the form of the expansions derived in this section, except that 
we write a new expansion analogous to one we gave above for (w 5 A')� : 

rr (13jj1 - 13ix + dwsA'h = I wb , "(X) . a e a  X 
Here o: C  { 1 ,  . . .  , n} , and wb , "(X) is also bounded as in (5 .7 .6) . 

We insert this expansion in 

The result is a localized expansion " F" . (X) with I F" . (X) I ::S:: e 1 - 'e - cr(ekl i X I  L I . J , n  ' I , J , n - .1 
X 

(unless j a = k for all (f. E 7,_, in which case lX I  is replaced by IX n. we make the same 
expansions in F 2 , j· The expansions for F 1 , i' F 2 , i are inserted in the low order terms 
in Vj, G j, Ioc(uk + I  u), and L1 k , loc(uk + I  u) + aL- 2 

P(uk + I  u) . Finally, they are inserted into 
(5 .7 . 1 0), using (5 .7 .4) for logZ. 

The term m =j is special; we bound that term directly without resummation. 
The random walk expansion is inserted for C�L( uk + 1 ), and we obtain an expansion 
I w(j)"(X), with 
X 

I W( j) "(X) I ;;;; eJ - a e - cr(ek) I X I IX' nA�)' nA� + l )c l . 

Each term contributing to wul"(X) must contain at least one kernel w5 . There is a 
summation in AVb, but since at least one field Aj i s  present, there is an exponential 
decay on the j-th scale localizing summations near A�l ' nA�+ 1 Jc . This gives rise to 
the volume factor in the above bound. The volume divergence wil l  be beaten by 
small factors coming from large fields near A �l '  nA� + I Jc ;  we will have available 

logL(cofc) 
some eK I A�J l ' n A� " ' J c l fr(e1 Jd and since K(loge :- 1 )r(e -) - d > " e 1 - a this is sufficient ) ' J J � ' ]  ' • k � j + l  

Next we take an m > j  and we try to replace each C�) l)(uk + l )  with 
c�:n - 1 (A CmJ)(uk + 1 ) . Using the random walk expansions we can write the0differenee as 3 
I C(j) ' (X), with I C(j) '(X, X � o X2) 1 ;;;; e - c l x , - x2 1 e - CI'(ek) I X I for X I , x2 in Bm -}A�m)) . For 
X 
m > j, all operators C�L1(uk + 1 ) in our low order expansion satisfy this restriction. 
Terms with all C�L - 1 (A cm1/uk + 1 )'s will be considered below. In  all other terms, we 
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random-walk expand any C�� - 1 <A (m>j(uk + 1 ) 's, sum over m, and obtain 

I w
<il"'(X) , with I W(j)"'(X) I � e - cr(e;) l X l . 

X 

293 

We need to replace the propagators Gj, Joc(uk + 1 ), Gi D,  uk + 1 ) by GiA�rnl, uk + 1 ) .  
They appear in the expansion of L1 j, loc(uk + 1 ) and indirectly in CUl(uk + 1 ) .  We write 

- �� �� Gj, loc(uk + 1 ) - GiAz , Uk + 1 ) + (Gj, loc(uk + 1 ) - Gj, loc(A z , Uk +  1 )) 
-(rn) ) + I  GiA 2  , X, uk + 1 , 

X 
and similarly for Gj, Joc( D ,  uk + 1 ) .  We only need to look at this operator in ;r�mJ. 
There a random walk expansion on the j-th scale will yield the usual regularity 
bounds on the second term on the right with an extra factor e - cr(e , J .  We insert this 
expansion into c<j) - 1  to obtain 

where 

C(j) ( ) - 1 C(j) (A(rn) ) - 1 + 'I;' A (X) Bm - j(A�ml ) Uk + 1 = Bm - 1 (A �ml ) 2 , Uk + 1  L.. LJ j ' X 

= 0 if x 1 or x2 r/= X . 

(5 .7 . 1 1 )  

This expansion i s  inserted at each appearance of C< il in our low order terms. The 
same analysis is performed when G/0, uk + 1 ) appears instead of Gj, Joc(uk + 1 ) .  In the 
leading terms (terms with no e - cr '1l from the random walk expansions) we put 
Cj = 1 + ((} - 1 ) .  The leading terms are now 

I __!_ I n = 1 n ! {j.) : rnin. j. = m 

where this Z(j) uses the quadratic form in (5 .7 . 1 1 ) . Remainder terms are again 
localized - there will be typically some delocalized operators and some localized 
ones. Thus we random walk expand any Gj(A�mJ, uk + 1 ) .  Also, we expand any 

(') -( ) ) CI( _ J (A �m)lAzm , uk + 1 as 

I c�� - ; (A �m)iuk + d [I L1 j(X)C�� - ; {A�ml)(uk + dJP '  p = O  X 

and finally we random-walk expand all C�� - , <A�m> )(uk + 1 ) 's. We gather all terms of 
this rather complicated expansion of the remainders and sum over m, to yield 

I w(j) ( iv)(X) ' with I w(j) ( iv)(X)I � e - cr(eJ) l X l 0 

X 
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As always, X is a connected union of Lk - jr(ek)-cubes, and WU) ( ivl(X) has 
dependence only on fields in X, X, or Bk _/X). 

We make a final change in the leading terms, namely we replace 
Cw (A-(ml ) . h cul(A-(ml ) h . . h D '  . hl Bm _ ;(A(m>J 2 , uk + 1 Wlt 2 , uk + 1 , t e covanance Wit out 1nc et 
boundah conditions. We give a random walk expansion for the difference, 
I cUl"(X). It is actually a double expansion, since each term in the usual random 
X 

walk expansion still depends on J[�ml through the basic quadratic form [which 
involves G;(!f�ml, uk + 1 )] and through operators CtY(/f�ml ,  uk + d. However, each of 
these can be expanded as described earlier, yielding terms CUl"(X) with proper 
locality properties, and obeying the following bounds : 

Leading terms are now given as in (5 .7 . 1 2) but with no Dirichlet boundary 
conditions. Finally, remainder terms are expanded out completely. All remainder 
terms have at least one operator cUl"(X), which provides exponential localization 
to Bm -/AmJy. The field Am is supported in /f�m>, thus all terms have at least a factor 
e - cr(e1 l . Thus we can sum all the remainder terms into 

I w(j) ( v)(X) , with I W(j) ( v)(X) I ;£ e - cr(e; ) I X I .  
X 

Now the leading terms can be rescaled to the _U - rn-lattice, and we sum over 
j < m. All the changes we have made allow us now to compose the normalization 
factors as 

m - 1 fi zUl , LJ - m(/[(m) u) = Z (/f(m) u) · const 2 ' m 2 ' ' 
j = O  

where the m-step Gaussian normalization factor Zm arises as in Eq. (2.40) of [7] . 
We obtain the perturbative expansion 

I I n = 1 ( i, } :  min, j, = m 

The diagrams in this expansion are covered by our theorems on the perturbation 
expansion. The point is that various Ward identities and symmetries necessary to 
obtain good bounds can only be seen in this resummed form of perturbation 
theory. We give the random walk expansion for the propagator Gm(/f�ml, uk + 1 ) . 
There is at least one factor em in all terms, and a free summation in A�m) 
nA�m + 1 lc(m < k) or A�ml(m = k). Thus we can write the perturbation expansion for 
m < k as I w(m) (v i)(X), with 

X 

As for the ww" terms, the volume factor will be beaten by convergence factors 
from the large field region A�m)' n A�m + 1 lc . 
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The term m = k is treated slightly differently. We decompose A� into 
fJkHk. locA<kJ + ekw5A1 •  Terms with one or more w5A1 field are expanded as in the 
m < k  case. In terms with all fJkHk, locA <k! fields, we expand the propagators as 
before, leaving in the main terms the localized propagator Gk, loc(uk + 1 ) . The result 
is our standard perturbative expansion in the field fJkHk, locA<k! , which we denote 
Q<kl(u fJ H A<k>) The remainder terms become " w<kHviJ(X) with k + 1 o k k . loc · L. ' 
I w<k) (v i )(X) I :;:;  e - cr(eld l X I

. 
X 

We can summarize the results of this section as follows : 

k - 1 

Xt Z�j{/(uk + 1 ) exp [ - Q<kl(uk + 1 , f)kHk, locA<k! _ � Wdkl(X)} (5 .7 . 1 3) 

where X is a connected union of r(ek)-cubes in T}k> ,  
k 

Wt!(X) = 2.: W(j)I(X) + . . .  + wuHvil(X) , 
j = 0 

I Wik)(X) I :;:;  eke - cr(ek) l X I '  + 2.: eJ - ae - cr(ek ) I X I IBk -
j
- t (X)nAV)I nA� + l )c l ' 

j < k 
and 

Q(k!(uk +  1' ()kHk, locA (k )) 

5 .8 .  Scalar Field Ti·anslat ion 

(5 .7 . 1 4) 

The scalar field quadratic forms, after all our manipulations with the gauge field, 
are as follows : 

� <A�k - 1 > 1cjJ, L1k . loc(ak + 1 )A � - 1 J I  ¢) + � aL- 2 (tp - Q(fik + d¢ , 1.p - Q(fik + dcf; ) . 
To eliminate most of the l inear term < 1p, Q( ak + 1 )cf;)  in the small field region, we 
make a translation 

¢ = cj;<k> + aC 2 A�>q��(uk + 1 )Q*(uk +  1 )V' . 

