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The lattice Anderson model with discrete disorder

John Z. Imbrie

Abstract. Consider the Anderson tight-binding model on the lattice in any
dimension, with single-site potential having a discrete distribution taking N

values, with N large. We discuss recent work elucidating mechanisms by which
randomness localizes eigenfunctions, smooths out eigenvalue distributions, and

produces eigenvalue separation.

1. Introduction

Quantum systems with disorder present particular mathematical challenges. In
order to understand the phenomenon of localization in such systems, it is impor-
tant to get control over eigenvalue statistics, especially the density of states. The
Anderson model [And58] describes a particle on a lattice with a random potential.
If the distribution of the potential has some regularity, then one may control the
density of states using the Wegner argument [Weg81]. But this breaks down if the
potential has a discrete distribution.

The case of a binary distribution has been called the Anderson-Bernoulli model.
Localization in one dimension has been proven on the lattice [CKM87, SVW98]
and in the continuum [DSS02]. Further results on the lattice in one dimension
include improved regularity of the density of states for weak disorder [Bou12,
Bou14]. In higher dimensions, results on localization have been confined to the
continuum case [BK05], where localization was established near the bottom of the
spectrum, using a quantitative form of the unique continuation principle. This
led to several generalizations in other cases involving singular potentials [GK07,
GHK07, GK13, KT16]. Recently, the author has obtained results on localization
and eigenvalue statistics for all energies for the lattice Anderson model with discrete
disorder distribution taking N values, with N large [Imb17]. Here we present some
of the key ideas in this work.

In the course of the analysis, it was essential to obtain a degree of energy level
separation. This is a particular challenge in the case of a discrete distribution,
because degeneracies appear with positive probability in small subsystems. Thus it
is essential to demonstrate that as larger neighborhoods of a subsystem are taken
into account, the disorder has a tendency to break these degeneracies. However,
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due to the exponential decay of influence of distant random variables, the gaps
between eigenvalues may be extremely small.

It should be evident that controlling the statistical separation of eigenvalues is
important tool for the mathematical study of disordered quantum systems. The
author’s proof of many-body localization [Imb16b] was dependent on an assump-
tion on level-separation for that system. The usual Minami estimate [Min96] is
not available for discrete disorder distributions. So in order to handle the level-
separation problem, we use a method of iterated Schur complementation. A se-
quence of reductions to lower-dimensional problems with associated effective Hamil-
tonians allows a precise examination of the dependence on the disorder. The reduc-
tions are accomplished by eliminating sites or regions where the spectrum of the
effective Hamiltonian is disjoint from the energy interval of interest. The regions
that remain may be called resonant regions or resonant blocks. One may then
examine the way the spectrum of the effective Hamiltonian for a resonant block
depends on the disorder. We use the disorder in the vicinity of a resonant block to
produce eigenvalue movement and separation.

2. Model and Results

We work on a rectangular sublattice Λ ⊂ Zd. The Anderson model Hamiltonian
is

(2.1) H = −γ∆ + v,

where ∆ is the lattice Laplacian and v is multiplication by the lattice potential vx,
x ∈ Λ. We assume that {vx}x∈Λ is a collection of iid random variables, each with a
uniform distribution on {0, 1

N−1 ,
2

N−1 , . . . , 1}, with N an integer much greater than
1. This generalizes the Anderson-Bernouilli model, which corresponds to N = 2.
The diagonal entries of H are 2dγ+vx, and the off-diagonal part of H is γJ , where

(2.2) Jxy =

{
1, if |x− y| = 1;

0, otherwise,

and |x| =
∑d
i=1 |xi|.

In stating our results, we use a parameter p > d, a sufficiently large constant
that serves as the exponent for log-Hölder continuity of the density of states. We
take N sufficiently large, depending on p. Then we take γ ≤ ε20, where ε ≡ 1

N−1 .

Let Iδ(E) = [E − δ, E + δ], and let N (I) denote the number of eigenvalues of
H in I. Let {Eβ , ϕβ}β=1,...,|Λ| denote the eigenvalues and associated normalized
eigenvectors of H.

Theorem 2.1. Choose a sufficiently large p. Then for N sufficiently large
(depending on p) and γ sufficiently small (depending on N),

(2.3) EN
(
Iδ(E)

)
≤ |Λ|(logγ δ)

−p.

for any rectangle Λ and any δ ∈ [γdiam(Λ)/2, 1]. Furthermore, the eigenfunction
correlator satisfies

(2.4) E
∑
β

|ϕβ(x)ϕβ(y)| ≤
(
|x− y| ∨ 1

)−(p/2−d−1)
.
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Finally, the minimum eigenvalue spacing satisfies

(2.5) P
(

min
β 6=β̃
|Eβ − Eβ̃ | < δ

)
≤ |Λ|2(logγ δ)

−(p/2−1),

for any rectangle Λ and any δ ∈ [γdiam(Λ)/2, 1].

Although we only establish power-law decay of the eigenfunction correlator, we
do obtain exponential decay of the eigenfunctions, in the sense that

(2.6) P

(
max

y: |y−x|≥R

∑
β

|ϕβ(x)ϕβ(y)|γ−|x−y|/5 > 1

)
≤ R−(p/2−4d−1).

Note that (2.5) implies that the probability of an exact degeneracy in the spectrum
of H decreases as a large power of diam(Λ).

3. Resonant Blocks and Random-Walk Expansions

3.1. Schur Complement. The following lemma from [IM16] shows how to
reduce to an effective Hamiltonian on a lower-dimensional subspace. The Schur
complement gives an accurate picture of the spectrum in some neighborhood about
a target energy E.

Lemma 3.1. Let K be a (p + q) × (p + q) symmetric matrix in block form,
K = (A B

C D ), with A a p× p matrix, D a q × q matrix, and C = BT . Assume that
‖(D − E)−1‖ ≤ ε̃−1, ‖B‖ ≤ γ̃, ‖C‖ ≤ γ̃. Define the Schur complement with respect
to λ:

(3.1) Fλ ≡ A−B(D − λ)−1C.

