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Abstract For a one-dimensional spin chain with random local interactions, we prove that
many-body localization follows from a physically reasonable assumption that limits the
amount of level attraction in the system. The construction uses a sequence of local unitary
transformations to diagonalize the Hamiltonian and connect the exact many-body eigenfunc-
tions to the original basis vectors.

1 Introduction

1.1 Background

The eigenfunctions of a single-particle Hamiltonian with a large random potential are local-
ized: they decay exponentially with the distance from some center. Does the phenomenon of
localization persist in a more realistic model with interacting particles? This question was
raised in Anderson’s original paper [1], and subsequent work in the physics literature [2–8]
supports the idea of many-body localization, on the basis of several theoretical perspectives
and on numerical work.

In this paper we focus on one of the simplest models wheremany-body localization should
occur. We consider the many-body spin chain Hamiltonian on the lattice� = [−K , K ′]∩Z:

H =
K ′∑

i=−K

hi S
z
i +

K ′∑

i=−K

γi S
x
i +

K ′∑

i=−K−1

Ji S
z
i S

z
i+1. (1.1)

This operates on the Hilbert space H = ⊗
i∈� C

2, with Pauli matrices

Sxi =
(
0 1
1 0

)
, Syi =

(
0 −i
i 0

)
, Szi =

(
1 0
0 −1

)
(1.2)
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operating on the i th variable. Variables outside of � are frozen (projected out), i.e. we set
Szi = 1 in (1.1) for i /∈ � for + boundary conditions. Note that H is diagonal in the basis
used above, except for the second term involving Sxi . We write γi = γ�i with γ small, and
assume hi , �i , and Ji are independent random variables, bounded by 1, with probability
densities bounded by a fixed constant ρ0.

This model has random field, random transverse field, and random exchange interactions;
it is a variant of the model studied in [6]. It should have a transition from a many-body-
localized phase for small γ or J to a thermalized phase if γ and J are large. (Note that a
tensor product basis of eigenstates can easily be constructed for H if either γ or J is zero.)
We investigate properties of general eigenstates, not just those at low energies.

The notion of localization has to be adapted to the many-body context, for a couple of
reasons. First, the configuration space includes the positions of all the particles (or the values
of all the spins). Decay in this space is too much to ask for. Second, whatever basis we choose
for H, interactions connect a given state to nearby states everywhere in space. This means
that a normalized eigenfunction will lose its amplitude exponentially with the volume.

We will examine three signs of many-body localization. First, for the above Hamiltonian,
the basis vectors are tensor products of (1, 0) or (0, 1) in each index. Thus the basis vectors
are indexed by “spin configurations” σ = {σi } ∈ {−1, 1}|�|. We have weak off-diagonal
disorder, and one might expect that the eigenfunctions resemble basis vectors, which would
imply that for most eigenstates, the expectation of Szi should be close to +1 or −1. This is
a basic signal of many-body localization for H . The analogous statement for the one-body
Anderson model is the fact that most eigenfunctions have the preponderance of amplitude
near a particular site.

The second sign has to do with the product structure of H. The Hilbert space is a tensor
product of local vector spaces (instead of a direct sum, as in the single-body problem). In the
absence of interactions, this structure carries over to the eigenstates. With weak interactions,
one should see the tensor product structure emerge at long distances. For small γ , and for
any eigenstate, correlations between local operators separated by a distance r should decay
like γ κr for some κ > 0. This is analogous to the exponential decay of eigenfunctions in the
one-body problem, but it is a decay of entanglement, rather than amplitude. (Distant spins
are very nearly in a product state.)

As in the one-body Anderson model, there should be a natural way to create a mapping
between eigenstates and basis vectors, away from a dilute set of resonant regions. This is a
third sign of many-body localization.

The second term of (1.1) is the Laplacian on the hypercube; it implements spin flips or hops
between basis vectors differing at a single site in Z. But a key difference between H and the
one-bodyAndersonmodel is the randompotential—here it consists of the first and third terms
of (1.1). There is a lack of monotonicity, and in addition the number of random variables is
only logarithmic in the dimension ofH. This creates particular challenges for rigorous work.
The term

∑
i hi S

z
i is sufficient to break degeneracies associated with individual spin flips.

However, we do not have full control over energy differences for configuration changes in
extended regions, so an assumption about local eigenvalue statistics is a prerequisite for our
results. Specifically, we prove that if a physically reasonable assumption on the separation
of eigenvalues is valid, then many-body localization holds (in the sense described above).

Our methods will apply to more general models provided they have a few key proper-
ties in common with (1.1). Specifically, there must be a tensor product basis in which the
Hamiltonian is a diagonal matrix plus a local perturbation, with all terms having random
coefficients. (Models with only some terms random, e.g. (1.1) with γi , Ji fixed, could be
considered as well, but a stronger assumption about the behavior of eigenvalue differences
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would be needed.) The dimension of the state space at a site should be finite. The diagonal
part should have local interactions (e.g. nearest-neighbor as above), and the random variables
at each site i should be able to move energy differences between pairs of basis vectors that
differ only at i . Thus one may consider certain models of interacting particles in Z with
hard-core conditions.

There is a considerable literature of rigorous work on the phenomenon of single-particle
Anderson localization, for example the proof of absence of diffusion in dimensions 2 or more
[9] and the proof of localization using the exponential decay of the average of a fractional
moment of the Green’s function [10]. The latter work also applies to Hamiltonians on the
Bethe lattice, which is relevant for models of many-body localization involving decay in
Fock space along tree-like particle cascades [2,5,11]. Like the spin chain, the Bethe lattice
exhibits an exponential growth in the number of states as a function of the diameter of the
system – this is a key problem for rigorous work on many-body localization. There are also
a number of results for a fixed number of interacting particles [12–18].

Recent results on localization in many-body systems include a proof of dynaical localiza-
tion for an isotropic random spin chain, using the Jordan-Wigner transformation to reduce
the problem to an equivalent one-body Hamiltonian [19]. Other results include a proof of an
asymptotic form of localization (in a non-random system with frustration) [20] and a proof
of localization when the disorder strength diverges rapidly with the volume [21].

1.2 Results

We will need to assume a property of limited level attraction for the Hamiltonian in boxes of
varying size:

Assumption LLA(ν,C) (Limited level attraction) Consider the Hamiltonian H in a box �

with |�| = K + K ′ + 1 = n. With the given probability distribution for {hi , �i , Ji }, its
eigenvalues satisfy

P

(
min
α �=β

|Eα − Eβ | < δ

)
≤ δνCn, (1.3)

for all δ > 0 and all n.

We show that many-body localization holds (in a sense made precise below) for γ small
enough, provided LLA(ν,C) holds for some fixed ν,C . Ideally, one would provemany-body
localization without making such an assumption. However, at this point we lack the tools
to adequately deal with such questions of level statistics. (For a step in this direction, see
[22] for a proof of a level-spacing condition for a block Anderson model.) Nevertheless,
LLA(ν,C) is a very mild assumption from the physical point of view, since randommatrices
normally have either neutral statistics (ν = 1, e.g. Poisson) or repulsive ones (ν > 1, e.g.
GOE). Indeed, the thermalized phase should have significant level repulsion [23]. In fact, we
only need (1.3) for a particular value of δ (ε̃n , where ε̃ is a small power of γ ).

For the purposes of this paper, many-body localization (MBL) consists of the following
properties of the eigenvalues and eigenstates of H :

(i) Existence of a labeling system for eigenstates by spin/metaspin configurations, with
metaspins needed only on a dilute collection of resonant blocks. (As mentioned above,
the spin variables used to label basis vectors can also be used to label the exact eigen-
states, but the correspondence becomes somewhat arbitrary in resonant regions, so we
use the term “metaspin” instead.)
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(ii) Faster-than-power-law decay of the probability of resonant blocks, which implies their
diluteness. (This is critical to the whole concept of a labeling system—without it the
labeling system would lose its meaning.)

(iii) Diagonalization of H via a sequence of local rotations defined via convergent graphical
expansions with exponential bounds. (Locality means that graphs depend only on the
random variables in their immediate vicinity.)

(iv) Bounds establishing closeness of expectations of local observables in any eigenstate to
their naïve (γ = 0) values, when observables are not in resonant regions. (This makes
precise the idea that eigenstates resemble the basis vectors.)

(v) Almost sure convergence of local energy differences and expectations of local observ-
ables as � → Z.

(vi) Exponential decay of connected correlations 〈Oi ;O j 〉α ≡ 〈OiO j 〉α − 〈Oi 〉α〈O j 〉α
in each eigenstate, except on a set of rapidly decaying probability. (This shows the
exponential loss of entanglement with distance for the subsystems associated with the
observables.)

(vii) Faster-than-power-law decay of averaged connected correlations.

The set of resonant regions will be constructed through an inductive procedure that gener-
ates local rotations to successively diagonalize the Hamiltonian. Further details and concrete
bounds will be deferred to the main body of the paper. However, we state here a theorem
that incorporates (iv), (vi), and (vii). It can be taken as a basic characterization of many-body
localization. We will need a notion of state-averaging. Let α be a label for the eigenstates
of H . Then let Avα denote the average over the 2n values of α (for a box of size n). The
average can be with uniform weights (infinite temperature) or with any normalized energy-
dependent weight function (e.g. (const) exp (−βEα), which gives the usual ensemble for
inverse temperature β).