(Recall that uk +  1 = iik + 1 in ;r�>.) 
The terms quadratic in cp<k! are then 

(5 .8 . 1 )  

� <A� - 1 J l ¢<kl, (A k. loc(fik + 1 ) + a C  2P(uk + 1 )) A � - 1 ) ' (/PJ ) + :!24 , (5 . 8 . 2) 

where 

!24 =�ac 2< ¢<k> , A� - l ) 'cP(fik +  l )¢ <kl ) . 

In the cross terms between ¢<kJ and lfJ, we write ljJ = A�!11J! + A�JiclfJ. The terms 
with A�l 'clfJ define !2 5 ,  a form localized near A�)'c. The other terms can be written as 
< ¢<kl , w 61fJ ) , with w 6 a small kernel with range less than r(ek) . This is because (5 .8 . 1 )  
would eliminate entirely the linear term were i t  not for the localizations. 
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In the terms quadratic in 1.p, we again combine all terms involving A�>�c1.p into a 
form f26 localized near A�>�c. The remaining terms become 

iaC 2 (A�>11.p, (I - aC 2Q(uk + 1 )CI��(uk + 1 )Q(uk + 1 )*)A�>� 1.p ) + i < 1.p, w�1.p) , 

with w� another small, local kernel. We apply the identity [7] 

aL- 2 I - a2 L - 4Q(uk + 1 )C<k>(uk + 1 )Q(uk + 1 ) *  
= akL- 2 I - a;L - 4Qk + 1 (uk + 1 )G� + 1 (uk + 1 )Qk + 1 (uk + 1 )* , 

but in a localized version with C!�� and G� + 1 , Ioc and with another small kernel w� 
on the right. This yields the desired form Ll f+ 1 , 10c(uH 1), and so we obtain 

1 <A�)�1.p, Ll f+ 1 , loc(uk + 1 )A�)11p)  + ! ( 1.p, W71.p) , 
To summarize, we have written 

with w7 = w� + w� . 

! <A�k - 1 > 1 ¢ , Ll k, Ioc(uk + 1 ) A� - 1 > 1 ¢) + !aL- 2 ( 1.p - Q(uk + 1 )¢, 1.p - Q(uk + d<P ) 
= 224 + 22s  + f26 + ! <A�k - l ) l ¢<k>, (Ll k . loc(uk + 1 ) + a,r�- 2 P(uk + 1 ))A�k - l ) l  ¢<kl ) 

1 (A (k) !! A L ( )A (k)l > < ,l.. (k) > 1 < > + z 8 1.p, LJ k + 1 , Ioc uk + 1 8 1.p + '+' , W61.p + z 1.p, W71.p , 
with w6, w7  small local kernels, and with !24, f25 ,  226 localized near A�k) 'c . 

5 .9 .  Bounds on Fluctuation and Block Fields 

(5 .8 . 3) 

As we remarked earlier, the restrictions on u(p) and the gauge field renormalization 
transformations imply that 

l� log v(p) l = lf(p) l ;£ cp(ek) , p E A�h* . rek 
(5 .9 . 1 )  

Also, bounds on ¢ and 1.p - Q(uk)¢ imply that for y E Abkl ' , 
l1.p(y) l ;£ cp(edJ.; 1 14 , (Lkc)d < A ,  

1 11.p(y) l - (8),) - 1 f2(Lkc)<d - 2)/ 2 1 ;£ cp(ek) (Lkc) - I , Ws)d � ), .  (5 .9 .2) 

Next, we wish to prove that 

l uk + 1 ( (b _ ,  b + )  )1.p(b + ) - 1.p(b _ ) I = I (Duk + 11.p) (h)l ;£ cp(ek) , b E A�l' * . (5 .9 .3 )  

We prove the bound first for Duk 1.p (before the gauge transformation of Sect. 5) .  Our 
bounds on 1.p - Q(uk)¢ reduce this to estimating 

l ull/, _  , x)</J(x) - uk( (b _ ,  b + ) )uk(fb +  , x ·)</J(x') l 
for any x E B(b _ ), x' E B(b + ). This is proven with several applications of our bounds 
on D.,k¢.  In going from uk to uk + 1 we made a gauge transformation and removed 
some small fields. Also, the gauge transformation was not quite compensated by a 
rotation of 1.p. Thus in going from the old ID.,k IP I  t o  the new I D.," + 1 1.p lwe make errors 
of the order of cekp(ek) 3 },; 1 14, (Lks)d < ), or 

cekp(ek) 3(), - 1 /2(I!'a)<d - 2)/2 + (I!' a) - 1 ) , (Lkc)d � }, . 
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In both cases this is  bounded by eP(Lksjc0) 1 14 - a - see the discussion below of the 
bounds on interaction terms. The desired bound follows. 

These bounds allow us to insert the following characteristic functions : 

Xk +  l , A \,k) ' = T1 x(cekp(ek), l v(p) - 1 1 ) 
p e A&k) '** 

and the integral is unchanged. If (Lks)d :;:;:  ). , the bound on 1p is replaced with 
x(cp(ek) (Lkc) - 1 , 1 11fJ(Y) I - (8,1) - 1 12(L"s)<d - 2 li2 1 ) . 

We remarked earlier that A' is small in A1kl* . We then defined A <kl = A' 
+ A�l*C 2C!��Ht_ 1oco*Qi:t d Since f is small and Hk, toc is regular, we have that 

IAikl l � cp(ek) ,  b E A1kl * . (5 .9.4) 

We want a similar bound for ¢ <kl(x), x E A�l. Note that C!��(uk + 1 ) is almost 
equal to c<kl(uk + 1 ) . Thus we have that in A�l, say 

aC 2C!��(uk + 1 )Q(uk + 1 ) *1fJ = Q(uk + J*1fJ + O(p(ek)) , 
(the corresponding statement with c<kl(uk + 1 )  was proven in [8, Eq. (2. 1 1 3)] . Using 
arguments like the ones we used to bound D.,b 11p, we can replace Q(uk + 1 ) *1p with ¢ 
in this bound. This proves that 

(5 .9 .5) 

The bounds (5 .9.4), (5 .9 .5 )  allow us to insert the characteristic functions 

X�(k ) = [1 x(cp(ek), A<kl) f1 x(cp(ek), ¢<kl) 
7 b e A �k)* X E A �k) 

without changing anything. 
We note that the restrictions implied by XAckJ are stronger than the correspond

ing restrictions in Xk , AW - 1 ) • in A�l . [When° (Lks)d ;;:;; ),, we use the inequality 
(8).) - 1 12 (Lks)<d - 2 li2 + p(ed (Lks) - 1 � cp(ek) A; 1 14 .] Thus we can replace Xk , A 'k 1 ) '  
with Xk A ( k - 1 l ' nA lk Jc without changing anything. 0 

Let
' u� sum�arize the operations performed so far by using the concluding 

formulae in the last several sections to write a complete expression for our density. 

ef+ l (v, 1p) 
= I I S du<kld¢(k)(j Aidkl)()A ,k J • •c(v/Qu<kl)() A ( k J •• (

2
ek QA (k)) S Yl duUl iA c J Jc• 

{X w )  A bk) 1 1 n j = O 1 0 

X 'A (k) cXA(k )Xk A ( k  - 1 ) 'nA (k)cXk + 1 A ( k) •X� (k) n gk(X,J n (Fi"'loJX(J) + F\��(X(J)) o o · o 1 • o 7 w cr 
' 

k - 1 
X f1 [Z�lJJc•cZ�L(uk + 1 )] exp [ - � <A�l * *oA <kl , crk , !ocA\k) * *oA <kl ) 

j � o  1 0 1 0  

- � <A�)' * *J, crf+ l , locA�l' * *f) - 22 1 - 222 - 223 - <J, W3A(kl ) - � <J, w4f)  
- .14 - 22s - 226 - � <A� - 1 ) '  ¢<kl , (L1 k, loc(uk + 1 ) + aC 2 P(uk + 1 )) A�k - 1 ) , ¢<kl ) 
- � <A�) ' 1p, Ll f+ l , loc(uk +  1 )A�l '1p ) - < <P(k) , W61p) 
- � <1p, w71p ) - t&"k - E<kl - gl>k, !oc(A�k - 1 ) , uk + J - R <kl(uk + 1 ,  BkHk, !ocA<kl) 
- " w,<kl( D ) - Q<kl(u e H A<kl) - " w<kl(X)] L.. l k + l • k k , ioc L.. 2 · 

0 X 
(5 . 9 .6) 
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5 . 10 .  The Interact ion for the Fluctuation Fields 

Having made the scalar field translation, we regard the terms &k, lac• R<k> , Q<k! ,  FL�foc 
as polynomials in ¢<kl ,  A <k! .  We make some small changes and localizations in order 
to obtain the standard form of the fluctuation field interaction in A�l .  

