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Abstract: In [BEI92] we introduced a Levy process on a hierarchical lattice which is
four dimensional, in the sense that the Green’s function for the process equals 1

|x|2 . If
the process is modified so as to be weakly self-repelling, it was shown that at the critical
killing rate (mass-squared) βc, the Green’s function behaves like the free one.

Now we analyze the end-to-end distance of the model and show that its expected

value grows as a constant times
√

T log
1
8 T

(
1 + O

(
log log T

log T

))
, which is the same law

as has been conjectured for self-avoiding walks on the simple cubic lattice Z
4. The proof

uses inverse Laplace transforms to obtain the end-to-end distance from the Green’s func-
tion, and requires detailed properties of the Green’s function throughout a sector of the
complex β plane. These estimates are derived in a companion paper [BI02].
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1. Introduction

1.1. Main results. Precise calculations by theoretical physicists have established, with
the aid of some reasonable assumptions, that the end-to-end distance of a self-avoiding
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walk at time T should be asymptotic to a constant times T
1
2 log

1
8 T as T tends to infinity.

See for example [BLZ73] and additional references in [MS93]. These arguments form a
starting point for complete proofs. In our previous paper [BEI92] of this series, we started
such a program but with two major simplifications. The first is to study processes which
repel weakly as opposed to being strictly self-avoiding. The second is to replace the
simple cubic lattice by another state space, a “hierarchical lattice,” specifically designed
to facilitate the use of the renormalization group. While the renormalization group is
proposed for proving these results also on the simple cubic lattice, the method is con-
siderably simpler to apply on the hierarchical lattice.

The hierarchical lattice and some of its history have been described at length in
[BEI92]. Here we summarize that discussion and specialize it to four dimensions. The
hierarchical lattice G is the direct sum of infinitely many copies of Zn, where n = L4

for some integer L > 1 which characterizes the lattice. A typical element x ∈ G has
the form x = (. . . , x2, x1, x0) with xi ∈ Zn = {0, 1, . . . , n − 1}. All but finitely many
elements of the sequence x vanish. Let xN−1 be the first element, reading from the left,
which does not vanish. We define a G-invariant ultra-metric on G by

dist(x, y) ≡ |x − y|, |x| ≡
{

0 if x = (. . . 0)

LN if x = (. . . , xN−1, xN−2, . . . , x0).
(1.1)

Let ω(t) be a Levy process on G such that

P(ω(t + dt) = y|ω(t) = x) = C|x − y|−6dt, (1.2)

if x �= y. In [BEI92], Proposition 2.3, we show that, with the right choice of C = C(L),
the 0-potential (Green’s function) for this process is given by

G0(x − y) ≡
∫ ∞

0
dT Ex(111{ω(T )=y})

=




1 − L−4

1 − L−2 if x = y;
1

|x − y|2 if x �= y.

(1.3)

The process ω(t) is “four dimensional” in the sense that its Green’s function is 1
|x−y|2

for x �= y. The slow decay in the law (1.2) is an ugly contrast with the simplicity of the
nearest neighbor random walk on the simple cubic lattice, but it is a necessary price for
a state space with an ultra-metric. (On such a space, a process with finite range jumps
cannot leave the ball whose radius equals the range and which is centered on the starting
position.) One consequence of (1.2) is that ω(t) does not have second moments. Thus

we will measure end-to-end distance by E0(|w(T )|α)
1
α with 0 < α < 2. At first one

might expect that if this quantity is normalized by 1√
T

it would have a limit as T → ∞.
Instead the behavior is asymptotically periodic in log T , as the following proposition
shows.

Proposition 1.1. Fix L > 1. Then for each α, 0 < α < 2, and each T ≥ 0,

lim
m→∞

1√
L2mT

E0(|ω(L2mT )|α)
1
α

exists and is a strictly positive, non-constant, bounded function Fα(T ) which satisfies
Fα(L2T ) = Fα(T ).
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We postpone the proof of this proposition and turn our attention to the self-repelling
process. Let us define τ(x) ≡ τ (T )(x) as the local time (up to time T ) that the process
spends at state x:

τ (T )(x) ≡
∫ T

0
ds 111{ω(s)=x}. (1.4)

Let

τ 2(G) ≡
∫

G
dx τ 2(x) =

∫
ds dt 111{ω(s)=ω(t)}, (1.5)

where
∫

dx is Haar measure, i.e., counting measure on G. Clearly, τ 2(G) is a measure of
how much time the process spends in self-intersecting. For each choice of a parameter
λ ≥ 0 we define a new “self repelling” process ωλ whose expectation ET

x,λ is given by

ET
x,λ( · ) ≡

Ex

(
e−λτ 2(G)( · )

)

Ex

(
e−λτ 2(G)

) . (1.6)

(Recall τ = τ (T ).) We are able to control this expectation for λ in a sector of the complex
plane containing the positive reals, although the measure may no longer be real.

The main result of this paper is

Theorem 1.2. Fix an integer L ≥ 2 and choose any 0 < α < 2. If λ is sufficiently small
with |arg λ| < π

3 , then

ET
0,λ(|ω(T )|α)

1
α =

(
1 + O(λ)

�(T −1)

)
E0

(∣∣∣ω
(
T �(T −1)

1
4

)∣∣∣
α) 1

α
, (1.7)

where with T > 1, B ≡ 1 − L−4, the logarithmic factor is

�(T −1) = 1 + O(λ) + Bλ(4 log T + log |1 + λ log T |). (1.8)

The proof relies on two results from [BI02] (henceforth referred to as paper II). See
Proposition II.6.1 and Theorem II.1.1 in the next subsection.

Conventions. In this paper log refers to the base L logarithm. While we can take any
L ≥ 2 as in [BEI92], for simplicity we restrict to the case where L is a fixed, large
integer, and λ is taken to be sufficiently small, depending on L. Proposition II.6.1, in
particular, is easier to state under these assumptions.

Theorem 1.2 describes how if a weak repulsion is switched on, the effect relative to

the process without repulsion is to rescale time by the slowly varying �(T −1)
1
4 . Thus if

we say that Proposition 1.1 gives a sense in which

|ω(T )| � c
√

T , (1.9)

then in an equivalent sense, for some c(L, λ),

|ωλ(T )| � c(L, λ)
√

T log
1
8 T

(
1 + log log T

32 log T
+ O

(
1

λ log T

))
(1.10)

as T → ∞.
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1.2. Green’s functions and the end-to-end distance. We will be using the field-theoretic
representation of the self-avoiding walk, see [BEI92]. In this representation, the length
of the walk T is integrated over, as in (1.3). We may define the Green’s function as a
Laplace transform as follows:

Gλ(β, x) ≡
∫ ∞

0
dT e−βT E0

(
e−λτ 2(G)111{ω(T )=x}

)
. (1.11)

Then, after obtaining detailed estimates of the behavior of Gλ(β, x) we can prove The-
orem 1.2 by inverting the Laplace transform to recover fixed-T quantities. This is done
in Sect. 3.

To see how this works, consider a simple random walk on Z
d , the process whose

generator is the lattice Laplacian 	. For this model we have

G(β, x) =
∫ ∞

0
dT e−βT eT 	(0, x) = (−	 + β)−1(0, x).

We may compute

∑
x

G(β, x) = 1

p2 + β

∣∣∣∣
p=0

= β−1,

∑
x

x2G(β, x) =
d∑

j=1

d2

dp2
j

1

p2 + β

∣∣∣∣
p=0

= 2dβ−2

(the lattice expressions reduce to these at p = 0). Then we may use inverse Laplace
transforms to recover the fixed-T quantities. With a > 0 we find

∑
x

P (T , x) =
∫ a+i∞

a−i∞
dβ

2πi
eβT β−1 = 1,

∑
x

x2P(T , x) =
∫ a+i∞

a−i∞
dβ

2πi
eβT 2dβ−2 = 2dT .

Here we use the residue theorem to evaluate these contour integrals. Now taking the
ratio we see that the expected value of ω(T )2 is 2dT . The plan is to show that this
argument for the case λ = 0 applies to the case λ �= 0 by approximating Gλ(β, x) by
G(βeff,N(x), x), where βeff,N(x) depends on λ, β and weakly on x.

Returning to the model on the hierarchical lattice, note that in [BEI92], cf. p. 85, we
studied

Uλ(a, x) ≡ lim

↗G

∫ ∞

0
dT E0

(
e−λτ 2(
)−aτ(
)111{ω(T )=x}

)
, (1.12)

where

τ 2(
) ≡
∫




dx τ 2(x) =
∫ T

0

∫ T

0
ds dt 111{ω(s)=ω(t)∈
}, (1.13)

τ(
) =
∫




dx τ(x) =
∫ T

0
ds 111{ω(s)∈
}. (1.14)
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Hence the difference between Uλ and Gλ lies in whether lim

↗G

lies inside or outside
∫

dT E0. In [BEI92] it was shown that there exists, for λ small, a special value ac(λ)

with the property that

Uλ(ac(λ), x) ≈ Const.

|x|2 , x → ∞.