Theorem 1.1 Let ν,C be fixed. There exists a κ > 0 such that for γ sufficiently small,
LLA(ν,C) implies the following estimates. Let 〈 · 〉α denote the expectation in the eigenstate
α. Then

EAvα

∣∣〈Sz0〉α
∣∣ = 1 − O(γ κ). (1.4)

Furthermore, for any i , j ,

max
α

|〈Oi ;O j 〉α| ≤ γ |i− j |/3 with probability 1 − (γ κ)1+c3(log(|i− j |/8∨1))2 , (1.5)

for some constant c3 > 0. Here 〈Oi ;O j 〉α ≡ 〈OiO j 〉α −〈Oi 〉α〈O j 〉α , withOi any operator
formed from products of Sxi ′ , S

y
i ′ or S

z
i ′ , for i

′ in a fixed neighborhood of i . Finally,

EAvα|〈Oi ;O j 〉α| ≤ (γ κ)1+c3(log(|i− j |/8∨1))2 . (1.6)

All bounds are uniform in �.

From (1.4), we can see that with high probability, most states have the property that the
expectation of Sz0 is close to+1 or−1, as is the case for the basis vectors. This would contrast
with a thermalized phase, wherein states resemble thermal ensembles (a consequence of the
eigenstate thermalization hypothesis—see [24–26]). At infinite temperature, thermalization
would imply that averages of eigenstate expectations of Sz0 go to zero as � → ∞ [6]. Thus
one sign of many-body localization is the violation of thermalization as in (1.4).

Another sign of many-body localization would be the absence of transport. Although
we have not looked at time-dependent quantities, essentially all of the eigenstates we have
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constructed have a distribution of energy that is nonuniform in space (i.e. in Z), and this
necessarily persists for all time. So in a very basic sense, there is no transport in the system—
this is another feature of the lack of thermalization.

Our rigorous result on many-body localization is an important capstone to the physical
arguments that have led to the idea of a many-body localized phase. Without full control
of the approximations used, there remains the possibility that thermalization sets in at some
very long length scale. Such a scenario would not show up in the numerics, and has been
conjectured to occur in the nonrandom model of [20].

1.3 Methods

We will perform a complete diagonalization of the Hamiltonian by successively eliminating

low-order off-diagonal terms. The process runs on a sequence of length scales Lk =
(
15
8

)k
,

and off-diagonal elements of order γm , m ∈ [Lk, Lk+1) will be eliminated in the kth step.
The orthogonal rotations that accomplish this can be written as a convergent power series,
provided nonresonance conditions are satisfied. Resonant regions are diagonalized as blocks
in quasi-degenerate perturbation theory. The crux of the method is control of probabilities of
resonances. It will be critical to maintain bounds exponential in the length scale of the reso-
nance. Otherwise, the bounds will be overwhelmed by the exponential number of transitions
that need to be tested for resonance. The method was developed in [27] for the single-body
Anderson model. This led to a new proof of the exponential localization result of [10] via
multiscale analysis, working directly with rotations, instead of resolvents. (We recommend
[27] to serious readers of this article, as the key tools are developed in a much less complex
setting.) The key estimate that allows the procedure to work on all length scales is a uniform
decay rate for a fractional moment for graphs with many independent energy denominators.
This leads to exponential bounds on resonance probabilities, at least for graphs with mostly
independent denominators. The method can be thought of as a KAM or block Jacobi [28]
procedure. Each step is a similarity transformation implementing Rayleigh-Schrödinger per-
turbation theory in a manner very close to that of [29,30] (though in those works a single
transformation was sufficient to break degeneracies in the Hamiltonian).

A number of authors have used related KAM constructions to prove localization for
quasiperiodic and deterministic potentials [31–37].More broadly, a number of different flows
have been used to diagonalize matrices in various contexts [38–41]. Related renormalization
group ideas have appeared in [42–45].

The idea that quasi-local unitary transformations may be used to isolate local variables or
conserved quantities in a many-body localized system appears in [46–49]. Here, we imple-
ment the rotations in a constructive manner, providing explicit expansions for the rotations
along with bounds that quantify the notion of locality. Such expansions are new, even in the
single-body context [27].

2 First Step

The basic features of our method are easy to understand in the first step. Here we focus on
single spin flips. We know that perturbation theory will be under control in regions where
no resonant transitions occur. So in Sect. 2.1, we identify resonant regions and prove that
they form a dilute subset of Z. Away from these regions, energy denominators cannot get
too small, so first-order perturbation theory is under control. In Sect. 2.2, we we use this
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to define a rotation (change of basis) that diagonalizes the Hamiltonian up to terms that are
second order in γ , in the nonresonant region. We give a graphical expansion for the rotated
Hamiltonian exhibiting quasi-locality (i.e. a term with range r is exponentially small in r ).
In Sect. 2.3, we deal with the resonant regions by performing rotations that diagonalize the
Hamiltonian there. Although these rotations are not under perturbative control, their effects
are limited due to the diluteness of resonant regions and to the smallness of connections to
nonresonant regions. In Sect. 2.4, we show that the effect of the rotations on observables is
small.

2.1 Resonant Blocks

Resonances occur when transitions induced by off-diagonal matrix elements produce an
energy change that is smaller than some cutoff ε. In the spin chain, a transition is a spin flip
at a site i . If we start from spin configuration σ , let the flipped spin configuration be σ (i):

σ
(i)
j =

{
−σ j , j = i;
σ j , j �= i.

(2.1)

Let

E(σ ) =
K ′∑

i=−K

hiσi +
K ′∑

i=−K−1

Jiσiσi+1 (2.2)

denote the diagonal entry of H corresponding to σ . (We take σi = 1 for i /∈ �.) Then

E(σ ) − E(σ (i)) = 2σi (hi + Jiσi+1 + Ji−1σi−1). (2.3)

We say that the site i is resonant if |E(σ )−E(σ (i))| < ε for at least one choice of σi−1, σi+1.
The probability that i is resonant is bounded by 4ρ0ε. We take ε to be a small power of the
coupling constant for spin flips: ε ≡ γ 1/20  1.

Let S1 = {i ∈ � : i is resonant}. Then we may decompose S1 into resonant blocks B(1)

using nearest-neighbor connections. The probability that two sites i, j lie in the same block
is bounded by (4ρ0ε)|i− j |+1. (Conditioning on {�i , Ji }, we obtain a product of independent
probabilities for each sitemwith i ≤ m ≤ j ;ρ0 is the bound assumed above on the probability
densities and the factor of 4 accounts for choices of neighbor spins σm−1 and σm+1.)

2.2 Effective Hamiltonian

Let us group the off-diagonal terms of H as follows:

J (0) =
∑

i∈�

γi S
x
i =

∑

i∈�

J (0)(i) = J (0)per + J (0)res

=
∑

i /∈S1

J (0)per(i) +
∑

i∈S1

J (0)res(i), (2.4)

where J (0)res contains terms with i ∈ S1 (“resonant terms”), and J (0)per contains terms in
the nonresonant region (“perturbative terms”). Then define the antisymmetric basis-change
generator

A =
∑

i /∈S1

A(i), (2.5)
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with the local operator A(i) given by its matrix elements:

A(i)σσ (i) = J (0)per(i)σσ (i)

E(σ ) − E(σ (i))
= γi

E(σ ) − E(σ (i))
. (2.6)

All other matrix elements of A(i) are zero; A(i) only connects spin configurations differing
by a single flip at i . Nonresonance conditions ensure that all matrix elements of A(i) are
bounded by γ /ε = γ 19/20. In fact, ‖A(i)‖ ≤ γ /ε, since each row/column has a single term
with that bound. Also, ‖J (0)(i)‖ ≤ γ .

Next, we define the basis change  = e−A. Let H0 be the diagonal part of H . Note that
[A, H0] = −J (0)per, so that [A, H ] = −J (0)per + [A, J (0)]. This leads to a cancellation of
the term J (0)per in H :

H (1) = eAHe−A =
∞∑

n=0

(ad A)n

n! H

= H0 + J (0)res + J (0)per +
∞∑

n=1

(ad A)n−1(−J (0)per) + (ad A)n(J (0)per + J (0)res)

n!

= H0 + J (0)res +
∞∑

n=1

n

(n + 1)! (ad A)n J (0)per +
∞∑

n=1

(ad A)n

n! J (0)res

= H0 + J (0)res + J (1). (2.7)

Note that A and J (0) are given by a sum of local operators, so the commutators in J (1)

likewise will be given as a sum of local operators (although the range of the operator grows
as n, the order of the commutator). However, even though A(i) and J (i) only act on the
spin at site i , the matrix elements of A(i) depend on the spins at i − 1 and i + 1. Therefore,
[A(i), A( j)] and [A(i), J ( j)] do not in general vanish when |i − j | = 1. They do vanish
when |i − j | ≥ 2.