We have the external field 

akaC 2Gk, loc(iJk + t )Qt(iik + t )A�lC(��(uk + 1 )Q*(uk + 1 )1p 
appearing in the diagrams in &k, loc• R(k!, FL�foc · The first we leave alone, whereas 
in the second we localize the field to .J�l and replace it with 

ak + 1 L- 2 GZ + 1 , 1oc(uk + 1 )Qt + 1 (uk + 1 )1p + Ws lp  · 

The kernel w8 is local and small with small derivatives and Holder derivatives .  This 
is accomplished in the usual fashion by replacing Gk, loc(uk + d, Cl��(uk +  1 ) with the 
corresponding operators with Neumann boundary conditions on an r(ed-cube 
0 .  The propagator composition formula [7, Eq. (2.4 1 )] is applied, and 
GZ + 1 ( 0 , uk + 1 ) is localized again. 

We localize all vertices to .J�l ; vector field legs at a vertex are multiplied by a 
smooth function ek changing from 0 to 1 in a neighborhood of .J�lc. We also 
remove all diagrams whose combined order in }, 1 /2 and e is greater than ii. We still 
consider all Pk vertices together ; any p�J vertex is considered as one power of },. 
Each mass renormalization counterterm is written graphically and powers 
counted accordingly. The result is the interaction v<kl(A�k! , uk + 1 ,  A <k! , ¢<kl), and 

&k. loc(A� - 1 )' Uk + 1 ) + R(k)(uk + 1 • BkHk . locA (k)) + Q(k)(uk + 1 • BkHk, locA (k)) 
= 9k. loc(A�k - t l , A�Jc, ftk +  t ) + Wkl(A�!c, uk + t •  BkHk. tocA<k! 

+ Q(k)(A�)c, uk + 1 ,(..l kHk , locA (k)) + v<kl(A�>, uk +  1 •  A (k), rP(k)) + I w�k)(D ) . 
D 

Here in writing A�Jc we mean that only the terms without proper localizations are 
included. The terms W�kl(D)  contain terms localized near the r(ek)-cube 0 which 
involve the small kernel w8 or have high powers of coupling constants. We have an 
estimate 

I w�k)( D) I  � [eP(Lke/t:o) l f4 - ar + 1 � enPWc/t:o)K '  

with K > d as large as desired if ii > ii(K) .  This estimate comes from our analysis of 
the perturbation expansion and the restrictions on the fields. We find that each 
vertex results in at least a factor eP(!Jeje0) 1 14 - a . 

Estimates on v<k!, Q<k! , R<kJ follow from the same analysis. When localized for 
example to a cube of size r(ek) , all terms [except for 
Pk(ak + t C 2GZ + t , loc(uk + 1 )Qt+ 1 (uk + t )1p] are bounded by eP(Lkt:/£0) 1 14 - a, with :x, f3 
small and positive. 

In a similar fashion we modify the external scalar fields in FL�foc and eliminate 
diagrams of order higher than m. Thus we write 

(fu) - • • 

Fk. loc(X") - Fk. looCX") + Fk, !ooCX ,.) , 

with Fk 100(X") containing the w8 terms and the higher order terms, and satisfying 
Fk , loc(X,.) � c(F) . We regard Fr, loc as a polynomial in A<k! ,  ¢ <kJ .  
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5 . 1 1 .  Mayer Expansion I 
In this section we expand irrelevant terms down from the exponent. This operation 
is done to simplify the structure of the integral in the region free of irrelevant terms. 

Let us combine the irrelevant terms as follows : 

< f >v3A(k)> + 1 <J>v4f > + < ¢(k), W61p) + 1 <1p , W 7 1J! ) + 2: w?>( D) + I Wjkl(X) 

+ 2: W:lk )( D ) = I WJkl(X) , 
0 X 

0 X 

with WJk>(X) containing terms with dependence in X. We combine the estimates on 
the above terms to obtain 

J WJkl(X) J ;o:; [eil(Lk£/Bo) l /4 - a] n +  ! e - cr(ek) I X I 

+ I eJ - ae - cr (ek) I X I JBk - j - l (X)n AVl' ru1�{ + 1 )c J . 
j < k 

We can only Mayer-expand small terms, therefore we parcel up WJk>(X) into 
manageable chunks. It  is a simple matter to decompose WJk>(X) as follows 

WJk>(X) = I I WJ�}(x;, X) + WJ�1(xk, X) . 

Here x k is some distinguished point in X (for unity of notation) and 

l w(k)·(X · X) l < e l - ae - cr (ek) I X I 
4 . ]  J' = J ' 

J WJ�1(xk, X) J ;o:; [eil(Lk!;fco)J " +  1 e - cr(e,J I X I - .  

The Mayer expansion is the usual identity 

exp ( - I wt>(X)) = I . ll . (e - H£:� l ( x , . X) - 1 ) . 
X S, (J . x 7 ,  X) E S 4  

( 5 . 1 1 . 1 )  

( 5 . 1 1 .2) 

Let S4 be the set of all triplets (j, x1, X) that arise in the above decomposition of 
wJk>(X), for any X. Then S4 is summed over subsets of S4. Note that e - WJ�; <x1 ,  XJ - 1  
satisfies the same bound as WJ�j(x1, X). 

To see what kind of control we have over this expansion, let us do a typical 
estimate of the type we need : 

I 

I ll (e - Wj�J <x ) , > · X") - 1 ) 1 
S4 = {Uo: , xJ , x • Xo:) } : "& Xx = X  a: 

;o:; exp ( I e] - ae - cr{e" ) JBk - J - 1 (X) nA�)' nAY, + l )c l) [ei1Wc/c;0)] <n + 1 J l X I . ( 5 . 1 1 . 3) 
j < k 

We consider first sums over X, such that xJ, a = xi. A combinatoric factor c iXa l  
controls each sum over X a' and can be absorbed into the factors e - cr(e"J l X I - in our 
bounds on e - wrkJ(x1 . X) - 1 . If there are n such sets, we use n factors of e] - "E - cr<c,d, 
j < k. The resulting estimate has a factor 

I (e) - "e - cr(Ckl)" ;o:; exp( e ; - a  e - c ' •·(ek)) 
n ::::: O 

at each x1, j < k, or 0( 1 ), j = k. There remains a factor [e13(Lkt/c0)J" + 1 1 1X I from a 
worst-case analysis of the unused small factors, and ( 5 . 1 1 . 3 )  follows. 
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We also expand out the observable : 

[1 (F�: �oJX"") + f\. IoJX") + Fk, Ioc(X,)) = L: [1 F� 1oc(X"" , )  [1 F� . Ioc(X"") , 
r:J ir 1 O' t E d' l  a rj if 1 

with F�. Ioc = F k. loc + Fk, Joe• and with if 1 summed over subsets of the index set for CJ 
on the left-hand side. 

We now fix if 1 , S 4, and define /I�l as follows : 
/I�l = A�l\\ U X" U X . 

\,a � i'J 1 Xp X) E S 4  
Then we define A�1 by deleting a collar neighborhood of width r(ek) from /1�1. In 
A�kl we attempt to remove the characteristic functions XA�k) .  Thus we write 

Lt�<� = X.16k' n A SkJcX"t �k) ,  

and for each type of characteristic function in XA�k> we expand x = 1 - ;(", as follows : 

f1 Xx = L f1 ( - X�) · 
X E  ;t �k) Sx C A �k) X E Sx 

We have similar sums over S c A(k)' S c A (kh S c _,1(kl** and we define ;[(kJ as the y g ,  b 9 ' p  9 ' 9 
union of all r(ek)-cubes in A�1, none of whose points are in Sx, or in bonds, 
plaquettes, or blocks in Sb, SP, SY . The characteristic function expansion can now be 
written as 

Finally we define An by deleting a collar neighborhood from A�1• 
These expansions complicate our expression for et+ 1 (v, 1.p) in (5 .9 .6), 

however the integral in An is quite simple now. I t  involves a small, local, 
polynomial interaction V(kl modifying a Gaussian integral in qPl, A (kl .  The inverse 
covariance is local and bounded from above and from below. The characteristic 
functions x' are simple functions of ¢(kl, A(k) keeping them bounded. The 
observable is a product of polynomial pieces given by low-order perturbation 
theory. Large field and nonperturbative effects have been separated out. 