Note that at λ = 0, ac(λ) = 0 by (1.3). It is a by-product of this paper that this ac(λ) is
the same as βc(λ) which appears in the next proposition and that Gλ = Uλ for β in a
sector to the right of βc(λ).

We study the interacting Green’s function Gλ(β, x) for (λ, β) in certain complex
domains. Let us introduce the notation

Dβ = {β �= 0 : |arg β| < bβ},
Dλ = {λ : 0 < |λ| < δ and |arg λ| < bλ},
Dβ = {β �= 0 : |arg β| < bβ + 1

4bλ + ε},
Dλ = {λ : 0 < |λ| < δ and |arg λ| < bλ + ε},

B(ρ) = {β : |β| < ρ},
Dβ(ρ) = Dβ + B(ρ),

(1.15)

where bβ > 0, bλ > 0 are fixed so as to satisfy 2bβ + 3
2bλ < 3π

2 . In particular, this means
bλ < π , bβ < 3π

4 . The number ε is fixed and small enough so that 2(bβ+ε)+ 3
2 (bλ+ε) <

3π
2 also. The number δ is chosen to satisfy the hypotheses of Proposition II.6.1 below,

and δ < δ̄ is chosen after (depending on bλ). ρ = 1
2 by default. In order to invert the

Laplace transform with good bounds we shall require bβ > π
2 , and so bλ < π

3 . For

example, (bβ, bλ) =
(

5π
8 , π

8

)
defines an acceptable pair of domains (Dβ, Dλ). As bβ ,

bλ, ε, L are taken as fixed, we will usually not make explicit the dependence of constants
on these parameters.

Remark. A somewhat larger domain for (β, λ) defined by the conditions |2 arg β −
3
2 arg λ| < 3π

2 , |arg λ| < π , |arg β| < π could be used but for simplicity we have taken
domains which are in product form.

Our main theorem for Gλ refers to a sequence (βj , λj )j=0,1,... generated by a recur-
sion defined in paper II [BI02]. The following proposition (proven in paper II) gives all
the properties of the recursion that will be needed in this paper.

Proposition II.6.1. Let (β0, λ0) = (β, λ) be in the domain Dβ

( 1
2

) × Dλ with δ suffi-
ciently small. The sequence (βj , λj )j=0,1,... ,M is such that

λj+1 = λj −
8Bλ2

j

(1 + βj )2 + ελ,j ,

βj+1 = L2
[
βj + 2B

1 + βj

λj

]
+ εβ,j ,

(1.16)

where ελ,j , εβ,j are analytic functions of (β, λ) satisfying

|ελ,j | ≤ cL|λj |3|1 + βj |−1,

|εβ,j | ≤ cL|λj |2|1 + βj |−2.
(1.17)
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Here B = 1 − L−4, and M is the first integer such that (βM, λM) is not in the domain
Dβ

( 1
2

)× Dλ. If no such integer exists, then M = ∞.

The next proposition constructs the “stable manifold” βc(λ) for the recursion above.

Proposition 1.3. For each λ ∈ Dλ there exists βc(λ) = O(λ) with the property that
βc

n ≡ βn(β
c(λ)) = O(λn(β

c(λ))) → 0 as n → ∞. Furthermore, if β ∈ Dβ + βc(λ),
then βn ∈ Dβ + βc

n and λn ∈ Dλ for all n.

This βc(λ) is called the critical killing rate. (It is negative if λ > 0.) We define new
variables β̂ = β − βc(λ) and β̂j = βj − βc

j .
We will relate the interacting Green’s function Gλ(β, x), λ �= 0, to the free Green’s

function G0(β̂, x). As we shall see, G0(β, x) is analytic in β except for a sequence of
poles which lie in the interval [−1, 0) and which accumulate at zero. For small |x|, that
is, |β| |x|2 < 1, it resembles |x|−2. For large |x|, that is, |β| |x|2 ≥ 1, it decays as |x|−6.

Thus G0 has “range” β− 1
2 . Our next result gives the detailed behavior of G0 (see Sect. 2

for the proof).

Proposition 1.4. The following statements hold for all β ∈ Dβ .

(1)

G0(β, x) =
∑
j≥0

L−2j (1 − L−4)(1 − L−2−2j )

|x|2(1 + β|x|2L−2)(1 + β|x|2L2j )
, x �= 0.

(2)

G0(β, 0) =
∑
j≥0

L−2j 1 − L−4

1 + L2jβ
.

(3) There are positive (L-dependent) constants c1, c2 such that

c1

|x|2(1 + |β| |x|2)2 ≤ |G0(β, x)| ≤ c2

|x|2(1 + |β| |x|2)2 , x �= 0,

c1

1 + |β| ≤ |G0(β, 0)| ≤ c2

1 + |β| .

The next theorem shows how well Gλ may be approximated by G0. Provided an effec-
tive β is used for G0, the error in the approximation is proportional to an effective λ.
The proof is based on the renormalization group and the field theory representation for
Gλ. It will be treated in paper II.

Theorem II.1.1. Let λ ∈ Dλ with δ sufficiently small. Then Gλ(β, x) is analytic in β in
the domain Dβ + βc(λ) and

|Gλ(β, x) − G0(βeff,N(x), x)| ≤ O(λN(x))|G0(βeff,N(x), x)|. (1.18)

Here N(x) = log |x| for x �= 0, N(0) = 0, and βeff,j = L−2j β̂j .

As the behavior of G0 is described accurately in Proposition 1.4, this theorem gives
a correspondingly accurate picture of Gλ. We may interpret βeff,N(x) as the value of β̂

which would evolve to β̂N(x) after N(x) steps of the trivial (λ = 0) recursion β̂j+1 =
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L2β̂j . The integer N(x) is the number of steps needed to “bring 0 and x together” when
scaling and decimating the lattice as in [BEI92, p. 99].

The next proposition shows that λN(x) is something like N(x)−1 = (log |x|)−1 for

|x| ≤ β̂− 1
2 . Hence the difference Gλ − G0 in (1.18) decays more rapidly than either

term by itself (at least out to the range ≈ β̂− 1
2 ).

Proposition 1.5. For all (β̂, λ) ∈ Dβ × Dλ, the following statements hold for k =
0, 1, 2, . . . :

(1) (β̂k, λk) ∈ Dβ × Dλ.

(2) Let k
β̂

be the largest k such that |β̂k| ≤ 1 (if no such integer exists, then k
β̂

= 0).
Then

k
β̂

= O(1) + 1
2 log(1 + |β̂|−1) + 1

8 log |1 + 4Bλ log(1 + |β̂|−1)|.

(3) Let k̂ = min{k, k
β̂
}. Then

∣∣∣∣λk − λ

1 + 8Bλk̂

∣∣∣∣ ≤ c1

∣∣∣∣
λ

1 + 8Bλk̂

∣∣∣∣
2

(1 + ln(1 + |λ|k̂)).

(4) Let �k(β̂)−
1
4 ≡ βeff,k/β̂ = βkL

−2k/β̂. Then

�k(β̂) = (1 + 8Bλk̂)eO(λ).

(5) λ
β̂

≡ lim
k→∞

λk and βeff,∞ ≡ lim
k→∞

βeff,k exist, as does �(β̂) ≡ lim
k→∞

�k(β̂) =
βeff,∞/β̂ = (1 + 8Bλk

β̂
)eO(λ).

(6) Let |β̂T | ≥ 1. Then

1 + O(λ) ≤
∣∣∣∣
�k(T

−1)

�k(β̂)

∣∣∣∣ ,
∣∣∣∣∣

λk(β̂)

λk(T −1)

∣∣∣∣∣ ≤ 1 + O(λ)(1 + log |β̂T |).

(7)

∣∣∣∣∣β̂
d ln �(β̂)

dβ̂

∣∣∣∣∣ ≤ c2|λβ̂
|.

(8)

∣∣∣∣∣ln
�k(β̂)

�(β̂)

∣∣∣∣∣ ≤ O(λk)
(

1 + log(1 + |β̂k|−1)
)

.

This proposition plays a role in the proofs of Theorem 1.2 and of Theorem II.1.1. It
will be proven along with Proposition 1.3 in Sect. 4. It turns out that we can use βeff,∞
in place of βeff,N(x) in Theorem II.1.1, as the following result shows (see Sect. 2 for a
proof).