We may give graphical expansions for J (1) by expanding each J , A in (ad A)n J (0)per and
(ad A)n J (0)res as a sum of operators localized at individual sites.
Thus

(ad A)n J (0)per =
∑

i0,i1,...,in

(ad A(in)) · · · (ad A(i1))J
(0)(i0). (2.8)

We must have dist(i p, {i0, . . . , i p−1}) ≤ 1; otherwise the commutator with A(i p) vanishes.
Note that the number of choices for i p , given i0, . . . , i p−1, is no greater than p + 2. Thus
we have, in effect, a combinatoric factor (n + 2)!/2! which is controlled by the prefac-
tors n/(n + 1)! or 1/n!, leaving only a factor (n + 1)(n + 2). There are 2n terms from
writing out an nth order commutator, so the series is geometrically convergent. We may
write

J (1)
σ σ̃

=
∑

g1:σ→σ̃

J (1)
σ σ̃

(g1), (2.9)

where g1 represents awalk in spin configuration space that is connected in the sense described
above.More precisely, g1 prescribes an ordered product of operators A(i p) or J (0)(i0) arising
from an admissible sequence i0, i1, . . . , in after expanding the commutators (admissible
means each i p is with a distance 1 of {i0, i1, . . . , i p−1}, for a nonvanishing commutator). Each
operator implements a spin flip, hence we obtain a walk on the hamming cube {−1, 1}n+1.
The interaction term J (1)

σ σ̃
(g1) is the product of the specified matrix elements and a factor

n/(n + 1)! from (2.7), along with a sign and a binomial coefficient from expanding the
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commutators and gathering like terms. See [27], eq. 2.18. A similar graphical expansion can
be derived when the similarity transformation is applied to any local operator, e.g. Sx0 , S

y
0 , or

Sz0. Nonresonance conditions imply that

|J (1)
σ σ̃

(g1)| ≤ γ (γ /ε)|g1|−1

(|g1| − 1)! , (2.10)

where |g1| = n + 1 is the number of operators (A or J ) in g1. As discussed above, the sum
over g1 involving a particular J (0)(i0) converges geometrically as γ (cγ /ε)n .

2.3 Small Block Diagonalization

We need to decompose the resonant region S1 into a collection of subsets of Z that we will
term “blocks.” These are essentially connected components of S1, although it is necessary to
complicate the definitions by adding collar neighborhoods to the blocks and to distinguish
between “small” and “large” blocks. In the kth step, we consider interaction terms with range

less than Lk =
(
15
8

)k
. By adding a collar of width Lk − 1 around blocks, we ensure that

interactions connecting across the collar are of order Lk or higher. At the same time, we
require the diameter of small blocks to be <Lk . In this way, the minimum range (which
translates to the order of perturbation theory in γ ) matches up well with the size of small
blocks, and so for them, factors γ Lk or εLk will beat the sum over states in the block. (We
will diagonalize the Hamiltonian within small blocks, and then an n-site resonant block has
2n eigenstates.)

We need to go further by requiring small blocks to be isolated, in the sense that a small
block with n sites in step k is separated from other blocks on that scale (and later scales) by
a distance > dm ≡ exp(L1/2

m+m0
) when n ∈ [Lm−1, Lm). Here m0 > 0 is a fixed integer to

be chosen later—see the discussion following (4.10).
All these issues arose in the treatment of the one-body problem in [27], but there the

number of states in a block of size n is only n, so we were able to use collars logarithmic
in n. Here, we have to take collars linear in n, which pushes us into a regime with extended
separation conditions. The additional separation exp(O(n1/2)) ensures that blocks do not
clump together and ruin the exponential decay. In both cases the goal is to ensure that
the combinatorics of graphical sums behave well in the multiscale analysis. The distance
condition should be familiar to readers of [9]. As in that work, the construction ensures
that uniform exponential decay is preserved away from resonant regions. But this benefit
comes at the cost of working with loosely connected resonant blocks with weak probability
decay.

For step one, small blocks are those with diameter 0 or 1, since L1 = 15
8 , and they have a

separation distance d1 from other blocks. They will be denoted b(1). We add a 1-step collar
neighborhood (the set of sites at distance 1 from b(1), and denote the result b̄(1). The rest of
S1 is given a 1-step collar to form S1′ . Its components are denoted B̄(1′). We may also refer
to B(1′) = B̄(1′) ∩ S1 and S1′ = S1′ ∩ S1. This enables us to identify the “core” resonant set
that produced a large block B̄1′

.
Let us separate terms that are internal to the collared blocks b̄(1) and B̄(1) from the rest.

The former are the troublesome ones (resonance probabilities are hard to control, which leads
to lack of control of the ad expansion), so they need to be “diagonalized away.” (Compare
with [27], eq. 2.20.) Put
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J (1)int
σ σ̃

= J (0)res
σ σ̃

+
∑

g1:σ→σ̃ , g1∩S1 �=∅, g1⊂S1

J (1)
σ σ̃

(g1) = J (1)sint
σ σ̃

+ J (1)lint
σ σ̃

,

J (1)ext
σ σ̃

=
∑

g1:σ→σ̃ such that g1∩S1=∅ or g1 �⊂S1

J (1)
σ σ̃

(g1), (2.11)

where J (1)sint contains terms of J (1)int whose graph is contained in a small block b̄(1), and
J (1)lint contains terms whose graph is contained in a large block B̄(1). Then

H (1) = H0 + J (1)ext + J (1)sint + J (1)lint. (2.12)

The next step is to diagonalize H0 + J (1)sint within small blocks b̄(1). Let O be the matrix
that accomplishes this. It is a tensor product of matrices acting on the spin space for each
small block (and identity matrices for spins elsewhere). Each block rotation affects only

the spin variables internal to the block b̄(1). Let ¯̄b(1) be a one-step neighborhood of b̄(1).

The rotation depends on the spins in ¯̄b(1) \ b̄(1) and on the random variables in ¯̄b(1) only.
The procedure here may seem overly complicated (after all, single site rotations could have
been performed at the outset, simplifying the first step considerably). But we prefer to use a
standard procedure so that the first step serves as a guide to later steps. The rotation produces
a new effective Hamiltonian

H (1′) = O trH (1)O = H (1′)
0 + J (1′) + J (1)lint, (2.13)

where
H (1′)
0 = O tr(H0 + J (1)sint)O (2.14)

is diagonal, and
J (1′) = O tr J (1)extO =

∑

g1

O tr J (1)(g1)O. (2.15)

Note that J (1)lint is unaffected by the rotation. However, terms in J (1)ext that connect to small
blocks are rotated. This necessitates an extension of the graph g1 since transitions within
a small block are produced. In effect, all the states in a small block can be thought of as a
“metaspin” taking 2|b̄(1)| = 8 values (the same as the number of spin configurations in b̄(1)).
Because of the rotation, there is no canonical way of associating states with spin variables, so
we will often use generic labels α, β for block states. Let g1′ label the set of terms obtained
from the matrix product O tr J (1)(g1)O . Thus g1′ specifies σ, g1, σ̃ and we may write

J (1′)
αβ =

∑

g1′ :α→β

J (1′)
αβ (g1′), (2.16)

where
J (1′)
αβ (g1′) = O tr

ασ J
(1)ext
σ σ̃

(g1′)Oσ̃ β . (2.17)

Since the matrix elements of O for any block are bounded by 1, we maintain the bound

J (1′)
αβ (g1′) ≤ γ (γ /ε)|g1′ |−1/(|g1′ | − 1)!, where |g1′ | = |g1|, the size of the graph ignoring

the rotation steps. In the first step, the rotation matrices are small (8 × 8), so the spin sums
implicit in (2.16) are controlled by the smallness of the couplings. As we proceed to later
steps, we need to be sure that coupling terms are small enough to control sums over σ, σ̃ for
larger rotation matrices.
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2.4 Expectations of Observables

We are trying to prove estimates on expectations of local observables in eigenstates of H .
For example, we would like to compute the expectation 〈Sz0〉α in any eigenstate α. We are
trying to prove (1.4), which can be written as

E Avα |〈Sz0〉α| = 1 − O(ε), (2.18)

(recall that ε = γ 1/20). However, at this stage of our analysis, we only have approximate
eigenfunctions given by the columns of O . As a warm-up exercise, then, let us prove the
following result:

Proposition 2.1 Let ε = γ 1/20 be sufficiently small. Then

E Avα

∣∣∣∣
∑

σ,σ̃

(O trtr)ασ (Sz0)σ σ̃ (O)σ̃α

∣∣∣∣ = 1 − O(ε). (2.19)

As we proceed to better and better approximate eigenfunctions, this bound will become
(2.18).