Let ε̃ and γ̃/ε̃ be small, and |λ− E| ≤ ε̃/2. Then

(1) If ϕ is an eigenvector for Fλ with eigenvalue λ, then
(
ϕ,−(D− λ)−1Cϕ

)
is an eigenvector for K with eigenvalue λ, and all eigenvectors of K with
eigenvalue λ are of this form.

(2)

(3.2) ‖Fλ − FE‖ ≤ 2
( γ̃
ε̃

)2

|λ− E|.

(3) The spectrum of K in [E − ε̃/2, E + ε̃/2] is in close agreement with that
of FE in the following sense. If λ1 ≤ λ2 ≤ . . . ≤ λm are the eigenvalues
of K in [E− ε̃/2, E+ ε̃/2], then there are corresponding eigenvalues λ̃1 ≤
λ̃2 ≤ . . . ≤ λ̃m of FE, and |λi − λ̃i| ≤ 2(γ̃/ε̃)2|λi − E|.

Proof. The first statement follows from the fact that
(

(A B
C D )− λ

) ( ϕ
ϕ̃

)
= 0 if

and only if Cϕ+ (D − λ)ϕ̃ = 0 and (Fλ − λ)ϕ = 0. The second statement follows
by writing

(3.3) FE − Fλ = B(D − E)−1(λ− E)(D − λ)−1C.

and using the assumed bounds on each factor. The last statement follows from
Weyl’s inequality and (3.2). �

The lemma provides an algorithm for finding the eigenvalues of K near E.
Again using Weyl’s inequality and (3.2), we see that the eigenvalues of Fλ are
Lipschitz continuous functions of λ, with a small Lipschitz constant. Therefore, the
eigenvalues of K near E may be found using a fixed point argument, to solve the
condition λ ∈ specFλ.
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3.2. First Step. The spectrum of H = −γ∆ + v is contained in the interval
[0, 1+4dγ]. Let us work in the vicinity of some energy E in this interval. Each vx is
a multiple of 1

N−1 in [0, 1] in [0, 1], so the spacing between these values is ε ≡ 1
N−1 .

Let us define ε1 ≡ ε/3. We say that a site x is resonant to E if vx + 2dγ ∈ Iε1(E).
It should be clear that at most one potential value vx will permit x to be resonant
to E. Thus the probability that x is resonant to E is bounded by 1

N < ε. Since N
is large, the set of resonant sites will typically be a dilute subset of Λ. We denote
this subset by R(1).

It is natural to use the set of resonant sites as the basis for a block decomposition
of the Hamiltonian:

(3.4) H =

(
A(1) B(1)

C(1) D(1)

)
,

with A(1) denoting the restriction of H to the subspace with indices in R(1), and
D(1) denoting the restriction to the space with indices in Λ \ R(1). This leads to
the Schur complement

(3.5) F
(1)
λ ≡ A(1) −B(1)(D(1) − λ)−1C(1).

We may decompose D(1) into diagonal and off-diagonal parts:

(3.6) D(1) = W (1) − V (1),

with W
(1)
xy = (2dγ + vx)δxy and V

(1)
xy = γJxy. Let us take λ − E ≤ ε1/2, so that

(2dγ + vx − λ)−1 ≤ 2/ε1 for x ∈ Λ \R(1). Then the Neumann series

(3.7) (D(1) − λ)−1 = (W (1) − λ)−1 + (W (1) − λ)−1V (1)(W (1) − λ)−1 + . . .

converges for γ small. Since V (1) induces nearest-neighbor steps, we may expand the
matrix products to obtain a random-walk expansion for

[
B(1)(D(1) − λ)−1C(1)

]
xy

as a sum of graphs from x to y, with bounds that decay exponentially in the

length of the walk. Thus the Schur complement matrix F
(1)
λ has long-range (but

exponentially decaying) interactions.
To set the stage for the next step, we introduce a sequence of length scales,

(3.8) Lk = L02k, k = 1, 2, . . . ,

where L0 to be a large integer, whose choice will depend on the value of p. We
form connected components of R(1) by declaring that x and y are connected if
|x − y| ≤ Lα1 , with α ≡ 3

2 . Let B1 denote one of these components. Then let B̄1

denote the set of lattice points within a distance 2L1 of B1. Each component or
block B1 will be considered an indivisible unit (the analog of a site) in subsequent
steps. We need to distinguish between small blocks satisfying diam(B1) ≤ L1 and
the rest. The small blocks are called isolated because the distance to other blocks
is much greater than their diameter. For each isolated component, we define a

localized version of F
(1)
λ :

(3.9) [F̃
(1)
λ (B1)]xy ≡ A(1)

xy −
∑

g1:x→y, g1⊆B̄1

m∏
i=1

1

2dγ + vxi − λ

m∏
j=0

V (1)
xjxj+1

.

We have written out the random-walk expansion explicitly as a sum of walks g1

from x to y, but here the walks are required to visit only sites within B̄1. The point
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is to specify for the next step what constitutes the “diagonal” part of the effective

Hamiltonian F
(1)
λ .

3.3. kth Step. As in the first step, we need to define a notion of resonance.
But this will only apply to the isolated blocks, because the others are still too
singular to participate in the next random-walk expansion (they are too large). We
define the energy window width for the kth step:

(3.10) εk ≡ γ1.6Lk , for k > 1.