Corollary 1.6. Under the same assumptions as in Theorem II.1.1,

|Gλ(β, x) − G0(βeff,∞, x)| ≤ O(λN(x))|G0(βeff,∞, x)|. (1.19)
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1.3. Additional remarks. In this paper we use a strategy of analyzing inverse Laplace
transforms in order to obtain asymptotics as T → ∞. As a by-product we find it neces-
sary to prove the needed Green’s function estimates throughout a sector of the complex
β-plane. For some models, it may be inconvenient to have complex coupling constants,
so a natural question to ask is whether there are other ways of relating the asymptotics
as β tends to zero to the asymptotics as T → ∞. Tauberian theorems [Fel71] provide
one answer, albeit a limited one. Working on the real axis, one can show that if G(β) is
the Laplace transform of a measure µ, and G varies regularly at 0, then µ{[0, T ]} varies
regularly at infinity and has an asymptotic behavior dual to the behavior of G near zero.
So, for example, if G(β) ∼ β−a(log β)b, then µ{[0, T ]} ∼ T a(log T )b.

The first problem we encounter is that in the hierarchical model, none of the quan-
tities we work with behave regularly as β → 0 or as T → ∞. We need only look
at Proposition 1.1 to see the type of behavior characteristic of a hierarchical model:
asymptotically periodic in log T or log β. One could perhaps get around this feature
and prove a Tauberian theorem tailored to this situation, or work in a non-hierarchical
model. However, there is still the problem of relating the asymptotics of µ to the as-
ymptotics of the end-to-end distance. Tauberian theorems really only relate one type
of average (the Laplace transform) to another (µ{[0, T ]}). To obtain results about the
fixed T ensemble of walks, one needs to learn about the density for µ. In the situa-
tion at hand, ET

0,λ(|ω(T )|α) is actually a ratio of two quantities,
∫

dx Pλ(T , x)|x|α and∫
dx Pλ(T , x). These are inverse Laplace transforms of

∫
dx Gλ(β, x)|x|α̃ ∼ (β�(β)−

1
4 )−1−α̃/2 with α̃ = α or 0, respectively.

Thus while the measures behave as (T �(T −1)
1
4 )1+α̃/2, we need to know that the den-

sities behave as 1/T times this, or T α̃/2�(T −1)(2+α̃)/8. Only with this information can
we take the ratio and deduce that

ET
0,λ(|ω(T )|α) ∼ (T

1
2 �(T −1)

1
8 )α,

as described in Theorem 1.2. Without further assumptions, such as monotonicity, one
cannot conclude much about the density knowing only the behavior of the measure. One
can say that if the density has reasonable asymptotics as T → ∞, then they follow
that of µ. It should be clear, however, that working in the complex plane provides the
most complete picture of the relation between the Green’s function and the end-to-end
distance.

Related work. Iagolnitzer and Magnen [IM94] have given detailed estimates on the
decay of the critical Green’s function for the Edwards model of weakly self-repelling
polymers in four dimensions. Golowich [Gol02] extended their method into the region
Dβ \B(ε) with ε > 0. Hara and Slade [HS92] have proved that the strictly self-avoiding
walk on a simple cubic lattice Z

d for d ≥ 5 has an end-to-end distance that is asymptotic
to a constant times

√
T and a scaling limit that is Brownian motion. Golowich and

Imbrie [GI95] obtained results on the critical behavior of the broken phase (β < βc(λ))
of the hierarchical self-avoiding walk in four dimensions. Hattori and Tsuda [HT02]
have detailed results on self-avoiding walks on the Sierpiński gasket.
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2. End-to-End Distance for the Non-Interacting Walk

In this section we prove Proposition 1.4 (behavior of G0) and then use the Laplace
inversion formula to obtain the end-to-end distance and prove Proposition 1.1. We also
establish Corollary 1.6.

Proof of Proposition 1.4. From (2.15) of [BEI92] we have the following formula for
d = 4:

G0(β, x) =
∑
k≥0

L−2k 1

1 + L2kβ

(
111{|x/Lk |=0} − L−4111{|x/Lk |≤L}

)
. (2.1)

For x �= 0 this can be written as

G0(β, x) =
∑

k≥N−1

L−2k 1 − L−4

1 + L2kβ
− L−2(N−1) 1

1 + L2(N−1)β
, (2.2)

where N = N(x) = log |x|. (Recall that x → x/L means shifting the components of x

so that x/L ≡ (. . . , 0, 0, xN−1, xN−2, . . . , x1).)
We manipulate this expression in order to manifest cancellations between the two

terms. Writing 1
1+a

= 1
a

− 1
a(1+a)

with a = L2kβ and using �L−4k(1 − L−4) = 1
twice, we obtain

G0(β, x) = −
∑

k≥N−1

L−4k (1 − L−4)

β(1 + L2kβ)
+ L−4(N−1) 1

β(1 + L2(N−1)β)

=
∑

k≥N−1

L−4k(1 − L−4)

(
1

β(1 + L2(N−1)β)
− 1

β(1 + L2kβ)

)
.

Clearing denominators and using |x| = LN , j = k − N , we obtain

G0(β, x) =
∑

k≥N−1

L−4k(1 − L−4)
(L2k − L2(N−1))

(1 + L2(N−1)β)(1 + L2kβ)

=
∑
j≥0

L−2j (1 − L−4)(1 − L−2−2j )

|x|2(1 + β|x|2L−2)(1 + β|x|2L2j )

= (1−L−4)(1−L−2)

|x|2(1+β|x|2L−2)(1+β|x|2)


1+

∑
j≥1

L−2j 1−L−2−2j

1−L−2

1+β|x|2
1+β|x|2L2j


,

(2.3)

which leads to Proposition 1.4(1). For (2) we set x = 0 in (2.1):

G0(β, 0) =
∑
k≥0

L−2k 1 − L−4

1 + L2kβ

= 1 − L−4

1 + β


1 +

∑
k≥1

L−2k 1 + β

1 + L2kβ


 . (2.4)
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Proceeding to (3), we bound (2.3) from above, noting that any χ ∈ Dβ has |arg χ | <

bβ + 1
4 bλ + ε < 3π

4 and hence satisfies |1 + χ | > 2−1/2. Thus, both (1 + β|x|2) and
(1 + β|x|2L−2) are bounded below by c−1L−2(1 + |β| |x|2), and in addition,

∣∣∣∣
1 + β|x|2

1 + β|x|2L2j

∣∣∣∣ ≤ c,

uniformly in β, |x|, j , L. Hence the sum on j converges, and the desired bound
c2L

2|x|−2(1 + β|x|2)−2 as in (3) follows. For the lower bound, we need only observe
that for each j , arg(1 + β|x|2L2j ) lies between arg(1 + β|x|2) and arg β (and all three
have the same sign). Hence each factor (1 + β|x|2)/(1 + β|x|2L2j ) is in Dβ and on the
same side of the real axis. So any positive linear combination of these factors is in Dβ .
Using again the fact that |1 + χ | ≥ 2−1/2 for any χ ∈ Dβ , we obtain a lower bound of
the same form as the upper bound. Similar arguments can be applied to the second line
in (2.4), and the desired bounds on G0(β, 0) follow. �

We need to control derivatives of G0(β, x) as well.

Proposition 2.1. If β ∈ Dβ , then for x �= 0,
∣∣∣∣β

d

dβ
G0(β, x)

∣∣∣∣ ≤ cu(1 + log(1 + u−1))

|x|2(1 + u)3 , (2.5)

where u = |β| |x|2. For x = 0, put v = |β| and then
∣∣∣∣β

d

dβ
G0(β, 0)

∣∣∣∣ ≤ cv(1 + log(1 + v−1))

(1 + v)2 . (2.6)

Note that (2.5) improves the naive bound c|x|−2(1 + u)−2 that would follow from
Proposition 1.4(3). This is possible because the Green’s function is relatively insensitive
to changes in β for smaller values of |x|.
Proof. Consider what happens when β d

dβ
is applied to the right-hand side of Propo-

sition 1.4(1). Wherever the derivative acts, a new factor uL2j

1+uL2j appears after taking
absolute values. When j = −1, this is a constant times u

1+u
times our previous estimate,

c|x|−2(1 + u)−2. For j ≥ 0, the L−2j which previously controlled the sum on j is
cancelled out, leaving a bound

∑
j≥0

cu

(1 + u)(1 + uL2j )2 .

If u > 1 this is still a geometric series, but for u < 1 there are O(1 + log(1 + u−1))

terms of approximately the same magnitude before convergence sets in, and this leads
to the form of the bound (2.5).