Proof Of course, Sz0 is diagonalized in the σ -basis, so (Sz0)σ σ̃ = σ0δσ0σ̃0 , and (2.19) becomes

E Avα

∣∣∣∣
∣∣∣
∑

σ

(O trtr)ασ σ0(O)σα

∣∣∣ − 1

∣∣∣∣ ≤ O(ε). (2.20)

Our construction depends on the collection of resonant blocks b̄(1), B̄(1); let us call it B.
Thus (2.20) is best understood by inserting a partition of unity

∑
B χB under the expectation,

where χB is an indicator for the event that the set of resonant blocks is B. Once this is done,
we have two cases to consider: either 0 is in a resonant block, or it is not. If 0 is in a large
block, there is actually no contribution because there is no rotation, so σ0 = α0 = ±1. If 0 is
in a small block, we can expect substantial mixing, leading to an expectation for Sz0 anywhere
between−1 and 1, for any α. Thus for an upper bound, we can replace the integrand of (2.20)
with an indicator 10(B) for the event that 0 lies in a small block. We have established that
the probability that a site is resonant is bounded by 4ρ0ε. Due to the collar, 0 need not be a
resonant site, but if it is not, then one of its two neighbors is; thus we get a bound of 12ρ0ε.

In the case where 0 is not in a resonant block, we rotate Sz0 :

trSz0 =
∞∑

n=0

(ad A)n

n! Sz0 ≡
∑

g1

Sz0(g1). (2.21)

This expansion is very much like the one derived for J (1); in particular it represents the
expectation as a sum of local graphs. Note that the empty graph with n = 0 does not
contribute, because it has modulus 1 and so disappears in (2.20). As we have seen, the sum
over g1 converges geometrically, so the norm of the matrix M = ∑

|g1|≥1 S
z
0(g1) is bounded

by O(γ /ε). The rotation by O can affect terms with g1 reaching to a block, but the norm is
preserved, so Avα|(O trMO)αα| is likewise bounded by O(γ /ε). Thus the contribution from
this case to (2.20) is O(γ /ε), uniformly in B (provided the set of blocks B does not contain
0). This completes the proof of (2.20), and hence also (2.19). ��

It should be clear that a similar analysis can be performed to give an expansion for the
approximate expectation of any local operator, such as products of spin operators Sxi , S

y
i ,

or Szi at collections of sites i . If we consider the first-step connected correlation 〈Oi ;O j 〉(1)α
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for operators localized at or near i, j, there will be a cancellation of terms except for graphs
extending from i to j . If we insert an indicator for the event that no more than half the ground
between i and j is covered by resonant blocks, we obtain exponential decay. The probability
of half coverage of [i, j] by resonant blocks likewise decays exponentially (we will have to
settle for weaker probability decay in later steps). Thus we see that

|〈Oi ;O j 〉(1)α | ≤ (cγ /ε)|i− j |/2, with probability 1 − (cε)|i− j |/2. (2.22)

3 The Second Step

It will be helpful to illustrate our constructions in a simpler context before proceeding to
the general inductive step. The second step is based on the same operations described above
for the first step. However, complications ensue because multi-denominator graphs appear
starting with second order perturbation theory; for example (3.1) has an explicit denominator

as well as denominator(s) in J (1′)
σ σ̃

(g1′). We deal with this by using a graph-based notion of
resonance—see (3.2) below. The probability that a graph is resonant is controlled by means
of a Markov inequality—see (3.7), (3.8) below. The other new feature that appears in the
second step is the distinction between “short” and “long” graphs and the resummation of long
graphs—see (3.12) below. Both of these ideas will play a key role in maintaining uniformity
of exponential decay rates in the general step.

3.1 Resonant Blocks

Recall that we use a sequence of length scales Lk =
(
15
8

)k
, with graphs sized in the range

[Lk−1, Lk) considered in the kth step. Sowewill allow graphs of size 2 or 3 in the perturbation
in the second step. Graphs that intersect small resonant blocks have been rotated, so they
now produce transitions in the “metaspin” space of the block. Still, it would be cumbersome
to maintain a notational distinction between ordinary spins and metaspins, so we will use
σ, σ̃ to label spin/metaspin configurations. Labeling of states in blocks is arbitrary, but we
may choose a one-to-one correspondence between ordinary spin configurations in a block
b̄(1) and metaspins/states in b̄(1).

Each graph g1′ induces a change in spin/metaspin configuration in the sites/blocks of g1′ .
For each g1′ corresponding to a term of J (1′), with 2 ≤ |g1′ | ≤ 3, σ �= σ̃ , g1′ ∩ S1′ = ∅, we
define

A(2)prov
σ σ̃

(g1′) =
∣∣∣∣∣

J (1′)
σ σ̃

(g1′)

E (1′)
σ − E (1′)

σ̃

∣∣∣∣∣ . (3.1)

Here E (1′)
σ denotes a diagonal entry of H (1′)

0 . The graph g1′ changes the spin/metaspin locally
in 1, 2, or 3 sites/blocks; hence the energy difference in (3.1) is local as well. These are
“provisional” A(2) terms because not all of them will be small enough to include in A(2).
Note that intra-block terms with g1′ ⊂ S1 are in J (1)int, so are not part of J (1′)—c.f. (2.11).
But in contrast to [27], we allow intra-block terms with g1′ ∩Sc

1 �= ∅ to occur in (3.1)—this is
made possible by the level-spacing assumption. Nevertheless, we only consider off-diagonal
terms here; in general, diagonal terms will renormalize energies, but will not induce rotations

directly. Note that energies E (1′)
σ are given by unperturbed values

∑
hiσi +∑

Jiσiσi+1 away
from blocks, because corrections are second or higher order in γ (|g1| ≥ 2), so no change
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in H0 is implemented in (2.12). Nontrivial changes in metaspin energies E (1′)
σ arise only in

small blocks b̄(1), where the rotation (2.14) generates a new diagonal matrix H (1′)
0 .

We say that g1′ from σ to σ̃ is resonant in step 2 if |g1′ | is 2 or 3, and if either of the
following conditions hold:

I. |E (1′)
σ − E (1′)

σ̃
| < ε|g1′ |,

II. A(2)prov
σ σ̃

(g1′) >
(γ/ε)

|g1′ |
(|g1′ |−1)!2/9 with |I (g1′)| ≥ 7

8 |g1′ |. (3.2)

Here, I (g1′) is the smallest interval in Z covering all the sites or blocks ¯̄b(1) that contain flips

of g1′ , and |I (g1′)| is the number of sites or blocks ¯̄b(1) in I (g1′) (i.e. the number of blocks
¯̄b(1) plus the number of sites not in such blocks). Condition II graphs have few duplicated
sites, which means most energies are independent—this leads to good Markov inequality
estimates. Graphs with |I (g1′)| < 7

8 |g1′ | do not reach as far, so less decay is needed, and
inductive estimates will be adequate. The combination will help us prove uniform bounds on
the probability that A(k) fails to decay exponentially.

We define the scale 2 resonant blocks. Examine the set of all step 2 resonant graphs
g1′ . Note that we include in g1′ information about the starting spin configuration σ , since
g1′ : σ → σ̃ . We need to specify σ on I (g1′) plus one neighbor on each side of any flip of
g1′ , because energies depend on σ one step away from sites/blocks where flips occur. These
graphs involve sites and small blocks b̄(1). They do not touch large blocks B(1′), because of
the above restriction to graphs such that g1′ ∩ S1′ = ∅. The set of sites/blocks that belong
to resonant graphs g1′ are decomposed into connected components. The result is defined to
be the step 2 resonant blocks B(2). They do not touch large blocks B(1′). Small blocks b̄(1)

can be linked to form a step 2 block, but unlinked small blocks are not held over as scale 2
blocks.

Weneed to reorganize the resonant blocks produced so far, to take into account the presence
of new resonant blocks and to define new small blocks b(2). The result is a collection of small
blocks b(i) for i = 1, 2 and a leftover region S2′ ; they must satisfy the following diameter
and separation conditions for i, j ≤ 2:

diam(b(i)) < Li ;
dist(b(i)

1 , b( j)
2 ) > dm ≡ exp(L1/2

m+m0
), if min{|b(i)

1 |, |b( j)
2 |} ∈ [Lm−1, Lm);

dist(b(i),S2′) > dm if |b(i)| ∈ [Lm−1, Lm). (3.3)

Here we define |b(2)| to be the number of sites or blocks b̄(1) in b(2). However, any block b(2)

with fewer than two sites/blocks is considered to have size 2. (We link this to the minimum
graph size for step 2 because that affects probability bounds,which in turn determineworkable
separation distances.) It is easy to see that there is a unique way to decompose the complete
resonant region into a maximal set of small blocks satisfying (3.3), plus the leftover region
S2′ . We have already instituted proximity connections on scale d1; now we introduce new
connections on scale d2 if required by (3.3). If one of the resulting blocks fails to satisfy the
diameter condition, it is transferred to S2′ . Since the B(2) blocks were not introduced until
the second step, this process may force some of the step 1 small blocks b(1) into S2′ or into
some b(2).

LetS2 denoteS2′ plus the small blocks b(2).We add a 3-step collar to S2. (As in step 1, col-
lars serve to contain the “troublesome” graphs and define regions for block diagonalization.)
Then S2 is the collared version of S2, and its components are the collared small blocks b̄(2)

and large blocks B̄(2′). The union of the B̄(2′) is denoted S2′ , and then each B(2′) ≡ S2∩ B̄(2′).

123



1010 J. Z. Imbrie

The blocks defined above can be thought of as connected clusters for a generalized per-
colation problem. The following proposition provides control on the decay of the associated
connectivity function.