This is designed to be a bit larger than anticipated bounds on the terms discarded
in (3.9). In the kth step, we are working with blocks Bk−1 that are the connected
components of the (k− 1)st resonant set R(k−1). Here connectivity is defined using

connections of length Lαk−1. For each block we have a matrix F̃
(k−1)
λ (Bk−1) that is

obtained by restricting the set of graphs that define F
(k−1)
λ to those that remain

within B̄k−1. Here the set B̄k−1 is essentially the neighborhood of width 2Lk−1

about Bk−1, but its boundary is constructed so as to maintain a distance L
√
α

j from

the sets B̄j from prior scales. These constructions are modeled on those in [FS83].

Definition 3.2. Let Bk−1 be a component of R(k−1) with k ≥ 2. We say that
Bk−1 is resonant in step k if it is isolated in step k and if

(3.11) dist
(
spec F̃

(k−1)
E (Bk−1), Ek

)
≤ εk.

The new resonant set R(k) is obtained by deleting from R(k−1) all of its com-
ponents that are isolated but not resonant in step k. As in the first step, R(k)

determines the block decomposition

(3.12) F
(k−1)
λ =

(
A(k) B(k)

C(k) D(k)

)
.

Then we may define the next Schur complement matrix

(3.13) F
(k)
λ = A(k) −B(k)(D(k) − λ)−1C(k).

In order to generate the random-walk expansion in the kth step, we restrict to
the neighborhood |λ− E| ≤ εk/2 and write

(3.14) D(k) = W (k) − V (k),

where W (k) is a block diagonal matrix formed out of blocks F̃
(k−1)
λ (Bk−1). The

“off-diagonal” matrix V (k) contains the long graphs not included in F̃
(k−1)
λ (Bk−1).

Then we expand (D(k) − λ)−1 in a Neumann series:

(3.15) (D(k) − λ)−1 = (W (k) − λ)−1 + (W (k) − λ)−1V (k)(W (k) − λ)−1 + . . . .

Working inductively, we can use bounds on the random-walk expansion to prove a
Lipschitz bound

(3.16) ‖F̃ (k−1)
λ (Bk−1)− F̃ (k−1)

E (Bk−1)‖ ≤ γ|λ− Ek|.
This is less than εk/6, because |λ−E| ≤ εk/2. This series involves only nonresonant

blocks satisfying dist
(
spec F̃

(k−1)
E (Bk−1), E

)
≥ εk, and so ‖(W (k) − λ)−1‖ ≤ 3ε−1

k .

Although this is a large factor, the graphs contributing to V (k) extend at least a
distance 4Lk−1 = 2Lk (from Bk−1 to B̄c

k−1 and back). Our inductive bounds on

the random-walk expansion imply decay like γ.85R for graphs of length R. Thus
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‖V (k)‖ ≤ γ1.7Lk , which is sufficient to control a factor of ε−1
k = γ−1.6Lk (compare

with the condition γ̃/ε̃� 1 in Lemma 3.1). See [Imb17] for further details on the
random-walk expansion bounds.

4. Density of States Smoothing from Environmental Disorder

The basic mechanism for demonstrating some degree of smoothness in the den-
sity of states is the reduction of the size of R(k) as k grows and εk shrinks. This
goes hand in hand with a decrease in N

(
Iδ(E)

)
as δ decreases. Consider the fate

of a block Bk−1 in the kth step. There are four possibilities. The block may fail to
be resonant in step k, in which case it is not part of R(k). It may join up with other
blocks in forming a component Bk of R(k). It may survive to R(k) on account of its
not being isolated. Finally, it may be isolated and resonant in step k−1 and remain
resonant in step k. In the first case, the requisite reduction in the size of R(k) does
occur. In the second and third cases, there is no reduction, but the probability is
small, due to the large size of the blocks involved. The fourth case requires careful
analysis, because we need to argue for the rarity of the set of potentials in B̄k\B̄k−1

that permit the continued resonance of Bk−1 in step k.

4.1. Influential Sites. We begin the analysis by establishing the existence
of sites with significant influence on the relevant eigenvalues. Let HX denote the

matrix obtained by restricting H to X ⊆ Λ. It is useful to note that F̃
(k−1)
λ (Bk−1)

is the same as what we would have obtained for F
(k−1)
λ (Bk−1), if we had begun

with HB̄k−1
. (This is the effect of restricting graphs to B̄k−1.) Thus, any solution

to λ ∈ spec F̃
(k−1)
λ (Bk−1) in Iεk/2(Ek) corresponds to an eigenvalue of HB̄k−1

, via
repeated application of Lemma 3.1. Likewise, the eigenfunctions ϕλ corresponding
to each such solution map to an eigenfunction ψλ of HB̄k−1

. The lemma shows

that we may write this map as ψλ = G
(k−1)
λ ϕλ, where G

(k−1)
λ is given by a product

of operators
( I
−(D(j)−λ)−1C(j)

)
mapping functions on R(j) to functions on R(j−1)

(working all the time in B̄k−1).

Lemma 4.1. Let Bk−1 be isolated in step k, i.e. diam(Bk−1) ≤ Lk−1. Let

ψ = G
(k−1)
λ ϕ, with

(
F̃

(k−1)
λ (Bk−1) − λ

)
ϕ = 0, ‖ϕ‖ = 1, and λ ∈ Iεk/2(E). Then

(HB̄k−1
− λ)ψ = 0. For any y with dist(y, B̄k−1) = 1, define the influence of y as

(4.1) Iψ(y) =

∣∣∣∣∣ ∑
x∈B̄k−1, |x−y|=1

ψ(x)

∣∣∣∣∣.
If diam(B̄k−1) < diam(Λ), then for γ small, there exists at least one y ∈ Λ \ B̄k−1

with Iψ(y) ≥ γ3.1Lk−1 .

Proof. Since ϕ is normalized, there must be a point x̄ of Bk−1 such that
|ϕ(x̄)| ≥ |Bk−1|−1/2. Let us use x̄ as the origin of coordinates in Λ. Then let us
assume that the z-coordinate runs toward a boundary face of Λ that contains no
points of B̄k−1 – this is possible because diam(B̄k−1) < diam(Λ). The construction
of B̄k−1 ensures that it extends no further than a distance 2.05Lk−1 from Bk−1. Let
zmax denote the maximal z-coordinate for points in B̄k−1. Then zmax ≤ 3.05Lk−1.