The same steps can be applied when estimating β d
dβ

G0(β, 0). Differentiation of
(2.4) yields ∣∣∣∣β

d

dβ
G0(β, 0)

∣∣∣∣ ≤
∑
j≥0

c

(1 + vL2j )2 ,

and proceeding as above we obtain (2.6), and the proof is complete. �
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Proof of Corollary 1.6. Use the bound from Proposition II.6.1,

|Gλ(β, x) − G0(βeff,N(x), x)| ≤ O(λN(x))|G0(βeff,N(x), x)|.
Consider first x �= 0 and let N = N(x). We may apply Proposition 1.4 to the right-hand
side. Proposition 1.5(4) shows that |�k(β̂)| is essentially an increasing function of k.
Hence |�N(β̂)| ≤ c|�(β̂)|, so that |βeff,N | ≥ c−1|βeff,∞| and

O(λN)

|x|2(1 + |βeff,N | |x|2)2 ≤ O(λN)

|x|2(1 + |βeff,∞| |x|2)2 ≤ O(λN)|G0(βeff,∞, x)|. (2.7)

We also need to estimate

|G0(βeff,N , x) − G0(βeff,∞, x)|

=
∣∣∣∣∣
∫ βeff,∞

βeff,N

dβ̃

β̃
β̃

d

dβ̃
G0(β̃, x)

∣∣∣∣∣

≤ O(λN)(1 + log(1 + |β̂N |−1)) sup
β̃

uβ̃ (1 + log(1 + u−1
β̃

))

|x|2(1 + uβ̃)3 ,

where we have used Proposition 1.5(8) and (2.5) and put uβ̃ = |β̃||x|2. Let uN = |β̂N | =
|βeff,N ||x|2 ≥ c−1uβ̃ . Assuming uN < 1, we can use monotonicity to replace uβ̃ with
uN in the sup. The result is

|G0(βeff,N , x) − G0(βeff,∞, x)| ≤ O(λN)

|x|2(1 + uN)2 · uN(1 + log(1 + u−1
N ))2

1 + uN

.

The second factor on the right-hand side is uniformly bounded, and the first factor is
bounded by (2.7). IfuN ≥ 1, then log(1+|β̂N |−1) ≤ c,uβ̃(1+uβ̃)−1(1+log(1+u−1

β̃
)) ≤

c, and (1 + uβ̃)−2 ≤ (1 + c−1|βeff,∞||x|2)−2, so we are still able to obtain the bound of
(2.7). This establishes (1.19) for x �= 0.

The case x = 0 can be handled similarly. When (2.6) is combined with
∣∣∣∣ln

β

βeff,∞

∣∣∣∣ ≤ O(λ)
(

1 + log(1 + v−1)
)

as above (cf. Proposition 1.5(8) with k = 0), we obtain (1.19). This completes the
proof. �
Proof of Proposition 1.1. Let P0(T , x) be the transition probability for the Lévy pro-
cess. From the definition of G0(β, x) and the Laplace transform inversion formula, we
have

P(T , x) =
∫

dβ

2πi
eβT G0(β, x), (2.8)

where the contour is {β : β = a + iα, α ∈ R, a > 0}. We can move the contour to the
left and close it so that it encircles the poles in [−1, 0), cf. (2.2). By interchanging the
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integral over β with the sum in (2.2) and applying the residue formula, we obtain for
x = LN , N ≥ 1,

P0(T , x) =
∑

k≥N−1

L−4k(1 − L−4)e−L−2j T − L−4(N−1)e−2(N−1)T .

Using j = k − N and
∑

L−4j (1 − L−4) = 1, this becomes

P0(T , x) = L−4N
∑
j≥0

L−4j (1 − L−4)
(
e−L−2j L−2NT − e−L−2(N−1)T

)

= |x|−4f (t), (2.9)

where t = T/|x|2 and

f (t) =
∑
j≥0

L−4j (1 − L−4)
(
e−L−2j t − e−L2t

)
. (2.10)

The following proposition gives an accurate picture of the shape of P0(T , x).

Proposition 2.2. Let x �= 0. Then there are constants c1, c2 such that

c1

T 2
(

1 + |x|2
T

)3 ≤ P0(T , x) ≤ c2

T 2
(

1 + |x|2
T

)3 . (2.11)

This estimate holds also for x = 0, provided T ≥ 1. For small T , P0(T , 0) ∼ 1−O(T ).

Proof. Note that for t < 1, f (t) ∼ t . For t > 1, the sum in (2.10) is dominated by the
term with L−2j t ≈ 1, and so f (t) ∼ t−2. Overall, f (t) is bounded above and below by
positive multiples of t−2(1 + t−1)−3, which implies (2.11). To handle the case x = 0,
we use Proposition 1.4(2) and (2.8) to obtain

P0(T , 0) =
∞∑

k=0

L−4k(1 − L−4)e−L−2kT ,

which behaves as T −2 for T ≥ 1 and 1 −O(T ) for T < 1. Thus (2.11) holds for x = 0,
provided T ≥ 1. �

Continuing with the proof of Proposition 1.1, note that from (2.9), for 0 < α < 2,
we have

E0

( |ω(T )|α
T α/2

)
≡
∫

dx P0(T , x)
|x|α
T α/2

=
∑
N≥1

L4N(1 − L−4)P0(T , x)

∣∣∣|x|=LN

LαN

T α/2

=
∑
N≥1

fα(T /L2N), (2.12)
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where fα(t) = t−α/2(1 −L−4)f (t). Now we replace T by L2mT in (2.12) and find that
as m → ∞,

E0

( |x|α
(L2mT )α/2

)
=

∑
j≥1−m

fα(T /L2j ) →
∞∑

j=−∞
fα(T /L2j ).

Since fα(t) goes to zero at 0 and ∞ as a power of t , the sum on j converges at both
ends and defines a function with the properties claimed in Proposition 1.1. �

3. End-to-End Distance for the Self-Avoiding Walk

We begin with a detailed statement of the behavior of the (unnormalized) transition
probability function for the interacting model. Let

Pλ(T , x) ≡ E0

(
e−λτ 2(G)−βc(λ)T 111{ω(T )=x}

)
. (3.1)

Then Gλ(β, x) is the Laplace transform of Pλ(T , x), so as in (2.8) we have

Pλ(T , x) =
∫

dβ

2πi
e(β−βc(λ))T Gλ(β, x)

=
∫

dβ̂

2πi
eβ̂T Gλ(β, x), (3.2)

where β̂ = β − βc(λ). In this equation we may, by Theorem II.1.1 and Proposition 1.4,
choose the contour to be T −1�, where � consists of the two rays {z : |z| ≥ 1 and arg z =
±bβ} joined by an arc of the unit circle which passes across the positive real axis. Recall
that π

2 < bβ < 3π
4 and that bλ < π − 4

3bβ < π
3 .

Proposition 3.1. Let k = max{0, log |x|} and put β̂ = T −1 in λk = λk(T
−1). Likewise,

define � = �(T −1), where �(β̂) = (βeff,∞/β)−4 as per Proposition 1.5. Then with

t ≡ T �
1
4 > 1, the following estimate holds uniformly in x, T and λ ∈ Dλ:

Pλ(T , x) = �
1
4

(
P0(t, x) + O(λk)

t (1 + |x|2) (1 + |x|2/t
)2
)

= �
1
4 P0(t, x)

(
1 + O(λk)

(
t + |x|2
1 + |x|2

))
. (3.3)

Proof. Corollary 1.6 estimates Gλ in terms of G0:

Gλ(β, x) = G0(βeff,∞(β̂), x)(1 + O(λk(β̂))).