5 . 1 2.  Conditional Integration 
We exploit the simple structure in An by doing the integrals there with 
conditioning on Anc, A nc*c . The formula we use is a generalization of the 
following identity for scalar fields : 

J d¢ IA cF( ¢ lA c) J d¢ 1 A e - ( Ac¢ . A A¢ >  e - 1 12 < ¢ .  AA¢> G( ¢) 

= J drf; I A ' F( !piA '") .f d¢ 1 �t e - (Accf> . AA¢ >  e - l f2 (¢A A¢>  

X 
J d¢ 1 A G( ¢ ) e - 1 / 2 (¢ . A A<P>  e - ( A'cf> . AAc/1) 

J d¢ 1 A e 1 / 2 ( ¢ , AA¢) e (Ac , AA¢) 

= (J d¢ 1 A e - 1 j2 (cp , A A¢ )) J d¢ IAcF( ¢ 1A'") e l /2 ( A'"¢ , A AA 1 AA'"¢ ) 

X �!/ J d¢ 1A G(rj;) e - 1 / 2 (¢ , A "t4>)  e - (A'"cf> , AA¢ > . 
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Here A1 is equal to the last integral, without G(¢) .  Thus in our expression for 
Qt+ 1 (v, 1p), we have now an "exterior" integral over u<k> ,  ¢<k> in Anc, whose Gaussian 
piece has been replaced by 

<)Ax A ( kJ • c(U(k l)t)A (k l ' *nA ( kJ • c• (2
ek QA(k)) 

• 1 0  1 1 0  n 
x exp [ - 1 <Aik>* *aAnc* A<k>, CJk , JoeAik>* *8Aik6cA <k> ) 
- -t((A�k - 1 >1 nAnc)¢<k> , (Ll k , Joe(uk + 1 ) + aL- 2 P(uk + 1 )) (A � - 1 > 1 nAnc) ¢<k> > 
+ 1 < Anc¢<k> , Llk Joe(uk + 1 )C�Ik)(uk + 1 )L1 k Joe(uk + dAnc¢<k> ) • 1 0  • 

- 1 <Anc* A <k> , L - 1 Q*Q•A \k6c*c8*CJk, JoJJ(L - 1 A nc*cQ'*Q - 2)A nc* A <k> ) 
+ l. <A <klc*A <kl (J - C 1 Q*Q•A <klc* c)o*CJ ac<k> 8*CJ  a 2 1 0 ' 1 0 k, Joe A\�) c•c k , Joe 
x (I _ L- 1 A<klc* cQs*Q)A<k>c *  A <kl )J z<k> z<kl (u ) 1 0 1 0 A\�) c•c A\�) k + 1 ' 

The "interior" integral is 

(5 . 1 2. 1 )  

�,r s d¢(k) I A (k )dA(k) I A (k ) c•cb Ax A ( k) , (A (k))b A ( k) • coc(QA (kl)z�(k ) n F� Joe( X o) 
J Y 1 0 10 ' 1 0 1 0  " 7 0" !  E fr t ' 

x exp [ - 1 <An¢ <kl , (Ll k . loe(uk + 1 ) + aL - 2 P(uk + 1 ) ) (An + 2A nc)¢<k> >  
_ l_ < A (k)c*cA(k) ()*(J 8(A (k)c* c + 2A (k)c *)A(k) ) 2 1 0 ' k , Joe 1 0 1 0 
-- v<k>(A�>, uk + 1 • A<k> ,  cp <k>)] . ( 5 . 1 2 .2) 

Here A1 is defined by the last integral, but without x� (k ) , Ft. loe• or v<k> . 
Let us describe more carefully the calculations leading to (5 . 1 2. 1  ) .  The third 

form, together with Z�lk >(uk + 1 ), is a calculation of 1 0  
S d¢ <k> IA 1�) exp [ - t<A n¢ <k> , (Ll k , loe(uk + 1 ) + ac 2 P(uk + d) (An + 2Anc)¢ <k> > J .  

The 4-th and 5-th forms, with Z�/k) coc, are a calculation of 1 0  

f dA (k) l � (A <kl) � (QA <kl) (  /2 ) i i A ( k Jc•c i l  
A ( k) c*cU Ax A ( k ) '  u A (k ) ' C*C ek n 1 0  . 1 0  ' 1 0  1 0  

X exp [ _ l_ <A(k)c* c  A(k) 8*CJ  8(A (k)c*c + 2A (k)c*)A (kl )J 2 1 0 ' k , Joe 1 0 1 0 · (5 . 1 2 . 3 )  

The factors ek/2n come from the replacement of du<k) with dA<kl for the free 
variables ; for the constrained variables the replacement is compensated by a 
removal of the ek/2n factor from the b-functions, see (4.6)-(4 .8) .  

We calculate ( 5 .  1 2. 3 )  by means of a translation 

(5 . 1 2.4) 

which removes the dependence on Anc* A <kl in the b-functions. In fact, bAx , A ( k ) • (A<kl) 
� (A (k) l) d . QQS* I 

1 0 
= uAx A (k ) • , an s1nce = , ' 1 0  

b A ( k ) • coc(QA (k)) = b A (k ) ' ' * '(QAnc* c A (k) l ) . 1 0  1 0  
The fourth quadratic form above i s  obtained by collecting the terms m the 
exponential quadratic in Anc* A <k> . There remains a linear form 

<Anc*cA<k> l , 8*CJk . loea(I - Anc*cQ' *Q)Anc* A<k> > ' (5 . 1 2 .5 )  
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whose expectation in the Gaussian 

exp ( - ! <A )k6*A<kl ' , 8*ak , Ioci3A\k6c*cA <k l ' ) ) 

gives rise to the fifth form. 
We remove the nonlocality in the third and fifth quadratic forms with random 

walk expansions for C�/k ) (uk + d and for C�/k>c•c as in (2.45) and (2.48). These obey 
the usual estimates. We denote the first and\\'econd quadratic forms by !!27, and the 
other three [with C�/k)(uk + 1 ) , C�/k) c•c replaced with C�/k) Ioc(uk + d, C�/k )c•c IocJ by !!28 .  1 0  i O  1 0 ' 1 0  ' 
Altogether the exponential in (5 . 1 2. 1 )  has been written as 

Here WJkl(X) contains the terms with C�/k) , x(uk + 1 ) or with C�/k)c•c . x, and satisfies 
I WJkl(X) I � e - cr(ekJ I X I .  The quadratic forms0 in .!27 and .!28 are l��alized near Anc. 

We make the same translation ( 5 . 1 2.4) in both numerator and denominator of 
the normalized integral in A)k6. Terms quadratic in A)k6c/J.<kl cancel, but we still have 
the linear forms (5 . 1 2 .5 )  and <An¢<kl, Ak , Ioc(uk + 1 )A)k6c¢ <kl ) as in our last 
calculation. We remove most of these forms with localized translations 

A(k) l = A (k) ll - c<k) o*a o(I - L - 1 A (k)c*CQS*Q)A(k)c* A(k) A i�c*c . toc k , Ioc 1 0 1 0 ' 
rJ.. (k ) - rJ..(k )l l c<k) ( ) A ( )A (k)c rJ.. (k ) '!' - '!' - A!k) Joc Uk + t LJ k loc Uk + t  1 0 '1' · 1 0 . • 

(5 . 1 2.6) 

Terms quadratic in A)k6c* A<kl or Anc¢<kl cancel as before. leaving the following 
integral : 

S d (k) (A (k) 11 rJ.. (k) ") • '  [1 pm (X ) - V!k) (A �k) , uk + l • A ! k l , <J> !k) ) 
flA f�) , 'I' XA�k) k , loc 0' 1 e . 

f1 t EO O' t  

Here d,u�lk) i s  a n  unccntered, normalized Gaussian measure, 1 0  

d,u�/k)(A <kl " , ¢<kl") 1 0  
- __!_ dA<kl" l dr�-.<kl " l  6 (A<kl ")6 (QA<kJc*cA <kl") -

JV A ��)c*c o/ A \� A x ,  A \�> · A \�) ' c*c 1 0 

x exp [ - ! <Anc*cA(k) ", 8*ak . locoA)k6c*cA(k)" ) 
-! (A)k6¢<kl, (Ll k . loc(uk + 1 ) + aC 2 P(uk + 1 ))A�6c/J(k) ) 
- (A)k6c*cA<kl" , (I - o*ak IocoC�/") c•c 10o}8*ak toco(I - C 1 Anc*cQs*Q)Anc* A <kl ) , 1 0  ' ' 

- (A \k6cp(k) ", (I - (Ll k . loc(uk + t ) + aL - 2  P(uk + d) 
X C��� . Ioc(uk + d)Llk , Ioc(uk + t )A)k6<¢(k) )] .  (5 . 1 2 .7) 

This measure has covariances C�lk)c•c, C�/k)(uk + 1 ) , and nonzero means reflecting 
the terms linear in A )k6¢<kl" or A\R6�*cA(kl " : 0 
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After the conditioning our density assumes the following form : 