Working toward a proof by contradiction, let us suppose that there is no site
y ∈ Λ \ B̄k−1 with Iψ(y) ≥ γ3.1Lk−1 . Then for each x0 in the top layer at z = zmax



THE LATTICE ANDERSON MODEL WITH DISCRETE DISORDER 7

we have |ψ(x0)| < γ3.1Lk−1 . (Each site y with dth coordinate zmax + 1 is in Λ and is
adjacent to no more than one site of B̄k−1, so the sum in (4.1) reduces to a single
term.)

Let x be a site of B̄k−1 that is immediately below a top-layer site x0 of B̄k−1.
Let y1, . . . , y2d−1 denote the other neighbors of x0. Then

(4.2) −γ
(
ψ(x) +

2d−1∑
i−1

ψ(yi)

)
+ (2dγ + vx0

− λ)ψ(x0) = 0,

where we put ψ(x) = 0 for x /∈ B̄k−1. Observing that λ ∈ [0, 1 + 4dγ], vx0
∈ [0, 1],

we have that

(4.3) |2dγ + vx0
− λ| ≤ 1 + 2dγ.

Hence

(4.4) |ψ(x)| ≤ [ 1
γ (1 + 2dγ) + 2d− 1]γ3.1Lk−1 = ( 1

γ + 4d− 1)γ3.1Lk−1 ≤ 2
γ γ

3.1Lk−1 .

The remaining sites x in the second layer lie below a site y /∈ B̄k−1, which then must
satisfy Iψ(y) < γ3.1Lk−1 . We have already established that the other neighbors of
y satisfy |ψ(yi)| ≤ γ3.1Lk−1 . Therefore, |ψ(x)| ≤ 2dγ3.1Lk−1 (otherwise, even after a
cancellation with the other neighbors, Iψ(y) would be too large). Thus (4.4) holds
for all sites in the second layer (for γ small).

We continue this argument on successive layers, obtaining a bound

(4.5) |ψ(x)| ≤
(

2
γ

)zmax−z
γ3.1Lk−1 ≤ (2γ).05Lk−1

for the layer with d-coordinate z ≥ 0. Thus we learn that |ψ(x̄)| = |ϕ(x̄)| ≤
(2γ).05Lk−1 . This contradicts our assumption that |ϕ(x̄)| ≥ |Bk−1|−1/2 ≥ (2Lk−1 +
1)−d/2. Hence there must be at least one influential site y ∈ Λ \ B̄k−1 satisfying
Iψ(y) ≥ γ3.1Lk−1 . �

Note that this argument does not work for every lattice. For example, on the
Kagome lattice, some points are connected to more than one point at the next
level down. See Fig. 1. Indeed, on the Kagome lattice there may be compactly
supported eigenfunctions, which would be immune to the influence of disorder on
neighboring sites. In contrast, on the rectangular lattice, eigenfunctions cannot
exhibit uniform decay that is faster than an exponential [CS83].

4.2. Local Degeneracy of the Spectrum. We will need to follow the behav-
ior of the number of eigenvalues in small windows around various energies. Define
for each k and each component of R(k)

(4.6) n̂k(Bk) = the number of eigenvalues of F̃
(k)
E (Bk) in Iεk+1

(E).

Here we count eigenvalues with multiplicity.

Proposition 4.2. Let L0 be sufficiently large. Take ε = 1
N−1 to be sufficiently

small, depending on L0, and take γ ≤ ε20. Assume that Bk−1 is isolated and
resonant in step k with respect to energy E, and that diam(B̄k−1) < diam(Λ).
Assume that Bk−1 remains isolated in step k + 1, so that Bk = Bk−1. Fix all vy
for y ∈ B̄k−1. These determine a particular ȳ such that dist(ȳ, B̄k−1) = 1. Fix all
remaining vy ∈ B̄k, y 6= ȳ. Then

(4.7) n̂k(Bk) ≤ n̂k−1(Bk−1).
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Figure 1. On the Kagome lattice (left), some points are con-
nected to more than one point with smaller z-coordinate. Each
point on the rectangular lattice (right) is singly connected to the
layer below.

Furthermore,

(4.8) n̂k(Bk) < n̂k−1(Bk−1)

for all but one value of vȳ.

We outline the main ideas behind the proof. To begin, we need to produce a
useful representation for

(4.9) ∆Fλ ≡ F̃ (k−1)
λ (Bk−1)− F̃ (k)

λ (Bk),

which represents the change in the effective Hamiltonian as we expand the domain
from B̄k−1 to B̄k. This will lead to a choice of ȳ as a site adjacent to B̄k−1 with
maximum influence on the set of eigenvalues in Iεk/2(E), based on the leading term
in this representation. Lemma 4.1 provides a lower bound on this influence. We
show that higher-order terms are either smaller than the leading term, or indepen-
dent of vȳ. Then it will be possible to demonstrate sufficient eigenvalue movement
to obtain (4.8).

Let λ0 be the closest eigenvalue of F̃
(k−1)
E (Bk−1) to E. We can assume that

λ0 ∈ Iεk/9(E), because otherwise we would have that n̂(Bk) = 0, due to the rapid

contraction of energy windows. Let λ be the solution to λ ∈ spec F̃
(k−1)
λ (Bk−1)

that is closest to λ0. Using the Lipschitz continuity of F̃
(k−1)
λ (Bk−1), there is a

solution satisfying |λ− E| ≤ εk/6. Define

(4.10) n̂ = the number of eigenvalues of F̃
(k−1)
λ (Bk−1) in Iεk/2(Ek+1).