We need to replace β̂ with T −1 in part of this expression. To simplify formulas, let us
put

G0(ζ ) = G0(β̂�(ζ )−
1
4 , x),
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so that G0(βeff,∞(β̂), x) = G0(β̂). Then we have

Pλ(T , x) =
∫

dβ̂

2πi
eβ̂T

[
G0(T

−1) + O(λk(β̂))G0(β̂) + (G0(β̂) − G0(T
−1))

]

=
∫

dβ̂

2πi
eβ̂T

[
G0(β̂�− 1

4 , x) + ê1(x, β̂) + ê2(T , x, β̂)
]

= �
1
4

∫
dβ ′

2πi
eβ ′tG0(β

′, x) + e(T , x)

= �
1
4 P0(t, x) + e(T , x),

where ê1 = O(λk(β̂))G0(β̂), ê2 = G0(β̂)−G0(T
−1), and e(T , x) is the inverse Laplace

transform of their sum. We have

|ê2(T , x, β̂)| =
∣∣∣∣∣
∫ β̂

T −1
dβ̃

d

dβ̃
G0(β̃)

∣∣∣∣∣

=
∣∣∣∣∣
∫ β̂

T −1

dβ̃

β̃

(
− 1

4

)(
β̃

d

dβ̃
ln �(β̃)

)
w

∂

∂w
G0(w, x)

∣∣∣∣∣ , (3.4)

where w = β̂�(β̃)−
1
4 . Put u = |w| |x|2. Then if x �= 0, Proposition 2.1 implies that

∣∣∣∣w
∂

∂w
G0(w, x)

∣∣∣∣ ≤ cu(1 + log(1 + u−1))

|x|2(1 + u)3 ≤ c

|x|2(1 + u)2

= c

|x|2(1 + |β̂�(β̃)−
1
4 | |x|2)2

≤ c′

|x|2(1 + |β̂�− 1
4 | |x|2)2

,

where in the last step we have used Proposition 1.5(6). For x = 0, this bound has to be

replaced with c′(1 + |β̂�− 1
4 |)−1.

Continuing under the assumption that x �= 0, we use this bound and Proposition
1.5(7) to estimate (3.4) by

|ê2(T , x, β̂)| ≤
(

ln |β̂T | + 3π
4

)
supβ̃ O(λβ̃)

|x|2(1 + |β̂�− 1
4 | |x|2)2

≤
(

ln |β̂T | + 3π
4

)
supβ̃ O(λk(β̃))

|x|2(1 + |t |−1 |x|2)2 .

In the second inequality, we have used |β̃| ≥ T −1, t = T �
1
4 , and the fact that |λk(β̃)| is

essentially a decreasing function of k (cf. Proposition 1.5(3)). Note that if we use Prop-
osition 1.4 to estimate G0(β̂), we find that ê1(x, β̂) is bounded by this same expression,
only with O(λk(β̃)) replaced by O(λk(β̂)). Hence we combine the two error terms and
estimate |λk(β̃)| ≤ λk(1 + O(λ)(1 + log |β̃T |)) ≤ λk(1 + log |β̂T |) (cf. Proposition
1.5(6)) to obtain

|e(T , x)| ≤ O(λk)

T |x|2(1 + |x|2/t)2

∫

�

∣∣∣d(β̂T )eβ̂T
∣∣∣ (1 + ln |β̂T |)2.

As eβ̂T decays exponentially on the rays |arg β| = bβ , the integral is O(1) and so

|e(T , x)| ≤ O(λk)

T |x|2 (1 + |x|2/t
)2 = O(λk)�

1
4

t (1 + |x|2) (1 + |x|2/t
)2 , (3.5)
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which implies (3.3). The second statement in (3.3) follows from this by using (2.11),

with T replaced by t = T �
1
4 . We note that

|arg t | = |arg �
1
4 | = 1

4 |arg(1 + 8Bλk1/T )| + O(λ) < 1
4 |arg λ| + O(λ) < π

12 + O(λ)

(cf. Proposition 1.5(5)), and that the proof of Proposition 2.2 extends to the continuation
of P0(T , x) into this sector.

The case x = 0 is handled similarly, only |x| has to be replaced with 1 and the power
of (1 + |x|2/t) is reduced from 2 to 1. The final bound in (3.5) remains valid, however.
�
Remark. The error term in (3.3) behaves as t−1(1 + |x|2)−1 for |x|2 < t , which is not
the behavior one would expect (namely t−2, the small-x behavior of P0(t, x)). This is
an artifact of the proof, which takes an absolute value of G0 on the contour, thereby
spoiling the cancellations needed to get a bound proportional to t−2, and leading to
“Green’s function-like” rather than “transition probability-like” behavior. While (3.3) is
adequate for obtaining our main theorem on the end-to-end distance, it may be of some
interest to indicate how a better bound might be proven. Let �k(β̂) be as in Proposition

1.5 and put �k = �k(T
−1) and tk = T �

1
4
k , with k = max{0, log |x|} as in Proposition

3.1. Then we conjecture

Pλ(T , x) = �
1
4
k P0(tk, x)(1 + O(λk)). (3.6)

To get this, one need only consider |x|2 < tk as the arguments above give it for |x|2 ≥ tk .
Write

Pλ(T , x) = 1

T 2

∫
dβ̂

2πi
eβ̂T G′′

λ(β, x),

where primes denote β̂-derivatives. One should be able to replace G′′
λ(β, x) with

G′′
0(w, x) plus error terms of order λk(β̂)G′′

0(w, x), λ′
k(β̂)G′

0(w, x), and λ′′
k(β̂)G0(w, x),

wherew = β�k(β)−
1
4 . Eachβ-derivative ofG0(w, x) is actually�k(β̂)−

1
4 (1+O(λk(β̂)))

times the corresponding w-derivative, the correction term being β̂ d

dβ̂
ln �k(β̂), which

as in Proposition 1.5(7), is O(λk(β̂)). Extending the proof of Proposition 2.1 to higher
derivatives, we have

|G0(w, x)| ≤ c

|x|2(1 + u)2 = c|w|
u(1 + u)2 , | ∂

∂w
G0(w, x)| ≤ c log(1 + u−1)

(1 + u)3 ,

| ∂2

∂w2 G0(w, x)| ≤ c

|w|(1 + u)3 , | ∂3

∂w3 G0(w, x)| ≤ c

|w|2(1 + u)3 .

Extending the arguments of Lemma 4.2 to second derivatives, we expect

|λ′
k(β̂)| ≤ O(λk(β̂)2)β ′

k = O(λk(β̂)2)β̂k/β̂,

|λ′′
k(β̂)| ≤ O(λk(β̂)3)β ′

k
2 = O(λk(β̂)3)β̂2

k /β̂2.

We shall see that the factors of |βk| = |β̂L2k�k(β̂)−
1
4 | = |w| |x|2 = u in λ′

k , λ′′
k con-

trol the dangerous u−1 and log(1 + u−1) factors in G0, G′
0 respectively. Noting that

β̂/w = �k(β̂)
1
4 , we find that ê1(x, β̂) = G′′

λ − G′′
0 is bounded by
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O(λk(β̂))

w(1+u)3 �k(β̂)−
1
2 + u

β̂

O(λk(β̂)2) log(1+u−1)

(1+u)3 �k(β̂)−
1
4 + u2

β̂2
O(λk(β̂)3)w

u(1+u)2

≤ O(λk(β̂))β̂−1
(∣∣∣ β̂w

∣∣∣ |�k(β̂)|− 1
2 + |λk(β̂)| |�k(β̂)|− 1

4 + |λk(β̂)|2
∣∣∣w
β̂

∣∣∣
)

≤ O(λk(β̂))β̂−1�k(β̂)−
1
4 ≤ O(λk)β̂

−1�
− 1

4
k (1 + log |β̂T |) 5

4 .

Furthermore, e2(T , x, β̂) satisfies the same bound because
∣∣∣β̃ d

dβ̃
ln �k(β̃)

∣∣∣ ≤ O(λk(β̃))

and because the bound on wG′′′
0 is the same as the one on G′′

0. One can perform the inverse
Laplace transform on this and estimate it as in the proof of Proposition 3.1. The result is

|e(T , x)| ≤ O(λk)�
− 1

4
k , which when multiplied by T −2 =

(
tk�

− 1
4

k

)−2

≈ �
1
2
k P0(tk, x)

(cf. Proposition 2.2), leads to (3.6).

Proof of Theorem 1.2. By (3.3), we have

∫
dx Pλ(T , x)|x|α = �

1
4

(∫
dx P0(t, x)xα +

∑
k

O(λk)(L
4k − 1)Lαk

t (1 + L2k)(1 + L2k/t)2

)

= �
1
4

(
E0(|ω(t)|α) + O(λk1/T

)tα/2
)

= �
1
4 E0(|ω(t)|α)

(
1 + O(λk1/T

)
)
.