Proposition 3.1 Let P(2)
i j denote the probability that i , j lie in the same block B(2). For a

given ν,C, let ε = γ 1/20 be sufficiently small, and assume LLA(ν,C). Then

P(2)
i j ≤ (cρ1ε

s)(|i− j |(1)∨2)/2. (3.4)

Here s = 2
7 , and |i− j |(1) is a notation for the distance from i to j with blocks ¯̄b(1) contracted

to points.

Proof There must be a collection of resonant graphs g1′ connecting i to j . However, because
of dependence, we cannot simply take the product of the probabilities for each graph. As in
[27], we find a sequence of non-overlapping graphs which combine to cover at least half the
distance from i to j . Here distance is measured in the metric |i − j |(1), in which small blocks
¯̄b(1) are contracted to points. Let g1′,1 be the graph covering the site i and extending farthest
to the right. Then let g1′,2 be the graph that extends farthest to the right from g1′,1 (without
leaving a gap). Continue until the site j is covered. It should be clear that the odd graphs do
not overlap one another; likewise the even graphs are non-overlapping. (Any overlap would
mean the in-between graph could have been dropped.) We may bound the probability of the
whole collection of graphs by the geometric mean of the probabilities of the even and odd
subsequences of {g1′,k}. As the complete sequence extends continuously from i to j , we will
obtain exponential decay in the distance from i to j (but losing a factor of 2 in the rate due
to the geometric mean).

The above construction reduces the problem of bounding P(2)
i j to the estimation of reso-

nance probabilities for cases I and II in (3.2). With |g1′ | = 2, there is no case I since σ = σ̃

if the two flips are at the same site (if that site is in a b̄(1), the term is internal to b̄(1) and
so is in J (1)sint, not J (1′)). With |g1′ | = 3, |I (g1′)| = 1, 2, or 3. If |I (g1′)| = 1 or 2, we
are in case I. Let i be the site where σ �= σ̃ . If i is not in a block b̄(1), then as explained
above, the energies are given by their unperturbed values, so the energy difference from the
flip at i is ±2hi + const. The probability can be bounded by ρ1ε

s|g1′ |, for some constant
ρ1 depending only on ρ0, the bound on the probability densities. Alternatively, a bounded
probability density implies a bound on the −s = − 2

7 moment of hi :

sup
a∈R

E |2hi − a|−s ≤ ρ1, (3.5)

which leads to the same estimate via a Markov inequality. If σ differs from σ̃ only in a block,

then the energy difference E (1′)
σ − E (1′)

σ̃
is a difference of block energies. Here we need to

make a similar assumption

sup
a∈R

E |E (1′)
σ − E (1′)

σ̃
− a|−s ≤ ρ1. (3.6)

In general, we need to assume there is a constant ρ1 such that the energy differences in
resonant blocks b̄(k) have −s moments bounded as in (3.6), with a bound like ρ

Lk
1 . This is

equivalent to a statement about Hölder continuity of block energy differences, with bounds
exponential in the volume of the block. This follows from our level-spacing assumption
LLA(ν,C)—more details will be given in the general step. Given (3.5), (3.6) we can say that
the case I probabilities are all bounded by (ρ1ε

s)|g1′ |.
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For case II, we have graphs with 2 or 3 flips, all at different sites/blocks. In general,
if a graph has k flips at k different sites/blocks, this gives rise to a tree graph of energy
denominators on k + 1 “vertices,” i.e. the k + 1 spin configuration energies linked by k

denominators E (1′)
σ − E (1′)

σ̃
. Each link to a new site introduces a new random variable into the

energy, so each denominator is independent. As a result, aMarkov inequality with (3.5), (3.6)
can be used to bound the probability. For example, consider a particular g1′ with |g1′ | = 2
and no blocks. We estimate as follows:

P
(
A(2)prov

σ σ̃
> (γ /ε)2

)
≤ E

(
A(2)prov

σ σ̃

)s

(γ /ε)2s
≤ ε2s E

1

|2hi + a|s |2hi + 2hi+1 + b|s . (3.7)

Here A(2)prov
σ σ̃

is given by (3.1) with J (1)
σ σ̃

having the structure A(i)J (i + 1), and a, b are
h-independent constants determined by the exchange interactions with neighboring spins.
We may integrate over hi+1 with hi fixed, using (3.5); then a second application of (3.5)
bounds the right-hand side of (3.7). In general, we find that

P
(
A(2)prov

σ σ̃
> (γ /ε)|g1′ |

)
≤ (ρ1ε

s)|g1′ |. (3.8)

It is worth noting that under nonresonance conditions from this step (the negation of
(3.2)) and nonresonance conditions inherited from the first step, all A(2)prov

σ σ̃
(g1′) have good

bounds, not just the “straight” graph of condition II. For example, the three flip graphwith one
repeated site has two denominators ≥ ε and one ≥ ε3. The overall bound is γ 3/ε5 = γ 11/4,
which is adequate since we are looking for decay like γ |I (g1′ )| and |I (g1′)| = 2. Similar
estimates will work for the “crooked” non-condition II graphs for the general step.

As explained above, we may combine the estimates (ρ1ε
s)|g1′ | on the probabilities of case

I and II graphs to obtain the bound (3.4); note that |g1′ | ≥ 2. This completes the proof. ��
Note that as long as i, j are not in the same block, |i− j |(1) ≥ |i− j |/5 due to the separation

conditions. (For large enoughm0, blocks
¯̄b(1) are much farther apart than their diameters. So

the worst case for this inequality is for i adjacent to the block containing j .) In later steps,
more stringent separation conditions will ensure that |i − j |(k) remains comparable to |i − j |.
This is important because when we sum over collections of non-overlapping resonant graphs
covering half the distance from i to j , we have combinatoric factors c|i− j |, and the decay in
|i − j |(1) is adequate to control them. The combinatoric factors come from sums over g1′ ,
but these include sums over initial and final spin configurations in the blocks b̄(1) touched by
g1′ . Thus the “combinatoric volume” is the full |i − j |. Note that as discussed earlier, there
are factorials in |g1′ | to consider, but since |g1′ | ≤ 3 this is not an issue we need to worry
about here.

Let us define Q(2)
i j to be the probability that i , j lie in the same small block b̄(2). In the

P(2)
i j bound, we considered only resonant graphs new to the second step. Here we allow new

resonances (for which 2 ≤ |g1′ | ≤ 3), as well as old resonances. But keep in mind that
isolated b(1) are no longer present in B(2). Hence if there is no g1′ , there must be at least two
b(1) blocks. Either way, the probability is bounded by (cρ1εs)2. Recall that we have imposed
the condition that the diameter of b(2) is < L2, so we have a maximum diameter of 3. Thus

Q(2)
i j ≤ (cρ1ε

s)21|i− j |≤3. (3.9)

As we proceed to later steps, P(k)
i j will maintain uniform exponential decay, but Q(k)

i j , being

more loosely connected, will decay more slowly, like εO(k2) with |i − j | ≤ 4Lk . Still, the
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decay is faster than any power of |i − j |, and it is sufficient to ensure that small blocks are
unlikely. (Note that when k → ∞, all blocks will be small.)

3.2 Perturbation in the Nonresonant Couplings

We group terms in J (1′) into “perturbative” and “resonant” categories and write

J (1′) = J (1′)per + J (1′)res, (3.10)

where J (1′)per contains terms g1′ : σ → σ̃ with 2 ≤ |g1′ | ≤ 3, σ �= σ̃ , and g1′ ∩ S2 = ∅

(meaning all the sites/blocks in g1′ are in Sc
2). Note that unlike [27], we allow intra-block

terms in J (1′)per; using LLA(ν,C), they are manageable in (3.1) and hence also here. Graphs
connected to the resonant region S2, large graphs (|g1′ | ≥ 4) and diagonal terms (σ = σ̃ )

form J (1′)res. We put

A(2)
σ σ̃

=
∑

g1′ :σ→σ̃

A(2)
σ σ̃

(g1′) =
∑

g1′ :σ→σ̃

J (1′)per
σ σ̃

(g1′)

E (1′)
σ − E (1′)

σ̃

. (3.11)

Long and short graphs; jump transitions We say a graph g1′ is long if |g1′ | > 8
7 |I (g1′)|.