Then we have that

(4.11) n̂ ≤ n̂k−1(Bk−1),

because eigenvalues of F̃
(k−1)
E (Bk−1) outside of Iεk(E) cannot migrate into Iεk/2(E)

with the change E → λ.
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Using resolvent identities, one can show that

(4.12) ∆Fλ = G̃
(k−1)tr
λ Γ

(
HB̄k\Bk − λ

)−1
ΓG̃

(k−1)
λ ,

where

(4.13) Γxy =

{
γ, if |x− y| = 1 with one in B̄k−1 and the other in B̄k;

0, otherwise.

Here G̃
(k−1)
λ : L2(Bk−1)→ L2(B̄k−1\Bk−1) is the operator providing the extension

of the eigenfunction from Bk−1 to B̄k−1 \Bk−1. Thus G
(k−1)
λ =

( I

G̃
(k−1)
λ

)
. We may

interpret (4.12) graphically: the operators G̃
(k−1)
λ involve graphs extending from

Bk−1 to its boundary, then Γ produces a step into B̄k \ B̄k−1, and
(
HB̄k\Bk −λ

)−1

connects the two ends of the graph with walks in B̄k \ Bk. All these graphical
expansions are under control, with bounds ∼ γ.85R for graphs of length R.

Let us use a basis of normalized eigenvectors {ϕ1, . . . , ϕn̂, ϕn̂+1, . . . , ϕn} cor-

responding to eigenvalues λ1, . . . , λn̂, λn̂+1, . . . , λn. of F̃
(k−1)
λ (Bk−1). Here λ =

λ1, λ2, . . . , λn̂ are the eigenvalues in Iεk/2(Ek+1), and n = |Bk−1| is the number of
sites in Bk−1. In this basis,

(4.14) ∆Fλ,ββ̃ =
〈
ϕβ , G̃

(k−1)tr
λ Γ

(
HB̄k\Bk − λ

)−1
ΓG̃

(k−1)
λ ϕβ̃

〉
.

Define for any y ∈ B̄k \ B̄k−1 with dist(y, B̄k−1) = 1

(4.15) χy(x) =

{
1, if |x− y| = 1 and x ∈ B̄k−1;

0, otherwise.

This is the indicator function for the set of sites in B̄k−1 that are adjacent to y.
Then put

(4.16) aβ(y) ≡ 〈χy, G̃(k−1)
λ ϕβ〉.

The vector a(r)(y) = (a1(y), . . . , an̂(y)) – in particular its length-squared |a(r)(y)|2 =∑n̂
β=1 aβ(y)2 – is a measure of the influence of vy on the family of eigenvalues

{λ1, . . . , λn̂}. Choose ȳ ∈ Λ with dist(ȳ, B̄k−1) = 1 to be a site that maxi-
mizes |a(r)(y)| from amongst all neighbors of B̄k−1. Lemma 4.1 implies that
|a1(y)| ≥ γ3.1Lk−1 for at least one y adjacent to B̄k−1. Hence |a(r)(ȳ)| ≥ γ3.1Lk−1 .

Let us write

(4.17) ∆Fλ,ββ̃ =
∑
xy

aβ(x)K(x, y)aβ̃(y),

where

(4.18) K(x, y) ≡ γ2
(
HB̄k\Bk − λ

)−1

xy
= K0(x, y) +K1(x, y) +K2(x, y).

for x, y ∈ B̄k \ B̄k−1 and adjacent to B̄k−1. Here K0 is the sum of graphs for(
HB̄k\B̄k−1

−λ
)−1

that do not include the site ȳ (which means that K0 is indepen-

dent of vȳ). For K1, only the trivial graph of at ȳ is included; thus

(4.19) K1(x, y) =
γ2δxȳδȳy

vȳ + 2dγ − λ
.

The remaining graphs make up K2; they must contain ȳ and have at least three
steps.
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To proceed further, we would need to make another Schur complement, to
focus on the modes {ϕ1, . . . , ϕn̂}. But let us avoid this complication by assuming
that n = n̂. The following proposition gives the estimates needed for the proof of
Proposition 4.2.

Proposition 4.3. Let L0 be sufficiently large. Take ε = 1
N−1 to be sufficiently

small, depending on L0, and take γ ≤ ε20. Assume that Bk−1 is isolated and
resonant in step k with respect to energy Ek, and that Bk−1 remains isolated in
step k + 1, so that Bk−1 = Bk. Given E, there is a decomposition
(4.20)(

F̃
(k−1)
λ (Bk−1)− F̃ (k)

E (Bk)
)
ββ̃

=
γ2

vȳ + 2dγ − λ
a

(r)
β (ȳ)a

(r)

β̃
(ȳ) + Cββ̃ +R(vȳ)ββ̃ ,

where C is independent of vȳ, and

‖C‖ ≤ γεk(4.21)

‖R(vȳ)‖ ≤ γ2.5|a(r)(ȳ)|2.(4.22)

Proof. We put
(4.23)

F̃
(k−1)
λ (Bk−1)− F̃ (k)

E (Bk) =
(
F̃

(k−1)
λ (Bk−1)− F̃ (k)

λ (Bk)
)
−
(
F̃

(k)
λ (Bk)− F̃ (k)

E (Bk)
)
.

Consider the first term in (4.23), which corresponds to (4.17). The K1 term
appears explicitly in (4.20). The K0 term may be denoted C(1); it is independent
of vȳ, and has a minimum decay distance 4Lk−1 = 2Lk from the trip from Bk−1 to

B̄k \ B̄k−1 and back. Thus ‖C(1)‖ ≤ γ.85·2Lk = γ1.7Lk ≤ 1
2γεk, since εk = γ1.6Lk .