Since λk varies slowly with k and 0 ≤ α < 2, the sum on k first increases geometri-
cally, then decreases geometrically, so that the sum on k is estimated by the largest term
k = k̄, for which L2k̄ ≈ t . We have replaced k̄ with k1/T , which is allowable because at
β̂ = T −1,

β̂k̄ = β̂L2k̄�(β̂)−
1
4 |

β̂=T −1 ≈ T −1t�− 1
4 = 1,

so that k̄ ≈ k1/T . Note that Proposition 1.5(2) relates k1/T to T :

k1/T = O(1) + 1
2 log(1 + T ) + 1

8 log |1 + 4Bλ log(1 + T )| . (3.7)

In fact, we can use Proposition 1.5(3, 4, 8) to write

λk1/T
≈ λ

1 + 8Bλk1/T

≈ λ�−1
k1/T

≈ λ�−1

(equality to within a factor eO(λ)). Hence
∫

dx Pλ(T , x)|x|α = �
1
4 (E0(|ω(t)|α) + O(λ�−1)tα/2)

= �
1
4 E0(|ω(t)|α)(1 + O(λ�−1)), (3.8)

where we have used Proposition 1.1. Using (3.8) for numerator and denominator, we
obtain

ET
0,λ(|ω(T )|α) = E0(|ω(t)|α)(1 + O(λ�−1)),

which leads immediately to (1.7).
We have � = �(T −1) = (1 + 8Bλk1/T )eO(λ), by Proposition 1.5(5), and if we insert

(3.7) into this, we obtain (1.8). �
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4. The Coupling Constant Recursion and Its Fixed Point

This section begins with an inverse function theorem construction of the fixed point
βc(λ), as specified in Proposition 1.3. Then the shifted recursion for β̂ = β − βc(λ) is
controlled in some detail, and Proposition 1.3 can be established. Finally, these results
are used to prove Proposition 1.5.

As we shall see, one can prove accurate estimates on λk , βk by working inductively on
domains which extend slightly into the “dangerous” region left of βc(λ). Precise control
of β ′

k is needed in order to obtain the right domain of analyticity for Cauchy estimates.
As k → ∞, the domain shrinks back to Dβ + βc(λ) as the singularity at βc(λ) asserts
itself. Proposition II.6.1 provides the necessary input.

We wish to construct βc(λ) as the limit of the decreasing sequence of open sets
β−1

k (B( 1
2 )). But we must show that the map βk(β) and its inverse are defined in appro-

priate domains. We establish the following lemma inductively (keep in mind that λ is
fixed in Dλ; λk and βk are regarded as functions of β ≡ β0 ∈ D( 1

2 ), with primes denoting
β-derivatives).

We use the notation

lk =
∣∣∣∣∣∣
exp




k−1∑
j=0

8B

λ−1 + 8Bj



∣∣∣∣∣∣
, (4.1)

and note that this is a function of λ, k only. By integral approximation, it can easily be
shown that lk = |1 + 8Bλk|eO(λ).

Begin by considering λ0 ∈ Dλ, β0 ∈ B0 := B( 1
2 ) so that β1, λ1 are defined from

Proposition II.6.1 and satisfy the recursion (1.16) and bounds (1.17). Then we prove
bounds on β1, λ1 and their derivatives, guaranteeing that B1 = β−1

1 (B( 1
2 )) is a nonempty

subset of B( 1
3 ) on which λ1 ∈ Dλ. Then β2, λ2 can be defined on B1 and the process

continues. Once we have established a domain for βk−1, λk−1, then Proposition II.6.1
can be used to generate βk , λk .

Lemma 4.1. Let k ≥ 1. Assume that for 1 ≤ j < k,

(1) λj ∈ Dλ for β ∈ Bj−1 and

∣∣∣∣λj − 1

λ−1 + 8Bj

∣∣∣∣ ≤ c1

∣∣∣∣
1

λ−1 + 8Bj

∣∣∣∣
2

(1 + ln(1 + |λ|j)), (4.2)

with c1 a constant independent of j .

(2) For β ∈ β−1
j−1(B( 1

3 )), |λ′
j | ≤ c2|λ2

jβ
′
j | and |β ′

j | = L2j l
− 1

4
j eO(λ). Here O(λ) denotes

a quantity bounded by c3|λ|, and c2, c3 are independent of j and β.
(3) Bj := β−1

j (B( 1
2 )) is a nonempty subset of β−1

j−1(B( 1
3 )) ⊂ Bj−1.

Then Proposition II.6.1 defines βk , λk on Bk−1 and (1)–(3) hold for j = k.

Proof. To prove (4.2), rewrite the λ recursion as

λ−1
j+1 = λ−1

j + 8B

(1 + βj )2 + O(λj ),
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where we have used the fact that βj ∈ B( 1
2 ) for all 0 ≤ j < k to avoid writing some

(1 + βj )
−1 factors. This implies that

λ−1
k = λ−1 +

k−1∑
j=0

[
8B

(1 + βj )2 + O(λj )

]

= λ−1 + 8Bk + O(1)(1 + ln(1 + |λ|k)), (4.3)

where we have used

k−1∑
j=0

∣∣∣∣
1

(1 + βj )2 − 1

∣∣∣∣ =
k−1∑
j=0

O(βj ) ≤ O(βk−1) +
k−1∑
j=0

O(λj ),

k−1∑
j=0

O(λj ) ≤ O(1)

k−1∑
j=0

∣∣∣∣
1

λ−1 + 8Bj

∣∣∣∣ ≤ O(1) ln(1 + |λ|k).

The first of these bounds follows by bounding separately the set of j ’s such that |βj | >

|λj |. Once this inequality holds, it holds for all larger j ’s (with geometric growth of βj )
as is clear from (1.16). The second bound follows from (1) for smaller values of j , keep-
ing in mind that Dλ is contained in a sector which does not include the negative reals, so
λ−1 and 8Bk never come close to canceling. Using the identity λ− λ̃ = λλ̃(λ̃−1 −λ−1)

we have
∣∣∣∣λk − 1

λ−1 + 8Bk

∣∣∣∣ = λk−1

∣∣∣∣
1

λ−1 + 8Bk

∣∣∣∣O(1)(1 + ln(1 + |λ|k)), (4.4)

and (4.2) follows for λk .
We now prove that λk ∈ Dλ. Note that if δ (which defines the maximum |λ| in Dλ)

is chosen small enough, then by (4.2), |λk+1| ≤ δ. The sequence λ̃j = (λ−1 + 8Bj)−1

follows a circle tangent to the real axis at 0, so that |arg λ̃j | is decreasing in j . Further-
more, the bound (4.2) shows that any increase in |arg λj | in the exact recursion is at most
O(λ). Thus, while λk may leave Dλ, it remains in Dλ. We have now established (1).

To check (2), differentiate (1.16):

λ′
j+1 = λ′

j −
16B(λjλ

′
j − λ2

j (1 + βj )
−1β ′

j )

(1 + βj )2 + ε′
λ,j , (4.5)

β ′
j+1 = L2

[
β ′

j +
2B(λ′

j − λj (1 + βj )
−1β ′

j )

1 + βj

]
+ ε′

β,j . (4.6)

By the β ′
j bound in (2), the domain β−1

j (B( 1
2 )) includes balls of size 1

6L−2j l
1
4
j . Hence

(1.17), Cauchy’s bound, and (2) imply

|ε′
λ,j | ≤ c|λj |3|1 + βj |−1L2j l

− 1
4

j ≤ c|λj |3|1 + βj |−1|β ′
j |, (4.7)

|ε′
β,j | ≤ c|λj |2|1 + βj |−2L2j l

− 1
4

j ≤ c|λj |2|1 + βj |−2|β ′
j |, (4.8)
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for β ∈ β−1
j (B( 1

3 )). Inserting the bound (4.7) into (4.5) and using (2), we obtain

β ′
j+1 = L2β ′

j [1 − 2Bλj + O(βjλj ) + O(λ2
j )], (4.9)

which can be written in exponential form:

β ′
k = L2k exp




k−1∑
j=0

(−2Bλj + O(βjλj ) + O(λ2
j ))


 . (4.10)

Replacing λj with λ−1 + 8Bj as per (1), we pick up an error ∼ λ2
j (1 + ln(1 + |λ|j)),

which, however, is summable in j . The other terms in (4.10) also sum to O(λ), so the
β ′

k bound in (2) follows.
Moving on to the λ′

k bound, we insert (2) into (4.5):

|λ′
j+1| ≤ |λ2

jβ
′
j |(c2 + O(λj ) + O(1)), (4.11)

where ε′
λ,j has been bounded using (4.7). Putting j + 1 = k, we obtain |λ′

k| ≤ c2|λ2
kβ

′
k|,

provided c2 is chosen large enough so that L−2eO(λ)(c2 + O(1)) ≤ c2.
To complete the induction, we establish (3). Consider the one-step map βk(β

−1
k−1( · )).