Otherwise, it is short. We will need to resum terms with long graphs, for given initial and
final spin configurations σ, σ̃ and a given interval I = I (g1′). The data {σ, σ̃ , I } determine
a jump transition. Long graphs are extra small—for example, see the discussion following
(3.8)—so for probability estimates we do not need to keep track of individual graphs, and
we can take the supremum over the randomness. Let g1′′ denote either a short graph from σ

to σ̃ or a jump transition taking σ to σ̃ on an interval I . The length of g1′′ is defined to be
|g1′′ | = |I | ∨ 7

8 L1. The jump transition represents the collection of all long graphs from σ

to σ̃ for which I (g1′) = I . Thus we define

A(2)
σ σ̃

(g1′′) =
⎧
⎨

⎩

A(2)
σ σ̃

(g1′), if g1′′ = g1′ , a short graph;
∑

long g1′ :σ→σ̃

A(2)
σ σ̃

(g1′), if g1′′ is long. (3.12)

We may now define the basis-change operator (2) = exp(−A(2)) and the new effective
Hamiltonian

H (2) = (2)trH (1′)(2). (3.13)

Recalling that H (1′) = H (1′)
0 + J (1′) + J (1)lint with H (1′)

0,σ σ̃
= E (1′)

σ δσ σ̃ , we obtain

H (2) = H (1′)
0 + J (1′)res + J (1)lint +

∞∑

n=1

n

(n + 1)! (ad A(2))n J (1′)per +
∞∑

n=1

(ad A(2))n

n! J (1′)res

= H (1′)
0 + J (1′)res + J (1)lint + J (2). (3.14)

Since J (1′) is second or third order in γ , all terms of J (2) are fourth order or higher.
The local structure of J (2) arises as before because A(2), J (1′) are both sums of local

operators. In particular, [A(2)(g1′), J (1′)(g̃1′)] = 0 if dist(g1′ , g̃1′) > 1. (In later steps, the
energies will receive new terms manifesting couplings over greater distances, and then a
greater distance will be required for commutativity.) Suppressing spin indices, we have, for
example,

(ad A(2))n J (1′)per =
∑

g1′,0,...,g1′,n

(
ad A(2)(g1′,n)

) · · · (ad A(2)(g1′,1)
)
J (1′)(g1′,0). (3.15)
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When summing over g1′,p with dist(g1′,p, {g1′,0, . . . , g1′,p−1}) ≤ 1, there are no more than
3p + 4 choices for the starting site/block for g1′,p . (The maximum number of sites/blocks
in {g1′,0, . . . , g1′,p−1} is 3p, and there are up to three additional choices on the left and one
on the right that can lead to a nonvanishing commutator.) Hence the sums over the initial
points for the walks g1′,0, . . . , g1′,p lead to a combinatoric factor no greater than n!c|g2|,
for some constant c. Here g2 is the walk in spin configuration space giving the sequence
g1′,0, . . . , g1′,n , and |g2| is the sum of the lengths of the sub-walks. The length of a graph
is the number of transitions (or steps, if we think of a graph as a walk in spin configuration
space). Blocks b̄(1) do not affect graph lengths, but they do affect the counting of graphs,
because the number of possible transitions in a block grows exponentially in the size of the
block. For example, a block b̄(1) of three sites counts as one unit of graph length, but there are
23(23 − 1) possible transitions in the block. Nevertheless, separation conditions ensure that
the length of the region covered by g2 is no greater than a fixed multiple of |g2|. Altogether,
the sum over g2 (including its subgraphs g1′,0, . . . , g1′,n and its initial spin configuration)
is controlled by a combinatoric factor n!c|g2|. This is acceptable since we have factors of
1/n! in (3.14), and bounds on A(2), J (1′) which decay exponentially in each |g1′ |. (Recall
that |A(2)

σ σ̃
(g1′)| ≤ (γ /ε)|g1′ |/(g1′ − 1)!2/9 from nonresonance conditions—the negation of

(3.2)—and the discussion following (3.8); J (1′)
σ σ̃

(g1′) is bounded in (2.10).)
We give a graphical representation for the new interaction

J (2)
σ σ̃

=
∑

g2:σ→σ̃

J (2)
σ σ̃

(g2), (3.16)

and from the above mentioned bounds,

|J (2)
σ σ̃

(g2)| ≤ γ (γ /ε)|g2|−1/(g2!)2/9. (3.17)

Here we introduce a notation g2! for n! times the product of (|g1′,p| − 1)! over the subgraphs
of g2. (We did not need to be concerned about such factors for A’s, for which |g1′ | ≤ 3, but
long graphs can occur in J (1′)res.) Terms in J (2) are short one denominator (compared to |g2|,
the number of transitions), and this accounts for the form of the bound (3.17). Note that the
graph g2 transitions from σ to σ̃ , so it is actually specifying a particular entry of the matrix
J (2)
σ σ̃

(g2), with the others equal to zero.

3.3 Small Block Diagonalization

In the last section we defined the small blocks that will be diagonalized here. They have core
diameter < L2 (3 or less) and a 3 step collar. The core can be formed from two 1-site blocks
b(1), or from a 2- or 3-site block b(1) or b(2). These were the cases considered in the bound
(3.9) on the probability of a block b̄(2) containing i, j . Let us reorganize the interaction terms
in (2.9) as follows:

J (1′)res + J (1)lint + J (2) = J (2)ext + J (2)int

= J (2)ext + J (2)sint + J (2)lint. (3.18)

Here J (2)int contains terms whose graph intersects S2 and is contained in S2. Then J (2)lint

includes terms of J (2)int that are contained in large blocks B̄(2), and J (2)sint includes terms
of J (2)int that are contained in small blocks b̄(2), as well as second-order diagonal terms for
sites in Sc

2. All remaining terms of J (2) and J (1′)res are included in J (2)ext. This includes
terms fourth order and higher in J (1′)res that did not participate in the step 2 rotation (3.10),
(3.11).
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Now we let O(2) be the matrix that diagonalizes H (1′)
0 + J (2)sint. By construction, J (2)sint

acts locally within small blocks, so O(2) is a tensor product of small-block rotations. Then
define

H (2′) = O(2)trH (2)O(2)

= O(2)tr(H (1′)
0 + J (2)ext + J (2)sint + J (2)lint)O(2)

= H (2′)
0 + J (2′) + J (2)lint, (3.19)

where
H (2′)
0 = O(2)tr(H (1′)

0 + J (2)sint)O(2) (3.20)

is diagonal, and
J (2′) = O(2)tr J (2)extO(2). (3.21)

The diagonal elements of H (2′)
0 define the energies E (2′)

σ ; by construction they incorporate
block energies and second-order energies for sites in Sc

2.
The new interaction has an expansion analogous to (2.16):

J (2′)
αβ =

∑

g2′ :α→β

J (2′)
αβ (g2′), (3.22)

where g2′ specifies rotation matrix elements O(2)tr
ασ , O(2)

σ̃β
, and a graph g2 or g1′ transitioning

from σ to σ̃ . We specify that the length |g2′ | is the same as that of the pre-rotation graph,
even though part of the graph may be covered by a block b̄(2).

Let us define cumulative rotations

R(1′) = (1′)O(1),

R(2′) = R(1′)(2)O(2). (3.23)

Then it should be clear that the arguments used to prove Proposition 2.1 will allow us to
obtain a similar result for the eigenfunctions approximated in step 2:

Proposition 3.2 For a given ν,C let ε = γ 1/20 be sufficiently small, and assumeLLA(ν,C).
Then

E Avα

∣∣∣∣
∑

σ,σ̃

R(2′)tr
ασ Sz0R

(2′)
σ̃α

∣∣∣∣ = 1 − O(ε). (3.24)

Proof The graphical expansions produced by commutators with Sz0 are very much like the
ones we have been working with. We need to control the probability that 0 is in a small block
b̄(1) or b̄(2), that is, Q(1)

00 + Q(2)
00 . From step 1, we know Q(1)

00 is O(ρ1ε), and from (3.9) we

have that Q(2)
00 is O(ρ1ε

s)2. Thus we obtain (3.24). Likewise we can prove a bound analogous
to (2.22) for connected correlations; further details on this will be left to the general step. ��

4 The General Step

Our presentation of the kth step follows the same plan as the first two steps. In Sect. 4.1, we
lay out the inductive bounds that need to be proven. In Sect. 4.2, resonant blocks are defined,
and probability estimates are made to ensure their diluteness. Graphical estimates leading to
inductive control over interaction terms are presented in Sect. 4.3. There are dependencies
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Level Spacing
Assumption
A1(cb) or
LLA(ν, C)

Bound on
Jacobian
4.2.2

Markov
Inequality

4.2.3

Probability of a
Resonant Graph

4.2.3

Probability of a
Resonant Block

4.2.4

Metric
Equivalence

4.2.1

Graphical
Bounds
4.3.2

Diluteness
of Resonant

Blocks

Accuracy
of Perturbation

Theory

Theorem 1.1
Many-Body
Localization

j + 1

j + 1

Fig. 1 An example of an inductive construction. An arrow with the notation “ j + 1” indicates that a result
from step j is assumed when making the argument in step k = j + 1

between these two sections, insofar as estimates and constructions from previous steps are
used when needed—see Fig. 1. Control over the counting of graphs is used throughout; it
is presented in Sect. 4.2.1. We use a stronger form of the level-spacing assumption in Sect.
4—it will be relaxed to LLA(ν,C) in Sect. 5. It leads to control over the Jacobian for the
change of variables between uncorrected and corrected versions of energy differences. A
Markov inequality can then be used to show that each graph obeys an exponential bound
with a high probability; the probability of failure of the bound is also exponentially small.
These probabilities feed into generalized percolation estimates on the connectivity functions
for resonant blocks. Percolation aspects feed into necessary results on metric equivalence:
the lack of graphical decay across resonant blocks means that decay needs to be measured in
a metric where blocks are contracted to points. The equivalence of this metric with the usual
one is demonstrated in Sect. 4.2.1.

4.1 Starting Point for the kth Step

Let j = k − 1. We describe the situation as it stands after j steps; thus this section describes
an inductive hypothesis that has been checked up through j = 2.