Denoting the K2 term byR(1)(vȳ), recall that ȳ is defined as the site that maximizes

|a(r)(y)|, so |a(r)(y)| ≤ |a(r)(ȳ)| for all y adjacent to B̄k−1. Therefore,

(4.24) ‖R(1)(vȳ)‖ ≤
∑
xy

‖a(r)(x)a(r)(y)tr‖|K2(x, y)| ≤ 1
2γ

2.5|a(r)(ȳ)|2.

We have used the fact that the norm of an outer product matrix uwtr is bounded
by |u||w|. Also, we have used

∑
xy |K2(x, y)| ≤ 1

2γ
2.5, because the relevant graphs

are tied to a single point, ȳ, and have minimum length 3 (the leading term with
length 2 is in K0). This is a critical bound that controls remainders in terms of
|a(r)(ȳ)|2, which governs the lower bound on the leading term.

The second term of (4.23) may be written as a sum of C(2) + R(2)(vȳ), with

C(2) = F̃
(k−1)
λ (Bk−1)− F̃ (k−1)

E (Bk−1) and R(2)(vȳ) = ∆FE−∆Fλ. Note that C(2) is
independent of the potentials in B̄k \B̄k−1. It is bounded by 1

2γεk, by the Lipschitz

continuity estimate for F̃
(k−1)
λ (Bk−1), since |λ−E| ≤ εk/2. The term R(2)(vȳ) also

involves a difference |λ−E|, and as above the graphs involved span a distance 4Lk−1.
Hence it is bounded by γ1.7Lkεk ≤ γ3.3Lk ≤ 1

2γ
2.5|a(r)(ȳ)|2, because |a(r)(ȳ)|2 ≥

(γ3.1Lk−1)2 = γ3.1Lk . If we write C = C(1) + C(2), R(vȳ) = R(1)(vȳ) +R(2)(vȳ), and
combine the bounds proven above, we obtain (4.21), (4.22). �

Proof of Proposition 4.2. We will again simplify the analysis by assuming
that n = n̂. Then the inequality n̂k(Bk) ≤ n̂ is true by construction, as n̂ is the

dimension of the matrix F̃
(k)
E (Bk). Combining this fact with (4.11), we obtain (4.7).
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With λ ∈ [0, 1 + 4dγ], take any v1, v2 in the set of allowed potential values
{0, 1

N−1 ,
2

N−1 , . . . , 1}. A straightforward calculation shows that for small γ,

(4.25)

∣∣∣∣ 1

v1 + 2dγ − λ
− 1

v2 + 2dγ − λ

∣∣∣∣ ≥ 1

N
.

Consequently, there are N distinct values of (v + 2dγ − λ)−1 as v varies, and the
minimum gap between these values is 1

N .

Consider the case n̂ = 1. Then the matrix a
(r)
β (ȳ)a

(r)

β̃
(ȳ) reduces to a number

|a(r)
1 (ȳ)|2 ≥ γ3.1Lk . Likewise F̃

(k)
E (Bk) and F̃

(k−1)
λ (Bk−1) are numbers, with the

latter independent of vȳ. It is evident from Proposition 4.3 and (4.25) that the set of

values that F̃
(k)
E (Bk) takes as vȳ varies is spaced apart by at least (γ2/N)|a(r)

1 (ȳ)|2 �
εk+1. Hence there is at most one value of vȳ such that F̃

(k)
E (Bk) lies in Iεk+1

(E).
Now consider the case n̂ > 1. The spread of a Hermitian matrix is defined

as the difference between its largest and smallest eigenvalues. Weyl’s inequality
implies that

(4.26) spread(M1 +M2) ≥ |spread(M1)− spread(M2)|.

Put M1 = a(r)(ȳ)a(r)(ȳ)tr. This is a rank-one matrix, so its spread is equal to its
nonzero eigenvalue |a(r)(ȳ)|2 ≥ γ3.1Lk � εk+1.

From (4.20) we have that

(4.27) F̃
(k)
E (Bk) = F̃

(k−1)
λ (Bk−1)− γ2

vȳ + 2dγ − λ
M1 − C −R(vȳ).

Let M2 = f
(k−1)
λ − C. It should be clear that

(4.28)

∣∣∣∣spread(M2)− spread

(
γ2

vȳ + 2dγ − λ
M1

)∣∣∣∣ ≤ γ2

3N
|a(r)(ȳ)|2

for at most one value of vȳ. (The values of the second spread are spaced out by at

least (γ2/N)|a(r)
1 (ȳ)|2, so cancellation as in (4.2) can happen at most once.) The

bound on ‖R(vȳ)‖ is much smaller than this, so

(4.29) spread
(
F̃

(k)
E (Bk)

)
≥
( γ2

3N
− 2γ2.5

)
|a(r)(ȳ)|2 ≥ γ2

4N
γ3.1Lk � εk+1 = γ3.2Lk ,

for all but one value of vȳ. Hence for all but one value of vȳ, at least one eigenvalue of

F̃
(k)
E (Bk) must fall outside of Iεk+1

(E). Thus we have demonstrated that n̂k(Bk) <
n̂ for all but one value of vȳ. Combining this with (4.11), we obtain (4.8). �

Remark 4.4. From (4.29) we see the importance of the fact that εk+1, the

next energy window, fits inside the proven spread for F̃
(k)
E (Bk), originating from

the lower bound on the influence of ȳ. We have already seen that εk+1 must be

larger than any of the terms not included in F̃
(k)
E (Bk), specifically graphs extending

farther than 2Lk from Bk. It is inevitable that there is a gap between the decay
rates that can be established for upper bounds and for lower bounds. Since the
upper bound for step k+ 1 must fit inside the lower bound for step k, we are forced
to use a sequence of length scales Lk that increase geometrically. Consequently,
we are only able to make use of a single random potential per annular region on
each scale. We obtain a Cantor-like spreading of the eigenvalue distribution that
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develops with the logarithm of the length scale; this leads to log-Hölder continuity
of the density of states as in (2.3).