Qt+ 1 (v, 1p) 
k I I I I I S fl du( j) i A <J J c•d¢(k) i A < k JcbAx, A <k J • c(U(k)) 

fXw} A �l S4 <1 1 A&kJ j = O 1 o  1 0  1 0  

303 

X bA < k J ••c(vjQu(k))JA < k l ' *n A <' J 'c* (2�k QA(k)) (A<k J cXA <k l n A <k J c(X<k JcXk + 1 A <k J •  Il gk(X.,) 1 1 1 0  n o o 9 • o 01 

k Il F' (X )  fl ( -- w <•> <xJ , Xl 1 )  fl [zU> zu> ( )] X (k) , loc a e 4 ' 1  - A Wc•c A (J J Uk + 1 a ¢ <1 1 (j, x1 , X) E S4 j = O 1 0  1 0  

x exp [ _ lo <A <k l ' * *f, CJ L  A fk) ' * *f > 2 5 ' k + 1 , Joe 5 

- gvk - E<k> - 2Pk. Ioc(A� + 1 ' A�>c, ilk + d - R<k>(A�>c, uk -t 1 ' 8kHk, IocA
(kJ ) 

Q(k)(A (k)c e H A(k))J s d (k) (A(k) ll A, (k) ll ) I n pm (X ) - 8 , uk + 1 ' k k . Ioc llA l�J , <p XA �k J _ k , loc a 1 U t E !T t  

x exp [ - y<kl(A�>, uk + 1 ,  A<k>, ¢<k>) - � WJk1(X)l (5 . 1 2 .8 )  

The next two sections wil l  focus on deriving a cluster expansion for the dp,�/k> 
integral in ( 5 . 1 2 .8) 1 

5 . 13 .  Decoupling of the Small Field Region 
We give a cluster expansion for the dp,���J integral in ( 5 . 1 2 .8) .  The purpose is to 
remove the dependence of the small field integral on the boundary fields. The 
cluster expansion has two part s ;  Mayer expansion of the interaction, and 
interpolation of the covariances of dp,A<k J . 

Let us divide A�1 into its elementafy r(ek)-cubes o <� > . We assign to o <aJ all 
bonds <x, X + ell > with X E o <aJ . Note that y(k)(A�k> ,  uk + 1 ' A (k), <P(k)) involves A (k) IA (k J•, 
¢<kJ I A <" J only. Thus we localize the fields ¢ <k J , A<kJ in v<k> by writing 

7 
7 

<P(k) = I o (a)<t:>(k) ' A (k) = I o (a)A ( k) . 
a a 

We associate to any collection of localization cubes a smallest connected union of 
cubes containing them (call it Y). Summing over all terms in v<k> and over 
localizations giving rise to Y, we obtain a decomposition. 

v<k>(A�> , uk + 1 , A<k> , ¢<k> ) = I v<k>( Y) + V.:�L(A�k>) . 
y 

The last term includes all terms independent of A <k > , ¢ <k> . We have an estimate 
I V(kl( Y) I � efl(Lkt:/�:0) 1 14 - a. Note that Y contains at most a few cubes. 

Next we Mayer-expand the interaction 

exp [ - v<k>(A�> ,  uk + 1 ,  A <k > , ¢<k>) - � WJk>(X) 
J 

= I I e - v�';,Jn;, (A �' J J fl (e - v<kJ ( t ) _ 1 )  fl (e - w�kl (XJ _ 1 ) .  
S y S ; 
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Here Sy(S5) is the set of all Y's (X's) that arise in a term in the Mayer expansion. 
We decompose An into elementary regions { O J ; E I  which are connected 

unions of o <al. Two o <al are included into a 0 ;  if one of the following conditions 
hold : 

(i) They are both in some Y, Y E Sy, 
(ii) They are both in some X, X E S5 ,  
(iii) They both contain sites or bonds within r(ek) of some X a 1 ,  (J 1 E (j 1 .  
(iv) They are both i n  a connected component o f  A�kj< . 
For the decoupling of the Gaussian measure, we interpolate the covariance 

with parameters s; E [0, 1 ] ,  i E J, which turn off interactions between 0; and Of .  
The factors c5((QA<kl") (b')) in the measure constitute an interaction between blocks. 
It is convenient to treat them directly, so we trade them for a fictitious integration 
dB, where B is a field on A��c*c. We insert 1 = JV - 1 J dB exp( - 1 /2<B , B) ) and 
translate A <kl" by Qs* B to obtain 

J dA <kl" l c5 (QA <klc*c A)c5 (A <k l")f(A (kl") A l�c*c A l� ' c*c 1 0 Ax, A i�)* 
= % - 1 J dA(k)"dBe - 1 !2 (B , B>c)(QA(k)" + QQs* B)c5Ax(A(kl")f(A(k)" + Qs* B) . 

( 5 . 1 3 . 1 )  

The translation does not affect c5 Ax• and b y  (! .2 . 1 9) we have QQ8* = I. Integrating 
out B yields 

% - 1 J dA<kJ" exp [ - ! (A<kl", Q *QA<k!" ) ] c5Ax(A<kl")f((I - Qs*Q)A<kl") . 

Thus we have a new quadratic form for Anc*cA(kl ", namely 

Q*Q + (I - Q*Qs)o*(Jk , loJJ(I - Qs*Q) · (5 . 1 3 .2) 

This is still bounded below on the subspace determined by c5Ax(A<kl") :  our lower 
bound on o*(Jk . loca implies a lower bound 

I I QA<kl" i l 2 + O( l ) I I A <kl" - Qs*QA<kl " l l 2 � 0( 1 ) I I A <kl" l l 2 . 

Applying (5 . 1 3 . 1 )  to numerator and denominator of the df.l�/, 1 -integral in 
(5 . 1 2. 8), the %'s cancel, and we obtain 

1 0  

J df.l<kl (A <kl" ..J.. (kl ")x ' IT pm (X ) IT (e - v <k l (Yl _ 1 ) A \'<J ' 'I' A�k) _ k , loc <T J  
O" t E O' t  Y e S y  

x IT (e - w�l<Xl _ 1 ) = ( IT  f(O ;) ) , 
X eS 5  i e l  1 

where f( O ;) is the product of all the factors under the df.l�lk > integral above that are 
localized in 0 ;. (Factors localized in AWJc are assigned tg the 0 ;  intersecting the 
corresponding component of A�t) Our construction of the 0; ensures no overlap 
of factors between different O ;'s .  Everywhere A<kl" appears as (I - Q8*Q)A<kl" . The 
expectation < · ) 1 is in the measure 

:�, dct> IA <' lb  Ax A <kJ•(A (kl") exp [� < ct>, L1 ct>) + < ct>, ff)] . 
J�' 1 0  ' 1 0 

We have simplified the notation by writing ct> = (A<kl", q;<kl"), dct> IA < 'l "  
= dA <kl " IA < k)«cd¢<kl " IA < k) , Anccp = (Anc* A <kl" , AWN<kl") ,  and so on. The quadratic 1 0  1 0  
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and linear forms Ll and :F are obtained in the obvious fashion from (5 . 1 2 .7), 
replacing Anc*cA(k)" with ( 1 - Qs*Q)Anc*cA(kl " .  The linear form is localized near 
the boundary of An. 

To preserve positivity and boundedness properties of  the  inverse covariance, 
we define our s-dependent inverse covariance by taking convex combinations of 
inverse covariances with Dirichlet boundary conditions. For an arbitrary subset r 
of I we define Dirichlet forms : 

where D e = 
;
�

r 
0 ;, and all operators are restricted to the subspace A(kl"(Ty, x) = O. 

Next we define an operation 

and we define a quadratic form for § = {s;} ; E 1 :  
LIL= n [( 1 - s;)a; + s;] Ll = L: n ( 1 - s;) n S;Ll r . 

i E l  r e i  i E r  i E I \ r  

Note that by resumming the expansion above and using the fact that for i" =l= i or i' ,  
or for i = i', 0 ;(a0 , ,Ll ) O ; · = O ;Ll 0 ;· ,  we obtain that 

O ;LILO ; · = s;S; - O ;LI O ; · , i' =l= i 
O ;LILO ; = O ,LI O ; .  

Using the theorem on unit lattice operators in [6] ,  we can invert this operator to 
yield an exponentially decaying covariance Cs = ( - Li s) - 1 . 

To give our expansion, we use the fundamental theorem of calculus to write 

Here §r specifies S; = O for i f/; T, d§r = n ds ;, ofosr = n d/ds ; , and < · >�r is the 
i e T  i e T  

expectation with quadratic form Ll sr instead o f  Ll. To calculate the s-derivatives, 
note that the first derivative produces a term 

\ i�i s/ O iiP, Ll O jiP) ; lJ f( O ;))�r . 