We have small blocks b( j) with diameter < L j that are well-separated from other parts of
S j as per (3.3). Couplings in J ( j ′) are O(γ L j ), which will be sufficient to control sums over
states in b̄( j), since their number is no more than exponential in |b̄( j)|. Rotations have been
performed in each b̄( j) to diagonalize the Hamiltonian there up to terms of order L j . Collar
neighborhoods of width L j − 1 ensure that none of the couplings expanded in the j th step
reach into the large blocks B( j ′). At each stage we prove a bound

P( j)
xy ≤ (cρ1ε

s)(|x−y|( j−1)∨L j−1)/8 (4.1)
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on the probability that x, y lie in a block B( j). Here |x − y|( j) refers to the distance from x

to y with blocks ¯̄b(m) contacted to points for m ≤ j .
Graphs g j ′ are multigraphs (or multiscale graphs), each of which is based on a sequence

of subgraphs g( j−1)′ from the previous scale. Each of the subgraphs g( j−1)′ is based in turn on
a sequence of further subgraphs g( j−2)′ . Continuing in this fashion, we obtain for each i < j
a sequence of level i subgraphs gi ′ . When unwrapped down to the starting level, we obtain a
sequence of spin flips; thus one may think of g j ′ as a walk in the space of spin configurations.
(The collection of graphs g j ′ has to be enlarged to take into account non-local terms in the

energies E ( j ′)
σ —specifically the way such terms mediate commutator connections between

graphs. This will be discussed in detail in Sect. 4.3.2.) When unwrapped to the first scale,
we obtain spatial graphs gsj ′ of spin/metaspin flips and associated denominator graphs gdj ′ .
Resummed sections appear as jump steps with no denominators. Rotation matrix elements
introduce intra-block “flips” of the metaspin variable labeling all the states in the block.

We inherit bounds from the j th step:

|A( j)
σ σ̃

(g( j−1)′′)| ≤
{

(γ /ε)
|g( j−1)′′ |/(g( j−1)′′ !)2/9, in general;

γ
|g( j−1)′′ |, if g( j−1)′′ is a jump step.

(4.2)

Here we make use of an inductive formula for the factorials that appear in our procedure:

g( j−1)′′ ! ≡
{
1, if g( j−1)′′ is a jump step;
n!∏n

p=0 g( j−2)′′,p!, otherwise.
(4.3)

Here g( j−2)′′,0 . . . , g( j−2)′′,n are the subgraphs of g( j−1)′′—see (3.15). Thus the factorial of
a graph at a given level is defined recursively in terms of the factorials of its subgraphs.
(In the first step, there are no subgraphs or jump steps, so g1′ ! ≡ n!, corresponding to
(ad A(in)) · · · (ad A(i1))J (0)(i0), c.f. (2.8)). As one unwraps the graph, factorials from earlier
scales accumulate—but the process stops whenever one reaches a jump step, for which
gi ′′ ! ≡ 1. The idea is that the ad expansion generates a factor of 1/n!, which is available to
help control graphical sums. Jump steps correspond to sums of graphs; the factorials have
already been “used up” in controlling those sums, so they do not appear anymore in bounds
such as (4.2).

In a similar fashion, the length |g( j−1)′′ | is defined to be the sum of the lengths of its
subgraphs, if g( j−1)′′ is not a jump step. The length of a jump step on an interval I is defined
for any i to be

|gi ′′ | = |I | ∨ 7
8 Li , (4.4)

where |I | is the length of I in the metric |x − y|(i) in which blocks ¯̄b(ĩ) on scale ĩ ≤ i are
contracted to points.

At each level we have the “core” small blocks b(i), where resonant graphs occur. Adding a
collar of width Li −1, we obtain b̄(i), where rotations are performed. Adding a second collar

of width 15
14 Li−1 about b̄(i), we obtain ¯̄b(i), which is the region of dependence of the energies

of b̄(i) after the rotations. All these distances are measured in the metric |x − y|(i−1).
Interaction terms J ( j ′) and J ( j)lint have graphical expansions as in (3.22):

J ( j ′)
σ σ̃

=
∑

g j ′ :σ→σ̃

J ( j ′)
σ σ̃

(g j ′), (4.5)

with bounds
|J ( j ′)

σ σ̃
(g j ′)| ≤ γ (γ /ε)

|g j ′ |−1
/(g j ′ !)2/9. (4.6)
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4.2 Resonant Blocks

Following the constructions from the second step, consider a graph g j ′ that labels a term
of J ( j ′) (so g j ′ does not intersect S j ). We define a reduced graph ḡ j ′ that will be used for
indexing event sums. It is defined from g j ′ by forgetting all substructure inside jump steps. In
addition, there is a set of subgraphs of g j ′ that are called “erased”—these will be defined in
Sect. 4.2.3. For erased subgraphs, we forget the order of further subgraphs, putting them into
a standard left-to-right order in Z. (There is no issue of commutativity of operators for erased
subgraphs when considering event sums, because erased subgraphs are replaced by their
upper bounds, and then the order is irrelevant. See the next paragraph for a more extensive
explanation of the principles behind this construction.) The length |ḡ j ′ | is the same as |g j ′ |,
and ḡ j ′ ! is the same as g j ′ ! (which has no factorials on jump steps). If L j ≤ |g j ′ | < L j+1,
we define

A(k)prov
σ σ̃

(ḡ j ′) =
∣∣∣∣∣

J̃ j ′
σ σ̃

(ḡ j ′)

E ( j ′)
σ − E ( j ′)

σ̃

∣∣∣∣∣ , (4.7)

where J̃ ( j ′)
σ σ̃

(ḡ j ′) is the same as J ( j ′)
σ σ̃

(g j ′) except: (1) jump steps gi ′′ that are subgraphs of
g j ′ are replaced with their upper bound γ |gi ′′ | from (4.2) and (2) erased subgraphs gi ′′ are
replaced with their upper bound (γ /ε)|gi ′′ |/(gi ′′ !)2/9 from (4.2). We say that ḡ j ′ from σ to σ̃

is resonant if either of the following conditions hold:

I. |E ( j ′)
σ − E ( j ′)

σ̃
| < ε

|ḡ j ′ |,

II. A(k)prov
σ σ̃

(ḡ j ′) > (γ /ε)
|ḡ j ′ |/(ḡ j ′ !)2/9 with |I (ḡ j ′)| ≥ 7

8 |ḡ j ′ |. (4.8)

Generalizing the step 2 definition, let I (g j ′) be the smallest interval in Z covering all the

sites or blocks ¯̄b( j̃) with j̃ ≤ j that contain flips of g j ′ , and let |I (g j ′)| be the number of sites

or blocks ¯̄b( j̃) in I (g j ′). The same definitions hold for I (ḡ j ′). It is important to understand
that ḡ j ′ is a graph implementing a transition from some σ to some σ̃ . Thus it specifies σ

and σ̃ as well as the transitions that walk from σ to σ̃ . Jump steps of ḡ j ′ specify a single
transition of this walk, altering the spin configuration on the interval I of the jump step. The
transition energies depend on σ out to a distance 15

14 L j from the flips of ḡ j ′ , in the | · |( j)
metric (this will be verified inductively—see Sect. 4.3.2). So ḡ j ′ has to specify σ out to that
distance. This leads to a proliferation of possibilities for ḡ j ′ , but it is harmless because it is
only exponential in L j (or in |ḡ j ′ |).

Let us take a moment to explain the key ideas behind this construction, as they are critical
to the design of a procedure that yields bounds uniform in k. A resonant graph can be thought
of as an event with a small probability. In order for a collection of graphs to be rare, we
need to be able to sum the probabilities. In the ideal situation, where there are no repeated
sites/blocks in the graph, the probability is exponentially small, so it can easily be summed.
However, when graphs return to previously visited sites, dependence between denominators
develops, and then the Markov inequality that is used to estimate probabilities begins to
break down. Subgraphs in a neighborhood of sites with multiple visits need to be “erased,”
meaning that inductive bounds are used, and they do not participate in theMarkov inequality.
(This means we use P(AC > BC) ≤ E(AC)/(BC) = E(A)/B when C is bound for
C—so the variation of C is not helping the bound.) When there are a lot of return visits,
a graph’s interval I (g j ′) is shortened by at least a factor 7

8 , and it goes into a jump step,
where again we use inductive bounds. In this case, we have more factors of γ , and hence a
more rapid decay in |I (g j ′)|, and this provides the needed boost to preserve the uniformity of
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decay in the induction. (Fractional moments of denominators are finite, no matter the scale,
which provides uniformity for “straight” graphs with few returns.) The net result is uniform
probability decay, provided we do not sum over unnecessary structure, i.e. the substructure of
jump steps and the order of subgraphs for erased graphs. Note that jump steps represent sums
of long graphs, so when taking absolute values it is best to do it term by term. This is why
in (4.7) we replaced jump steps with their upper bound. (The jump step bound (4.2) is also a
bound on the sum of the absolute values of the contributing graphs. Thus we may manipulate
the sum at the level of individual graphs, when needed, for examplewhen taking derivatives in
Sect. 4.2.2.) A single bound on A(k)prov

σ σ̃
(ḡ j ′) will imply corresponding bounds for A(k)

σ σ̃
(g j ′)

for any g j ′ that reduces to ḡ j ′ . One just needs to combine inductive bounds on the erased

sections and jump steps with the probabilistic bound on A(k)prov
σ σ̃

(ḡ j ′). One may think of

A(k)prov
σ σ̃

(ḡ j ′) as a sort of universal socket into which any graph g j ′ can be plugged, provided
its subgraphs obey the required inductive bounds. There is no point in attempting to sum over
events labeled by g j ′ because (1) it would involve summing the same event many times over
and (2) probability bounds are not good enough to allow such an uneconomical procedure.