4.3. Percolation Estimates. Proposition 4.2 gives the key result on the
manner in which n̂k(Bk), the local degeneracy of the spectrum, has a strong ten-
dency to decrease with increasing k. The fact that n̂k(Bk) fails to decrease for at
most one value of vȳ can be translated into probabilistic terms to demonstrate that

the resonant regions R(k) get more and more dilute as k increases. The resonant
blocks Bk can be considered components of a multi-scale percolation problem. Ac-
curate control of this problem is a prerequisite for obtaining our main results. Here
we discuss the problem in broad terms; the details may be found in [Imb17].

The first step blocks B1 are actually the connected components of a site perco-
lation problem, where the probability that a site is occupied is bounded by 1

N < ε.

Unlike the usual site percolation problem on Zd, connectedness is defined based on
linking sites up to a distance Lα1 . Nevertheless, one can estimate the connectiv-
ity function (the probability that x and y are in the same percolation cluster) by
summing over sequences of occupied sites, each separated from the previous one
by a distance no greater than Lα1 , and including a factor of ε for each site. In
the kth step, components from the (k − 1)st step are either resonant or not. The
resonant ones are joined using connections up to a distance Lαk . Thus we have a
competition between the increasing distance over which connections are made and
the decreasing probability that components remain resonant.

The simplest situation occurs when a component satisfies n̂k−1(Bk−1) = 1,

i.e. the associated local Hamiltonian F̃
(k−1)
E (Bk−1) has only a single eigenvalue in

Iεk(E). Then if no new connection is made, then Proposition 4.2 implies that the
probability that the component remains resonant is bounded by 1

N−1 = ε. (The
probability in question is actually a conditional probability. Since we condition on
the Bk−1, B̄k−1, and the set of potentials in B̄k−1, this eliminates one of the possible
values for vȳ, as it would introduce a component B1 adjacent to B̄k−1, which is
incompatible with the definition of B̄k−1. Hence the denominator is N − 1, not N .
A similar situation occurs for ordinary site percolation: if B is a component, then
neighbors of B are necessarily unoccupied.) If a single-site component B1 remains

resonant through step k, then the probability is bounded by εk ≤ L−qk , provided

ε is taken sufficiently small, depending on L0 and q. (Recall that Lk ≡ L02k.)
Thus we see that the procedure naturally leads to a decrease in probability as a
large inverse power of the length scale. This is sufficient also to handle sums over
∼ Lαdk sites when making connections, provided q > αd. Thus we should expect
the connectivity function to decay as a large power p = q − αd, when q is large
enough. However, there is a complication in the multi-scale situation when two
components, each with probability L−pk−1, are connected at a distance Lαk . Then we

require (L−pk−1)2 ≤ L−αpk , which means that α must be less than 2. On the other
hand, to preserve exponential decay of the random-walk expansion, we require that
α > 1, so that the fraction of decay lost due to gaps at resonant blocks is summable.
These limitations on α go back to [FS83].

Finally, let us consider the complication that arises when a component has
multiple eigenvalues in the window, i.e. n̂k−1(Bk−1) > 1. (This is only an issue
if no new connections are made, since new connections entail sufficient smallness,
as discussed above.) Then we may fail to get the anticipated factor of ε when
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going to the next scale. However, Proposition 4.2 shows that if this happens,
n̂k(Bk) < n̂k−1(Bk−1) = 1. Thus there can be a delay in the accumulation of
factors of ε while the degeneracy works its way down to 1. However, an n-fold
degeneracy can only occur for a component of size n or more. Thus we have n
factors of ε available at the start, and these are sufficient to make up for what is
missing due to degeneracies. As mentioned earlier, the density of states problem is
intertwined with the problem of degeneracy breaking or level separation.

Let us conclude this section by stating a bound on the connectivity function
for the percolation problem in step k. It is a straightforward application of the

percolation estimates of [Imb17]. Let Q(k)
xy denote the probability that x and y

are in the same component Bk of R(k). Then for any sufficiently large p, we may
choose N sufficiently large (and γ sufficiently small) so that

(4.30) Q(k)
xy ≤ ε1/4

(
|x− y| ∨ Lk−1

)−p
.

5. Proof of Main Results

5.1. Density of States. We are ready to prove statement (2.3) of Theorem
2.1, which is that EN (Iδ(E)) ≤ |Λ|(logγ δ)

−p. As we are primarily interested in
small δ, let us consider the case where

(5.1) εk+1/3 < δ ≤ εk/3

for some k ≥ 2. In Theorem 2.1 we restrict to δ > γdiam(Λ)/2; this is to ensure
that value of k determined by (5.1) is such that that diam(B̄k−1) < diam(Λ), as
required by Proposition 4.2. (Once this is no longer true, we run out of random
variables to continue the smoothing process.)

By repeated application of Lemma 3.1, we can see that the number of eigen-

values in Iεk/3(E) is bounded by |R(k)|, the dimension of the space on which F
(k)
E

acts. The probability that x ∈ R(k) may be bounded by L−pk−1 by taking y = x in

the connectivity function (4.30). Then using (5.1) and εk+1 = γ6.4Lk−1 , we obtain

EN
(
Iδ(E)

)
≤ EN

(
Iεk/3(E)

)
≤
∑
x

P
(
x ∈ R(k)

)
≤ |Λ|ε1/4L−pk−1 = |Λ|ε1/4

(
1

6.4 logγ εk+1

)−p ≤ |Λ|(logγ δ)
−p.