On B( 1
3 ), this has been shown, cf. (2), to be defined with precise control on β ′

k . We
have previousy estimated β ′

k−1 on β−1
k−2(B( 1

3 )). Hence the composition has derivative

L2 + O(λ). In addition, the recursion (1.16) shows that βk(β
−1
k−1(0)) is O(λk). Hence

βk(β
−1
k−1(B( 1

3 ))) covers B( 1
2 ) and so β−1

k (B( 1
2 )) ⊂ β−1

k−1(B( 1
3 )). This is of course con-

tained in Bk−1, so the proof of (3) and the lemma is complete. �

Proof of Proposition 1.3. We may define

βc(λ) =
∞⋂

j=1

Bj ,

since Lemma 4.1(2,3) implies that these sets are a decreasing sequence of open sets

with diameter ≤ cL−2j l
1
4
j . Furthermore, at βc(λ), Lemma 4.1(1) holds for all j , so

λj (β
c(λ)) → 0 as j → ∞. Consider the sequence βc

n = βn(β
c(λ)). By construction,

this is a bounded sequence obeying βc
n+1 = L2βc

n + O(λn) (cf. (1.16)) and as such it
must satisfy βc

n = O(λn) → 0. In particular, βc(λ) = βc
0 = O(λ).

In order to complete the proof of Proposition 1.3, we compute the shifted recursion
which applies to β̂ = β −βc(λ). Let β̂j (β̂) = βj (β̂ +βc(λ))−βc

j denote the difference
between the flow from β and the critical flow from βc(λ). Then (1.16) becomes

λj+1 = λj −
8Bλ2

j

(1 + β̂j + βc
j )

2
+ ελ,j ,

β̂j+1 = L2
[
β̂j + 2B

(
1

1+β̂j +βc
j

− 1
1+βc

j

)
λj

]
+ εβ,j (β̂ + βc(λ)) − εβ,j (β

c(λ)).
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We control the global behavior of this recursion with another lemma. Some additional
definitions will be needed. Let k

β̂
be the largest k such that |β̂k| ≤ 1 (if no such integer

exists, then k
β̂

= 0). Then with k̂ = min{k, k
β̂
}, we define

lk(β̂) = exp




k̂−1∑
j=0

8B

λ−1 + 8Bj


 , (4.12)

and observe that |lk(β̂)| = l
k̂
, cf. (4.1).Again, integral approximation shows that lk(β̂) =

(1 + 8Bλk̂)eO(λ).

Lemma 4.2. Let Dβ(ρ) = Dβ + B(ρ). Then for (β̂, λ) ∈ Dβ( 1
4L−2kl

1
4
k ) × Dλ, the

following bounds hold with k-independent constants:

(1) λk ∈ Dλ and

∣∣∣∣λk − 1

λ−1 + 8Bk̂

∣∣∣∣ ≤ c1

∣∣∣∣
1

λ−1 + 8Bk̂

∣∣∣∣
2

(1 + ln(1 + |λ|k̂)).

(2) β̂k = β̂L2klk(β̂)−
1
4 eO(λ) ∈ Dβ( 1

3 ). If β̂ ∈ Dβ , then β̂k ∈ Dβ .

(3) |λ′
k| ≤ c2|λ2

kβ
′
k| |1 + β̂k|−1, β ′

k = L2klk(β̂)−
1
4 eO(λ). (Note that β̂ ′

k = β ′
k .)

(4) The recursion relations

β̂k+1 = L2β̂k

(
1 − 2Bλk

1 + β̂k

+ ε̂β,k

)
,

λk+1 = λk − 8Bλ2
k

(1 + β̂k)2
+ ε̂λ,k,

hold with ε̂β,k, ε̂λ,k analytic in β̂ and satisfying

|ε̂β,k| ≤ c3|λk|2 |1 + β̂k|−1, |ε̂λ,k| ≤ c4|λk|3|1 + β̂k|−1.

In addition, for β̂ ∈ Dβ

(
1
5L−2kl

1
4
k

)
,

|ε̂′
β,k| ≤ c5|λ2

kβ
′
k| |1 + β̂k|−2, |ε̂′

λ,k| ≤ c6|λ3
kβ

′
k| |1 + β̂k|−1.

Lemma 4.2 shows that if β ∈ Dβ + βc(λ) and λ ∈ Dλ, then (2) holds for all k. Thus
βk ∈ Dβ + βc

k , which completes the proof of Proposition 1.3. �

Proof of Lemma 4.2. We begin by showing (1), (2), (3) imply (4). We may assume
Lemma 4.2 for smaller values of k. Since (β̂j , λj ) ∈ Dβ

( 1
3

) × Dλ for j = 1, . . . , k,

and since β̂j − βj = βc
j = O(λ), the assumption in Proposition II.6.1 holds and the

recursion relations (1.16), (1.17) are valid.
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As βc
k = O(λk), and as 1 + β̂k is never going near 0, we can expand in βc

k in the λ

recursion, with all but the zeroth order going into the remainder. For the β recursion, we
write

1

1 + β̂k + βc
k

− 1

1 + βc
k

= −β̂k

(1 + βc
k )(1 + β̂k + βc

k )

= −β̂k

1 + β̂k

+ β̂kβ
c
k (2 + β̂k + βc

k )

(1 + β̂k)(1 + βc
k )(1 + β̂k + βc

k )
,

with the second term going into the remainder, as it is proportional to βc
k = O(λk). The

result is

λk+1 = λk − 8Bλ2
k

(1 + β̂k)2
+ ε̂λ,k

β̂k+1 = L2β̂k

[
1 − 2Bλk

1 + β̂k

+ ε̂β,k

]
,

with ε̂λ,k still of order |λk|3|1 + βk|−1 ≈ |λk|3|1 + β̂k|−1, and with

ε̂β,k = 2Bλkβ
c
k (2 + β̂k + β̂c

k )

(1 + β̂k)(1 + βc
k )(1 + β̂k + βc

k )
+ εβ,k(β̂ + βc(λ)) − εβ,k(β

c(λ))

β̂k

. (4.13)

The first term in ε̂β,k is O(λ2
k)|1 + β̂k|−1. To bound the second term, consider two

cases. First, if |β̂k| < 1
10 , then write the second term as

∫ 1

0
dθ

β̂

β̂k

ε′
β,k(θβ̂ + βc(λ)).

Note that in this case k̂ = k, lk = |lk(β̂)|, so (2) implies that β̂ ∈ B
(

1
10L−2kl

1
4
k eO(λ)

)
.

Double the size of this ball, so that Cauchy’s bound may be used. To check

the assumptions of Proposition II.6.1, observe that for 0 ≤ j ≤ k, B
(

1
5L−2kl

1
4
k eO(λ)

)
⊂

Dβ

(
1
4L−2j l

1
4
j

)
, so that (2) holds, and in particular β̂j ∈ B( 1

3 ). Hence (1.17) holds and

|εβ,k| ≤ O(λ2
k). Cauchy’s estimate then implies
∣∣∣∣∣
β̂

β̂k

ε′
β,k(θβ̂ + βc(λ))

∣∣∣∣∣ ≤
∣∣∣∣∣
β̂

β̂k

∣∣∣∣∣O(λ2
k)L

2kl
− 1

4
k ≤ O(λ2

k).

In the second case (|β̂k| ≥ 1
10 ) each εβ,j term can be estimated separately. Note that

Lemma 4.2(2) applies for 0 ≤ j ≤ k, since Dβ( 1
4L−2kl

1
4
k ) is decreasing in k. Hence

(1.17) holds, so that
∣∣∣∣∣
εβ,k(β̂ + βc(λ)) − εβ,k(β

c(λ))

β̂k

∣∣∣∣∣ ≤ O(λ2
k)|1 + β̂k|−2. (4.14)
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Proceeding to the derivatives, we use Cauchy’s estimate with the bounds just estab-

lished on ε̂β,k , ε̂λ,k . Thus if we shrink the domain to Dβ( 1
5L−2kl

1
4
k ), we have

|ε̂′
λ,k| ≤ c|λk|3|1 + β̂k|−1L2kl

− 1
4

k ≤ c|λk|3|1 + β̂k|−1|β ′
k|,

|ε̂′
β,k| ≤ c|λk|2|1 + β̂k|−2L2kl

− 1
4

k ≤ c|λk|2|1 + β̂k|−2|β ′
k|,

where we have used (3) and |lk(β̂)/ lk| ≤ O(1) to relate |β ′
k| to L2kl

− 1
4

k . The ε̂′
β,k bound

was obtained by differentiating the first term in (4.13) explicitly, and using (4.14) on the
second term. This completes the proof of (4). It also gets the induction started, since (1),
(2), (3) are trivial for k = 0.

To complete the cycle, we show that (4) (with k + 1 replaced by k) implies (1), (2),
and (3). To prove (1), proceed as in (4.3)–(4.4). In this case we have

k−1∑
j=0

[
8B

(1 + β̂j )2
+ O(λj )

|1 + β̂j |

]
= 8Bk̂ + O(1)(1 + ln(1 + |λ|k̂)),

and the bound in (1) follows. The argument for λk ∈ Dλ is unchanged. To obtain (2),
express the iteration of (4) in exponential form:

β̂k = β̂kL
2k exp




k−1∑
j=0

(
−2Bλj

1 + β̂j

+
O(λ2

j )

1 + β̂j

)
 .