Subsequent derivatives either hit factors si already pulled down or bring new terms 
down with new truncations. After all derivatives are performed, we set the 
remaining si to zero, so only terms with no s ;  multiplying them survive. The result 
is 

\ ) ( I T I / 2  ) 
[I f( D ;) = 2.: f d§r 2.: [I [< 0 ;/P, LI Di.,IP) ;] n f( D ;) . 
! E [  1 r e f  pair ings p = (p y } of r ; = 1 ! E J �r 

py = { iy . jy) 

Recall that we have a linear term in the measure, e<c[l . JF > .  With this term, 
integration by parts replaces IP by C;((J/13 1P) + Cs:F (see Eqs. ( 1 2 .2) , ( 1 2 .3 )  of [3] 
where a similar expansion is used). We -integrate by parts all fields appearing in this 
formula. Each IP contracts through a C� to another IP, to an f( D ;), or to :F. If a 
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closed loop forms, or if a train of covariances beginning and ending in :lJ' forms, 
then the term disappears with truncation. Thus we have only trains beginning with 
a b/b<P and ending in either 6/b<P or .'F. The sum over pairings and the sum over 
ways of arranging the contractions combine into a sum over walks { w�} a E m w = ( i 1 ,  
i2 , . . .  , i 1 w 1 ) involving the sites in tt. ,  an  element o f  a partition n of T. Thus letting :?Jl(T) 
denote the partitions of r, we have 

The 1 /2 for the b2/b<P2 term compensates for the fact that we count a walk as being 
different from its reverse. The combinatoric structure of (5 . 1 3 . 3 )  is very similar to 
t hat of the GJS cluster expansion [9] . 

Let us examine the factorization properties of this expansion. The form Ll has a 
range less than 1 j2 r(e

k
) .  The f( O J  do not couple different 0 ;. Hence only adjacent 

O i  with s;  + 0 interact in the above formula. Thus our expression for 
d/d§r (Q f( D ;) )H factorizes over the connected components of r. (Here we say 

that 0; i s  connected to 0 , · if they abut on a hypersurface of any dimension.) The 
expression also factorizes over the D ; ' i E I\T. Call t he factorization regions 
clusters. 

It is worth mentioning here that only clusters intersecting An have any 
dependence on Anc¢<kl, Anc* A<kl . This is because /#", A <kJ - A<kl " ,  ¢<k l - ¢ <k l " are 
nonzero only in An. Thus we have finally decoupled clusters that do not intersect 
Aiklc from the large field regions - at leas t in so far as the fields u(k l ,  ¢<k J arc 
concerned. There i s  still dependence on the block fields v, tp which have yet to be 
integrated over and decoupled. We denote by Aik� the set of sites in  clusters not  
intersecting Aikfc. 

We give now the expression for the polymer activities of this expansion. Given 
some region X, a union of 0 ;, we sum r over all subsets of { i E I :  0 i C X} ,  such that 
X is a single cluster. Writing 

we have 

g l (X) = I f d§r I I o [ I ( )� ' CW(a) (t [J� + ·g;;) )J Il .f( o ,)) . 
r 71: E &([) \ a E n:  w(a) ( O , c x  �r. X 

Here § = { S; : 0 i C X ) ,  and ( · )  ,r , x is defined by integrating over the fields in X only. 
We obtain the following expressions for the d,u�lk> -integral in ( 5 . 1 2 . 8) :  1 0  

I I e - v��n.,(A kkl J I Il g l (XJ = e - v �.�n.,(A \;k> ) I Il gz(X,) . ( 5 . 1 3 .4) 
S y S , (X")  f i l l i n g  A (�> a {X, I  a 

Here giXJ is obtained by summing over Sy, S 5 compatible with X a (each Y, X is 
contained in X, or the corresponding component of ;1\k{<) ; 

S y . S s  c o m p a t i b l e  w i t h  X o:  
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Let us estimate g2(Xa) now. Each time some cubes are j oined into one Di by an 
e - VCk l (Y) _ 1 or an e - WJk > (X) _ 1 , we get a factor eP(Lkeje0) 1 14 - a or e - cr(ek) . Each time 
some D ;'s are j oined, we have s-derivatives, which produce functional derivatives, 
chains of covariances Cw(a)' and factors .'#' = O(e - cr(ekl) .  Functional derivatives 
hitting x-factors farther than 1 /2 r(ek) from A\k6c produce factors e - cv<ek) 2 after 
integrating with respect to A<kl " , ¢ <k l '' . These derivatives are supported at IA <k) " l  
� cp(ek) or l ¢ <k) " l � cp(ek) (here we use the fact that the translation vanishes). Thus 
we can use the arguments at the end of Sect . 1 4  in [3] to extract the factors e - cp(ek) 2 
from the Gaussian measure. Functional derivatives hitting e - vck> < Y) yield factors 
ePWe/;;0) 1 14 -

a
. Functional derivatives hitting x' -factors within tr(e

k) of Anc are 
connected through Cw<al 

to A\kj , so we get small factors e - cr(ek) from the exponential 
decay of the operators Cs and L1 in Cw(a)· Altogether we have small factors at each 
end of Co,(a) (except for contractions to F;, 10c{X,,-).) If the walk w(rx) wanders 
through more than a few cubes, we begin to pickup factors e - cr(ecl . These control 
the sum over walks and partitions, and the factorials, as in [9] . (Factorials can be 
produced when many functional derivatives hit the same object, for example a 
characteristic function.) 

Altogether, we typically get at least a small power of ef!(Lkeje0) 1 14 - a  in every 
cube of X a .  The exceptions are when cubes are in a component of A\klc, when they 
support some F;, loc(Xo-), or when X, is a single cube. We must allow for divergent 
factors such as (Lkr,) - m  at Ff. 10JXo-), where m depends on F. Estimating the sums 
over Sv, S 5,  and the sums in the cluster expansion leads to combinatoric factors 

exp((ef!(Lke/e0) 1 14 - a
)f! ' IX, ! ) , {J' > 0 .  

Such factors are easily beaten by the small factors described above for nonexcep
tional cubes. For the cubes in An or for a single cube, we have to include the 
proper volume factor in  our final estimate. 

In sum, we have the following bound or g iX,) : 

l g2(X �) I ;::? exp [(ef!(Lkeje0) 1 14 - a)f! '  ( IX ,nAnl +  1 )] 

X f1 (Lkr,) - m( o- ! )(eP(Lkcjeo ) l f4 - a
)f! ' I X, \A \�' c l . 

The product over a 1 runs over o 1 E if 1 such that X O" j  C X a or X " 1  is in a component 
of Atlc overlapping X a. If IXa l = 1 ,  with no F;, loc-factors, then we have the more 
precise bound l g 2(X ,) - 1 1 ;::? ef!(Lkeje0) 1 14  -

a
, obtained from the same estimates on 

the Sy, S 5 sums, and from extremely small factors when a x' -factor is replaced by 1 . 

5 . 14 .  Resummation and Ext raction of the Perturbation Expansion 

The estimates in the last section show that the basic volume dependence or 
pressure for our expansion is naively of the order of (eP(Lkcjc0) 1 14 - a)f!' . We need to 
do better in An the region that has been decoupled from the large field regions. 
We improve our expansion in A\k� by computing the pressure and the expectation 
of Ff. 1oc as perturbation series plus remainders of the order of (ef!(Lkeje0) 1 14 -

a
)n + 1 ,  

(ef!(Lkeje0) 1 14 - a)m + 1 , respectively. The remainder terms are s o  small that they can 
be treated like the large field effects and ignored in the expansion at the next scale. 
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The perturbative terms exhibit renormalization cancellations, and so obey the 
bounds we need for the next step. 

To extract the perturbative terms, we resum the decoupling and Mayer 
expansions in An, Note that WJk)(X)=l= O only for X at the boundary of An. Thus 
WJk)_terms will not appear in the resummed expansion. We obtain for the 
expansion in (5 . 1 3 .4) 

where 

I f1 g2(X�) =  I f1 giXa)zF(A�1) , 
{X0} a (X.} overlapping A \�)c � 

(5 . 1 4 . 1 ) 

Recall that A(k)" = A(k) , ¢ <k)n = ¢<k) in A\k1 ,  and that A(k)n has been replaced by 
(I - Q8*Q)A (k)n everywhere in the integrand. 

We treat zF(An) as follows : 

(A<k) ) - zF(A\kl) 
(l (A<k) )) zF 1 2 - -( (k ) ) exp ogz 1 2 , 

z A 1 2 
where z(An) = zF � 1 (A\kl), and we give expansions for zF/z and logz. The first 
expansion will give rise to Ff+ 1 , Joc plus remainders, the second to &f+ 1 , Joc plus 
remainders. We consider only logz for the moment. 

Define z1(A\k1) for t E  [0, 1] by replacing V(A�l) with t V(An), replacing x(cp(ed, 
(I - Qs*Q)A<k)) with x(cp(tek), (I - Qs*Q)A (k)) , and similarly for x(cp(ek), ¢<k)) . Thus 
the restrictions and the interactions disappear at t = 0, at which point we have a 
vurely Gaussian expectation. 