(5.2)

5.2. Energy-Following Procedure. Before proceeding to the other state-
ments in Theorem 2.1, we need to discuss a new tool, which we call the energy-
following procedure (EFP). There is a problem that arises from the fact that the
eigenfunction correlator involves a sum over all eigenvalues, not just those that lie
in a predetermined interval. Likewise, the statement on the minimum eigenvalue
spacing applies to all eigenvalues of H. One cannot simply choose eigenvalues as the
center points for energy windows, because they depend on the potentials throughout
Λ, and we would lose the independence that is a crucial aspect of our percolation
estimates. Nor can one consider a complete system of overlapping energy windows,
because our windows are too narrow (and the probabilities are not small enough)
to control the sum over all cases. (This strategy only works if the density of states
is Hölder continuous with exponent greater than 1

2 – see [CGK09].) The energy-
following procedure was first introduced in [IM16] to deal with these issues in the
context of the block Anderson model.
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To deal with this issue, we construct all the eigenvalues through a sequence of
successive approximations that are generated as the length-scale induction proceeds.
Thus we allow the center point for energy windows to depend on k. To initiate the
procedure, we choose a site x ∈ Λ and let E1 = 2dγ + vx, the diagonal entry of H

at x. Then we choose E2 to be one of the solutions to λ ∈ spec F̃
(1)
λ (Bx,1) in Iε1/3,

where Bx,1 is the component of R(1) containing x. Continuing in this fashion, we
obtain in each step a better approximate eigenvalue. Once Lk exceeds the diameter
of Λ, the approximate eigenvalue becomes an exact eigenvalue of H. One can show
that the EFP is complete, in the sense that every eigenvalue of H can be obtained
by some sequence of choices E1, E2, . . .. The key feature of the procedure is its
quasilocality. This is the property that each Ek depends only on the potential in a
neighborhood of x whose radius is some multiple of Lk (and subsequent corrections

to the energy are exponentially small in Lk, with probability ∼ 1 − L−pk ). The
way the energies are chosen, each Bx,k is automatically resonant, but we preserve
the conditional independence of events defined in terms of the potentials outside
B̄x,k. Thus with minor modifications (in particular p becomes p/2− 1), we obtain
percolation estimates such as (4.30). The fact that the initial basis can be deformed
into the eigenvector basis by means of quasilocal rotations has played a major role
in the theory of many-body localization, see [IRS17] for a review. This was first
established in the Anderson model in [Imb16a], and in the many-body context in
[Imb16b], under an assumption on level statistics.

5.3. Eigenfunction Correlator and Level Spacing. Here we give a brief
discussion of the proofs of the remaining statements in Theorem 2.1. We run the
EFP up to the final step k̄, at which point B̄x,k̄ = Λ. In the EFP each eigenfunction

can be written as G
(k̄−1)
Ek̄

ϕ(k̄−1), for some eigenvector ϕ(k̄−1) of F
(k̄−1)
Ek̄

(here Ek̄ is

the corresponding eigenvalue). Then we have
(5.3)∑
β

|ϕβ(y1)ϕβ(y2)| ≤
∑
x

∑
β reachable from x

∣∣(G(k̄−1)
Ek̄

ϕ
(k̄−1)
β

)
(y1)

(
G

(k̄−1)
Ek̄

ϕ
(k̄−1)
β

)
(y2)

∣∣.
In the second sum on the right-hand side, we are summing over all possible choices
in the energy-following procedure, starting at x. (Each β may be reachable from

more than one x.) Since G
(k̄−1)
Ek̄

decays exponentially, we may rewrite this as

(5.4)
∑
β

|ϕβ(y1)ϕβ(y2)| ≤
∑
x,z1,z2

γ.85|y1−z1|γ.85|y2−z2|Nx,z1,z2 ,

where Nx,y,z denotes the number of eigenvalues of H that can be reached via the
EFP with starting point x, and with a resonant region Bx,k̄−1 that includes y and
z. In order to bound ENx,y,z, we need to control the sum over choices in the EFP.
These are never more numerous than the size n of the blocks involved, and a factor
εn is available from the percolation estimates. Thus ENx,y,z can be controlled as if
it were a 3-point connectivity function for the percolation problem, and as in (4.30)
we obtain decay as a large inverse power of diam({x, y, z}). As a result, we can
take the expectation of (5.4) and perform the sums over x, y, z to obtain

(5.5) E
∑
β

|ϕβ(x)ϕβ(y)| ≤
(
|x− y| ∨ 1

)−(p/2−d−1)
,

which is (2.4).
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We proceed to the level-spacing statement in Theorem 2.1. We may write

(5.6) P
(

min
β 6=β̃
|Eβ − Eβ̃ | < δ

)
≤ 1

2

∑
x

ENx(δ),

where Nx(δ) is the number of eigenvalues λ0 of H that can be reached via the EFP
starting at x, and which have another eigenvalue in Iδ(λ0). Then (2.5) follows from
the estimate

(5.7) ENx(δ) ≤ 2|Λ|(logγ δ)
−(p/2−1),

where we take δ ∈ [γdiam(Λ), γ]. Let us define k by the inequality

(5.8) εk+1/4 < δ ≤ εk/4,

and again we consider only the case k ≥ 2. When we run the EFP starting at x, we
have the condition that another eigenvalue is within δ of the final eigenvalue Ek̄.
This implies that one of two things happen. In case 1, the multiplicity n̂k−1(Bx,k−1)

is greater than 1. Then the percolation estimates produce a bound L
−(p/2−1)
k−1 due

to the continuous failure of the multiplicity to drop to 1. (In the EFP, we follow an
eigenvalue, so the multiplicity cannot drop below 1, but Proposition 4.2 still leads
to a factor of ε if it fails to drop below 2.) In case 2, there is a block Bk−1 other
than Bx,k−1 satisfying

(5.9) dist
(
spec F̃

(k−1)
Ek

(Bk−1), Ek
)
≤ εk,

so it is resonant in step k and survives to R(k). Thus as in the proof of the density
of states bound (2.3), we obtain a bound of |Λ|L−pk−1 on the expectation for case 2.
Combining the two cases, we obtain (5.7) to complete the proof.
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