The geometric growth of β̂j and (1) show that this may be expressed as in (2).
In order to prove that β̂k ∈ Dβ( 1

3 ), we need to allow for the phase change from

lk(β̂)−
1
4 in the bound of (2). Since lk(β̂) = (1 + 8Bλk̂)eO(λ), we have |arg lk(β̂)| ≤

|arg λ|+O(λ). Thus if |arg β̂| < bβ , then |arg β̂k| < bβ + 1
4 bλ +O(λ), so that β̂k ∈ Dβ

for all β̂ ∈ Dβ .

Before we may conclude that β̂k ∈ Dβ( 1
3 ) for all β̂ ∈ Dβ( 1

4L−2kl
1
4
k ), we need to

allow for the spilling out of β̂k from Dβ( 1
4 ) due to the slow variation of lk(β̂) with β̂

in the bound of (2). Consider a ball of radius 1
4L−2kl

1
4
k and centered at β̂ ∈ Dβ . The

bound in (2) shows that in the β̂k plane, it scales up to an approximate ball of radius
1
4 |l

1
4
k / lk(β̂)

1
4 | = 1

4 |l
1
4
k / l

1
4

k̂
|. As this ball may be larger than the ball of radius 1

4 centered

at β̂k , some widening of the opening angle in Dβ( 1
3 ) is needed. This is only a problem

if k > k̂ ≡ min{k, k
β̂
}, in which case β̂k > 1, by the definition of k

β̂
. We claim that

|l
1
4
k / l

1
4

k̂
| − 1 ≤ O(λ)|β̂k|, which implies that an O(λ) increase in opening angle is suffi-

cient. For a proof, observe first that |β̂k| ≥ c−1L
k−k

β̂ . This is a consequence of the fact
that β̂k has geometric growth with ratio close to L2, and the fact that by definition, β̂k

β̂

is no smaller than L−2(1 + O(λ)) = c−1. Second, a crude estimate on (4.1) gives

|l
1
4
k / l

1
4

k̂
| ≤ eO(λ)(k−k̂) ≤ |cβ̂k|O(λ).
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Letting y = ln |cβ̂k|, we may use the fact that eay − 1 < aey for a, y ≥ 0 to conclude

that |l
1
4
k / l

1
4

k̂
|−1 ≤ O(λ)|β̂k| as claimed. As a result, we have that |β̂k − z| < 1

3 for some

z with |arg z| < bβ + 1
4 bλ + ε, and so β̂k ∈ Dβ( 1

3 ).
We proceed to the proof of (3). Differentiating (4), we obtain

λ′
k+1 = λ′

k − 16B(λkλ
′
k − λ2

k(1 + β̂k)
−1β ′

k)

(1 + β̂k)2
+ ε̂′

λ,k,

β ′
k+1 = L2β ′

k

[
1 − 2B

1 + β̂k

(
λk + λ′

kβ̂k

β ′
k

− β̂kλk

1 + β̂k

)
+ ε̂β,k +

ε̂′
β,kβ̂k

β ′
k

]
.

From (3) (applied to λ′
k) and (4) we see that

|λ′
k+1| = |λ2

kβ
′
k|

|1 + β̂k|
(c2 + O(λk) + O(1)),

and as before, cf. (4.11), by choosing c2 large enough we obtain the desired bound on
λ′

k+1. Likewise we apply the inductive assumptions to each term in the β ′
k+1 equation

to obtain

β ′
k+1 = L2β ′

k

[
1 − 2Bλk

1 + β̂k

+ O(λ2
k)β̂k

|1 + β̂k|2
+ O(λk)β̂k

|1 + β̂k|2
+ O(λ2

k)

|1 + β̂k|

]
.

We put this in exponential form:

β ′
k+1 = L2(k+1) exp




k̂∑
j=0

(
−2Bλk + O(β̂kλk)

|1 + β̂k|

)
 eO(λ)

= L2(k+1)lk(β̂)−
1
4 eO(λ).

The error from replacing λk with (λ−1 + 8Bk̂)−1 (as with all the other error terms) is
summable to O(λ). �
Corollary 4.3. If (β̂, λ) ∈ Dβ × Dλ, then

k
β̂

= O(1) + 1
2 log(1 + |β̂|−1) + 1

8 log
∣∣1 + 4Bλ log(1 + |β̂|−1)

∣∣. (4.15)

Proof. If |β̂| ≥ 1, then k
β̂

= 0 and (4.15) is valid. If |β̂| < 1, then we need to solve for k

in the equation β̂k = O(1). By Lemma 4.2(2) and the fact that |lk(β̂)| = |1+8Bλk̂|eO(λ),
this can be written as

|β̂k|L2k|1 + 8Bλk|− 1
4 = O(1).

Rewrite this as
k = O(1) + 1

2 log |β̂|−1 + 1
8 log |1 + 8Bλk| ,

and solve by repeated substitution. The result can be expressed as in (4.15). �
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Proof of Proposition 1.5. (1) is just the shifted version of a statement in Proposition 1.3.
(2) is Corollary 4.3. (3) is a restatement of Lemma 4.2(1). To obtain (4), note that by
Lemma 4.2(2),

�k(β)−
1
4 = βkL

−2k/β̂ = lk(β̂)−
1
4 eO(λ) = (1 + 8Bλk̂)−

1
4 eO(λ). (4.16)

(5) follows immediately from the geometric growth of β̂k and the recursion relation and
bounds in Lemma 4.2(4). To obtain (6), consider first the ratio

∣∣∣∣
�k(T

−1)

�k(β̂)

∣∣∣∣ = eO(λ)

∣∣∣∣∣
1 + 8Bλk̂1

1 + 8Bλk̂2

∣∣∣∣∣ , (4.17)

where k̂1 = min{k, k1/T } and k̂2 = min{k, k
β̂
}. By Corollary 4.3, if |β̂T | > 1, then

O(1) ≤ k1/T − k
β̂

≤ O(1) + ( 1
2 + ε) log |β̂T |.

The same bounds hold for k̂1 − k̂2, so (4.17) implies

eO(λ) ≤
∣∣∣∣
�k(T

−1)

�k(β̂)

∣∣∣∣ ≤ eO(λ)(1 + O(λ)(1 + log |β̂T |)).

To get the same bounds on |λk(β̂)/λk(T
−1)|, note that Lemma 4.2(1) and (4.16) imply

λk(β̂) = λ

1 + 8Bλk̂
= λ

�k(β̂)
eO(λ),

so the λk(β̂)/λk(T
−1) bound is really the same as the �k(T

−1)/�k(β̂) bound.
To obtain (7), apply the recursion relations of Lemma 4.2(4) ad infinitum:

�(β̂) =
∞∏

k=0

(
1 − 2Bλk

1 + β̂k

+ ε̂β,k

)
,

(ln �(β̂))′ =
∞∑

k=0

[−2Bλ′
k

1 + β̂k

+ 2Bλkβ
′
k

(1 + β̂k)2
+ ε̂′

β,k

]
eO(λ) =

∞∑
k=0

O(λk)β
′
k

(1 + β̂k)2
.

By Lemma 4.2(2, 3), we have β ′
k = β̂kβ̂

−1eO(λ), so this can be written as

β̂−1
∞∑

k=0

O(λk)β̂k|1 + β̂k|−2 = β̂−1O(λk
β̂
) = β̂−1O(λ

β̂
),

and (7) is an immediate consequence.
Proceeding to (8), note that Lemma 4.2(4) implies that

βeff,∞
βeff,k

=
∞∏

j=k

(
1 − 2Bλj

1 + β̂j

+ ε̂β,j

)
.
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Thus we may obtain (8) from the following sequence of bounds:

∣∣∣∣ln
βeff,k

βeff,∞

∣∣∣∣ =
∞∑

j=k

[
2Bλj

1 + β̂j

+
O(λ2

j )

1 + β̂j

]

≤
k
β̂∑

j=k

O(λj ) +
∞∑

j=k
β̂

O(λ
β̂
)

|1 + β̂j |
≤ O(λk)(1 + max{k

β̂
− k, 0})

≤ O(λk)(1 + log(1 + |β̂k|−1)).

In the last step we have used the fact that since k
β̂

is defined so that β̂k
β̂

≤ 1, the recursion

implies that |β̂k| ≤ L
−(2−ε)(k

β̂
−k) for k < k

β̂
. �
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