Thus we define perturbative terms for the action, 

and a remainder 

- (k) - fi 1 da 
(k) g>k + l (A , 2) - a�! - IX ! dta logzt(A n)l t � o , 

a (k ) _ 1 _ (1 - t)" (!L . .  !£) 9fk(A l 2) - r dt 
(n + 1 ) ! dt ' ' " ' dt t .  

Here < · )1 is the interacting expectation 

< > 1 < I - tV(k ) (A (k ) ) > · t = 
(A <k) ) · XA <k> t e  1 2 1 A <k > ,  zt 1 2 1 2 ' • 1 2  

with X� <k> 1 defined a s  above replacing p(ek) with p(tek) .  1 2 . 

( 5 . 1 4 .2) 

We express each d/dt as a sum I (d/dt)1., where (d/dt)y acts only on the t before a 
- y 

particular term v<k)( Y) in v<k) or in a particular x-factor. We cluster expand as 
before each integral making up the truncated expectation values ((d/dt) y 1 ; 
. . .  ; (d/dt)Yn +  1 \ . Let H c { 1 ,  . . .  , n + 1 }  specify which observables are included in one 
of the integrals. If J E H then we have a factor (d/dt)yj in the integral. The partition 
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{ D ;} of Ak1 i s  determined by the sets Y from e - tV <k > (YJ - 1 factors, and by sets Y 
from V(kl( Y) factors differentiated down. The expansion takes the form 

(5.14.3) 

Here H fJ C H specifies which (djdt)1, have supports intersecting X fJ· 
The polymer activity g3 is essentially the same as g2,  but with additional 

observables, namely the (d/dt) 1-factors determined by H fJ· Also, the interaction and 
characteristic functions have been partially interpolated away, and there are not 
WJkl_terms. 

If IXp l = 1 , Hp = 0, we write g3(0, Xp) = 1 + g�(0, Xp) and the above expansion 
holds again, but without the condition that {XfJ} fill An The {Xp} must cover all 
cubes connected with the (djdt)1, , j E H. Let us drop the prime, and prove that 

(5 . 1 4.4) 

We use X 13 \Hp to denote the set of cubes with no (djdt);, factors, j E HfJ" 
The proof of this estimate is similar to the one for g2 .  We mention only the new 

features . Each factor V(kl( Y) in f1 (djdt);,, produces a factor ef1(Lkc;jc;0) 1 14 - a in the 
j E Hp 

final estimate. This is obtained in tne Gaussian integration estimate, using the fact 
that V(kl( Y) is a small polynomial in A (kl ,  cj;<kl .  [The restrictions disappear as t -+0, 
so V(kl( Y) cannot be replaced by its supremum.] The factors e - tV<k l ( Yl _ 1  can be 
bounded as before, because the coefficient t in front of Vikl( Y) plus a small power of 
e
k 

easily beat the bounds A (kl ,  rfy(kl � cp(ek) .  Each ! -derivative of a x-factor in LJ (k J . ,  
gives at least a factor eil(Lk.s/c0) 1 /4 - a. This follows because with z'( 1 , x) = djdxx( 1 ,1�). 
we have 

��11 x(cp(tek), A(k)) l = l�ti�r (� p(tek)) x'( 1 , A (k)/cp(ted) l 
� ct - 1 1; ( ( 1 , A (kljcp(tek) ) i , 

and similarly the n-th derivative in t of z(cp(ek) ,  A (kl )  is bounded by t - "  times a 
function bounded by a constant and supported in c 1p( tek) � IA (k ) l  � c2p(tek) .  After 
integration over A(kJ ,  we obtain factors ct - "e - cp(tek)2 � (e11(Lk.sj.s0) 1 14 · ")" . Similar 
bounds hold for r/J(kl . The bound for H 13 = 0, IX fJ I  = 1 was obtained for g2, and the 
same proof applies here. 

Returning to our expansion, let us sum first over { H,}, the partition of H 
determined by the {X p } ·  Denote the X p 's with H p =l= 0 by X;. ;  the X fJ with Hp = 0 by 
¥0. The expansion (5.1 4.2) becomes 

I I fl g3(H;, XJ il g3(0, Yii) . 
{H.1) c 2/'(H) {X.1 ) ,  {Y 0) nonoverlapping ;' ii 

Each X1 must cover and connect all the t-derivativcs specified by H1, . Next we 
reorganize this expansion in order to extract the truncated expectation values 
(5 . 1 4.2). This involves adding and subtracting terms in a scheme familiar to one in 
[ 1  0] . We insert factors 

{0 if X, Y u(X, Y) = 
1 if X, Y 

overlap 
do not overlap , 
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and similarly factors u(X 1 , X2), u( Y1 , Y2) .  We extend the sums over {Xy } ,  { Yo} to 
nonoverlapping sets ; however the corresponding subsets of H remain the same 
no duplication of t-derivatives. We put u = 1 + a and expand in the usual manner. 
This enables us to factor out the normalization zlA\k�) to obtain 

Here 2 denotes pairs of clusters (lines) and G runs over graphs of such lines in 
which each Yo is connected directly or indirectly to some X 1 •  The connected 
components of G define a partition of H which corresponds to the partition in the 
formula 

I Il (�) ) = I Il I Il [ ;  (�) ] \ . \ j EH  dt y1 t {H� ) E i?i'(ll) r \j Ell� dt ·;1 !t 
Thus we have a formula 

where G c runs over connected graphs involving all clusters X Y' Yo, and hence all of 
H. 

We use this to give an expansion for the remainder from the perturbation 
expansion of the interaction : 

.Cflk(A�D = I WJkl'(X) . 
X c A\';J 

Here WJkl'(X) is obtained by summing only over {X1. } , ( Y1 , . . .  , Y8) which fill X, 
summing over { y i} with suppt(djdt)11 c X, and integrating over t as in (5 . 1 4.2) . It is 
now a standard exercise to estimate the expansion, using (5 . 1 4.4). The result is 

I WJkl'(X) I ;::=; (efl(Lke/Bo) 1 f4 - ay; +  1 + /l ' IX I . 
(We allow adjustments in {3, a, {3', keeping them small.) 

We make some modifications in the perturbative terms to achieve the standard 
form of the interaction, 9t+ l , Joe ·  We give random walk expansions for the 
propagators C�lk1 , C�lduk + 1) produced in this step. The leading terms, with only 
propagators c�tkl , Joe• C�lkl , Joe(uk + d, we transform further. The others, localized in 
region X, have a factor 

1�f e - cr(ek) I X I .  We also consider as remainders any terms 
whose order in 2 and e is greater than n. 

We wish to replace C�li> , Joc with q��- Recall that C�l i s  the Dirichlet inverse to 
(5 . 1 3 .2), and we define C A , Joe by cutting off the kernel when the arguments are 
separated by O(r(ek)). q�� was defined in (2.9), starting from the inverse to o*(Jk , JoJ3 
on the appropriate subspace. The replacement of C�lk> Joe with C�J Joe produces 1 2 ' ' 



Abelian Higgs Model 3 1 1 

terms localized near Anc. These terms are bounded by a small power of coupling 
constants, ef3(LkB/c0) 1 14 - a. To make the replacement of C}tJ , loc with C\��' note that 
the former always appears between two operators as (J - Qs*Q)C�J. to e(/ - Q*Q8) . 
This differs from q�� by a small, local operator, since after replacing C}tJ, loc with 
C}tJ, we have an identity 

(I - Qs*Q)C}tl(I - Q*Q') = c<kJ = C\�� + O(e - cr(ekl) . 

Thus after removing some O(e - cr(ek)) remainders, we have our standard covariance 
q��. 

We compose propagators, using also terms from 
v;,��s1(A�l). For gauge field propagators, we apply (5 . 5 . 1 1 ) .  For scalar field prop
agators, we use the identity 2.42 from [7] : 

Gk(O , uk + d + atL- 2Gk(D , uk + dQt(uk +  dC<kl(D , uk + d 
x Qk(uk +  1 )Gk(D , uk + 1 ) = GZ + 1 (D , uk + 1 ) . 

There are also small (O(e - cr( ek))) terms involving Gk , !oc(uk + d - Gk(O , uk + 1 ) , 
C\��(uk + 1 ) - C(kl(O , uk + d, and Gk + l . !oc(uk + 1 ) - Gk � 1 (0 , uk + d, and boundary 
terms as above involving C�h toc(uk + 1 ) - C\��(uk + l ) . We end up with scalar field 
propagators GZ + 1 , Joc(uk + d. For simplicity we extend the localizations of vertices in 
all diagrams back to J�l (for gauge fields we use a smooth localization function). 
This produces more boundary terms. Then the terms produced in this step 
combine with the old terms V:,��s1(A�l) to produce the full interaction £!1!f + l . Joc(A�l) . 
Altogether we have written 

v;,<��st(A�k)) +qJk + I (A\k�) =£!Pf+ l . loJA �l) + L WJkl"(X) · X 
If we put WJkl(X) = WJkl '(X) + WJkl"(X), then WJkl(X) obeys 

(k ) < {(ef3(Lks/s0) 1 14 - a)n + 1 + f3 ' 1X I , dist(X, A\k� , c) � r(ek) I W6 (X) ! = (ef3Wc/so) 1 !4 - a)f3 ' 1 X I , otherwise. 

We apply a somewhat different procedure to extract the proper perturbative 
terms from the observable. We integrate by parts in the Gaussian expectation 
( 5 . 1 4. 1  ) . Each F� Joe( X "J is a polynomial in A (k), ¢<kJ ;  those fields can be contracted 
via co variances C�/, ) or C�/k) (uk + 1 )  to other observables, to X�<kh or to the 
interaction. After ea�h integration by parts, we replace the covarian�e by q�� or 
C\��(uk + 1 ) and give a random walk expansion for the difference. For each term, let 
X be the union of the cubes covering the X"'  and the regions from the random walk 
expansion .  A connected component of X is called complete if a contraction to X�<< )  
occurs, if a term from the random walk expansion occurs, if at least m +' 1  
interactions have been differentiated down, or i f  t h e  term i s  constant (all legs 
contracted). We stop integrating by parts fields in complete components of X. 
After sufficiently many integrations by parts, all components of X will be complete. 

We break up the observable according to the connected components of X. The 
components containing contractions to X�<k ) ,  terms from the random walk 
expansions, or at least m + 1 interactions are �'alled remainder components { Xr} ·  
The other components are called constant components { XJ,  since the observable 
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there is independent of A(kl ,  qPl. We can arrange the construction so that the {Xc} 
are determined once the remainder components are specified. Summing all 
possible diagrams in Xc gives the observable for the next step there, Ft+ 1 , Joc(XJ 
Summing all terms in X,. gives an observable Fk , rem(XJ Then the result of the 
integration by parts is 

where ( · )1  is the interacting expectation at t = 1 . 
Having extracted the desired perturbative terms Ft+ J , Joc(Xc), we need to finish 

the calculation of the remainders by giving a cluster expansion for (I) F k . rem(X ,.) J 1 , 
with appropriate bounds. We use essentially the same expansion as before, Mayer
expanding V(kl( Y)'s and interpolating the Gaussian measure. Finally the polymer 
expansion u = 1 + a permits us to factor out the normalization. Without going into 
details, it is clear that the result can be written in the following form : 

In F� loc(XO" , )) = I n Gk(X,. , ) n Ft+ 1 , loc(Xc) . \a l 1 {Xr ' l  r' c : Xc cf }-1 X1 '  

The X,.. are disj oint, and each one covers at least one X"' '  the support of one of the 
observables F� loc· 

The main source of concern in estimating Gk(X,. . ) is that we only have bounds 
I F, _ 10JX a) l  � c(Lkt;) - m(c) e - m' (cl, coming from our estimates on perturbation expan
sions of observables ; similarly for Ft+ 1 , loc(XJ Here m(c), m'(c) depend on the terms 
in F in X a, or Xc By performing sufficiently many integrations by parts, we have 
arranged for enough small factors to beat these large factors in the remainder 
terms (at least if X,.. is not at the boundary of A\k�) . Near the boundary we have 
potentially large co variances C�("J Joe - Cl�� or C�/"J Joe( uk + d - Cl��( uk + 1 ), so we 1 2  . , 
make use of the proximity to A\k�

c to provide the necessary convergence. These 
considerations lead to the following estimate : 

I Gk(X) I � c(F(X)) (efl(I!'*o) 1 /4 - a)fl ' I X\ ';' Xc l  
X f1 [c(L"t;) - m(c) e - m' (c)J . 

Xa 1  C X :  dis t (X rr t •  A \�) c) < r(ek) 

To summarize the results of this section, we have 

e - v��mt(A k"J ) I n g2(XJ 
{X,} a 

{X,} overlapping A \�Jc a 
X c : X,�u X , • Ft+ l , loc(XJ exp ( - &t+ l . loc(A�kl) - � WJk)(X)) . ( 5 . 1 4 .5) 

r '  

5 . 1 5 .  Second Mayer Expansion and Scaling 
In this section we recover the induction hypothesis for k + 1 instead of k, and write 
a formula for the hole functional gk + 1 (X aJ First we Mayer-expand the irrelevant 
wt) terms : 

exp ( - I WJkl( X)) = I n ( e - W�' l (X) - 1 ) . 
x s6 x e s6 

( 5 . 1 5 . 1 ) 
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We define 

it is a region now completely free of irrelevant terms. We write 

Jl Ff + J . l oc(X J = Jl Ff + 1 , l oc(X c ·) Jl Ff + l , loc(X o- ') , c : Xc ct ;:,X r ' c '  a ' 

where {rr ' } = {c : Xc C A�U, and { c ' }  are the rest .  

3 1 3  

(5 . 1 5 .2) 

By inserting (5 . 1 4 .5 ), (5 . 1 5 . 1 ) , (5 . 1 5 .2) in (5 . 1 :L .8 ), we obtain the final form of the 
density Qf + 1 ( v, 1p ) . 

We now scale this density from nk + l ) to nk + l l , putting tpL(y) = L- (d - 2 112 
1p 1 (C 1 y). If we define 

[ d - 2  l Q(V, tp 1 ) = exp - l (logL) I T? + 1 l l QL(v, L- - <d - 2 li2 1Jl 1 ) , 

then the integral of Q(v, tp 1 ) is equal to the integral of QL(v, 11/). Thus we define the 
(k + 1 )th normalizing energy to be 

d - 2  6"k+ 1 = t&"k + E<k> +  -2 (log L) I T? + 1 > 1 . (5 . 1 5 . 3 )  

Let  us describe how the scaling affects a few of the objects that will be needed in 
the next step. Defining j<k + 1 >(p) = (iek + 1 ) - 1 log v(p) , we have that 

and thus in A �l* we have 

uk + t . b  = (Qs* v) exp [ - iekL- l ry£0k + 1 , lo caL _ , 'l *mt tf<k + 1 l] 

as in  the induction hypothesis (4.2) .  The quadratic forms become 

� (A �l ' * *j<k + n, u k + l , locA �kl ' * *j<k + 1 l ) + 1 (A �l 'tp, Ll k + 1 ,  loc(uk + dA �>'tp) . 
The interaction and observables are scaled and written as 2flk + t . lo c(A�l) and 
Fk +  1 , lo c(X " .) , respectively .  Propagators and vertices appear scaled to the L- 1 1J 
lattice. The scaled form of the normalization factors is given in  (4.6), (4.9). 

Let {Xw.}  be the components of A \k�c, and let Xw' also specify A�kl cnxw' and a 
collection {X w} of sets from the previous step. We exhibit the factorization of most 
of the terms in (h + 1 ( v ,  tp) by writing 

k 
Qk + 1 (V, 1Jl) = L J Jl duUl i A < , l c •Q� + l (V, 1jJ, {Xw• } , { u(Jl } )  {X 0, • } j = O  1 0 

k 
= Xk + 1 , A i ' l '  ll gk + 1 (Xw·H 1 Fk + L !oc(X <r ' )  [1 [Z�I , ) c*'Z�/o(uk + dJ o w ' a ' j =  0 1 0 1 0  

X exp [  - ! <Ak)' * *f(k + 
ll, O k + 1 , lo cA�1' * �f(k + 1 1 ) 

- � (A �l'tp, Llk + 1 , loc(uk + 1 )A �l ' 1Jl ) - :JjJk + l . loc(A �l) - g"k + 1 J , 
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which is in the form of our original induction hypothesis, ( 4. 1 ) . The hole functional 
has the expression 

(c X) � J ) 

n 

[ � � ::2 (X ) � YJ (A (k - I >  A (kJc X - ) x exp 
i � l i m' · k . loc 8 , 8 n w · , Uk + !  

� R(k)(L1� )c n X,n · ·  uk + 1 •  OkH k . locA (k)) 

Q!kl(A (k)c X 0 H A(kl)l - 8 n (!) ' '  uk 1- 1 ,  k k . loc 
·- . 

( 5 . 1 5 .4) 

Compatibility means that the summations run over sets associated only with 
X w ' and that the sets would have given us Xw. in the course of our constructions .  
Specifically, this implies a certain "density" of terms leading to  convergence 
factors, and compatibility of the sets with the layered structure imposed by the A�'>. 

We have discussed the estimates on many of the elements of the expansion in 

gk + 1 .  However, we cannot complete the estimates until after extracting conver
gence from the large field conditions. This is accomplished only after integrating 
over the final v, 1p in the last step. These problems, and the problem of decoupling of 
the final fields, will be considered in a subsequent paper. 
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