We define the scale k resonant blocks. Examine the set of all resonant graphs ḡ j ′ . The set of
sites/blocks that belong to resonant graphs ḡ j ′ are decomposed into connected components.
These are the step k resonant blocks B(k). They do not touch any of the large blocks B( j ′)

from the previous step. Small blocks b̄(1), . . . , b̄( j) can be absorbed into blocks B(k), but
only if they are part of a resonant graph g j ′ .

As in step 2, we reorganize the resonant blocks produced so far, to take into account
the presence of new resonant blocks and to define new small blocks b(k). The result is a
collection of small blocks b(i) for i ≤ k and a leftover region Sk′ ; they must satisfy the
following diameter and separation conditions for i, ĩ ≤ k:

diam(b(i)) < Li ;
dist(b(i)

1 , b(ĩ)
2 ) > dm ≡ exp(L1/2

m+m0
), if min{|b(i)

1 |, |b(ĩ)
2 |} ∈ [Lm−1, Lm);

dist(b(i),Sk′) > dm, if |b(i)| ∈ [Lm−1, Lm). (4.9)

Here |b(i)| is the “core” volume, i.e., the number of sites or blocks b̄(ĩ), ĩ < i in b(i). But
we establish the following convention: any block B(i) with fewer than Li−1 sites/blocks is
considered to have size Li−1 when calculating volumes. This is because Lk−1 is theminimum
graph size considered in step k, and resonance probabilities are correspondingly small. This
convention carries over to small blocks formed out of B(i) at stage ĩ ≥ i . Note that the rules
(4.9) apply to small blocks on all scales up through k. This means that a b(i) with i < k
can be absorbed into the new resonant region if it is close enough to a B(k). It is easy to
see that there is a unique way to decompose the complete resonant region (including blocks
B(i ′), B(k) and b(i) with i < k) into a maximal set of small blocks on scales up through
k satisfying (4.9), plus a leftover “large block” region Sk′ . One may proceed by forming
proximity connections on successive length scales dm . At each stage, connected components
satisfying diameter and distance rules can be extracted as small blocks, and eliminated when
constructing connected components on the next scale. We do not produce any new blocks
b(i) with i < k, but previous ones can be absorbed into Sk′ or into a b(k).

Let Sk denote Sk′ plus the small blocks b(k). We add to Sk a collar of width Lk − 1 in the
metric | · |( j). (As in previous steps, collars ensure a minimum graph size for connections to
the outside, and define regions for block diagonalization.) Then Sk is the collared version of
Sk , and its components are the collared small blocks b̄(k) and large blocks B̄(k′). The union

of the B̄(k′) is denoted Sk′ , and then each B(k′) ≡ Sk ∩ B̄(k′). We also define ¯̄b(k) by adding
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a second collar of width 15
14 L j in the metric | · |( j); this constitutes the extent of dependence

on the spin configuration for quantities associated with b̄(k).
The “geometric mean” construction of Sect. 3.1 shows that if x, y belong to the same

resonant block B(k), then there must be a sequence of resonant graphs connecting x to y with
the property that the even and odd subsequences consist of non-overlapping graphs. Thus we
may focus on probability estimates for individual resonant graphs.

4.2.1 Graphical Sums

It will be helpful to use this subsection to describe how we control sums over multiscale
graphs g j ′ or ḡ j ′ . The goal is to replace any sum of graphs with a corresponding supremum,
multiplied by a combinatoric factor. Any sum

∑
g | f (g)| can be bounded by supg| f (g)|c(g)

provided
∑

g c(g)
−1 ≤ 1. Then c(g) is the combinatoric factor. From (4.8), we see that A’s

will obey a bound exponentially small in |g j ′ |, times (g j ′ !)−2/9. We will obtain similar bound
on resonance probabilities. Thus we need to be sure that combinatoric factors c|g j ′ |(g j ′ !)2/9
will be sufficient to control sums over g j ′ .

As we shall explain in Sect. 4.3.2, any time there is a gap between a subgraph g(i−1)′,p
and the collection {g(i−1)′,0, . . . , g(i−1)′,p−1}, it will be “filled in” by bridging gaps between
graphs on earlier scales. These gap graphs result from expanding the difference between
two denominators that arise from a commutator ad A(i)(g(i−1)′,p) applied to an operator
associatedwith g(i−1)′,0, . . . , g(i−1)′,p−1. Gap graphs are terms in expansions for the energies
(i.e. diagonal entries of the Hamiltonian), and have the same structure as off-diagonal graphs.

Let us consider first the situation where g j ′ does not move through any blocks. We need
to consider the combinatoric factors needed to control the sum over the structure of the level
i subgraphs, gi ′ , of g j ′ . (Let us assume for the moment that g j ′ is not a jump step.) Each
subgraph gi ′ has subgraphs g(i−1)′,0, . . . , g(i−1)′,n . We need to sum over the positions of the
starting point (first flip) of each g(i−1)′,p . There can be gaps of size ≤ 15

14 Li−1 between each
g(i−1)′,p and the ones that came before. Naïvely, the sum over g(i−1)′,p could produce a factor
O(Li )p, or O(Ln

i )n! in total. But we use this bound only when summing over long graphs.
(As in step 2, we say a graph g j ′ is long if |g j ′ | > 8

7 |I (g j ′)|. Otherwise, it is short.) For
long graphs, we sum directly the series (ad A)n/n!, so a combinatoric factor n! is admissible.
But then the 1/n! is gone from the estimate. This is the reason g j ′ ! was defined with no
contribution from jump steps, which represent sums of long graphs.

Now let us consider the situation where gi ′ is short. There can be very little overlap
between the g(i−1)′,p—any overlap shortens |I (gi ′)|, which must be at least 7

8 |gi ′ |. We claim
that no more than 2n/9 graphs g(i−1)′,p can fail to break new ground. (Let us call them
floating graphs.) The others are pinned to the left or right side of the growing graph, and
do not produce factors of p—we call these pinned graphs. This means that short graphs can
be controlled with a combinatoric factor O(Ln

i )n
2n/9 = O(Ln

i )(n!)2/9. To check this claim,
consider first the case with no gaps. The ratio �p : �f between the total length of the pinned
graphs and the total length of the floating graphs must be at least 7:1. The lengths of graphs
vary by no more than a factor of 15

8 < 2. Hence the ratio np : nf between the number of
pinned graphs and the number of floating graphs must be at least 7:2, which verifies in the
claim in this case. If gaps are present, then (as explained in Sect. 4.3) the graphs bridging the
gaps double back. This means that half the length of the bridging graphs is “wasted,” i.e. it
does not extend I (gi ′). Consequently, the graph length available for floating graphs decreases
as gaps increase, and the number of floating graphs is even less than 2n/9. In detail, let us
suppose that the length of the pinned graphs plus the length of the gap graphs is �p(1 + δ).
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Then the condition for short graphs implies that the ratio �p(1 + δ) : �pδ/2 + �f must be at
least 7:1. Hence �f ≤ �p(1 − 5δ/2)/7. Allowing as before a factor ≤ 2 between the sizes of
pinned and floating graphs, we see that nf ≤ 2np(1 − 5δ/2)/7. Hence the ratio nf/n is no
greater than (2 − 5δ)/(9 − 5δ) ≤ 2

9 , which completes the proof of the claim.
If we have a jump step gi ′′ , then the sum over substructure has already been taken care of

in the inductive bound (4.2). The sum over the jump itself is controlled with a combinatoric
factor c|gi ′′ |, which bounds the number of initial and final configurations for the jump.

To complete the bound, we need to take the product over all the subgraphs gi ′ . Since
the gi ′ each have size ≥ Li , there are no more than |g j ′ |/Li factors of Li . So we obtain a
bound exp(O(1)|g j ′ |L−1

i log Li ) times a product of (2/9)th-power factorials. In view of the

geometric increase, Li = ( 158 )i , the product over i < j gives a bound c|g j ′ |(g j ′ !)2/9, which
is just what is required. One way to think of this estimate is to compute the “combinatoric
factor per site” L1/Li

i by dividing each factor Li amongst Li steps. As the product of L
1/Li
i is

bounded, the combinatorics are under control. Note that super-linear growth of Li with i is
required. We may control in a similar manner various other combinatoric factors bounded by
cn when the subgraph gi ′ has n+1 subgraphs. For example, the number of terms in (ad A)n J ,
the choice of jump step or regular step, and the sum on n. Similarly, one needs to choose the
denominators that will be differenced when forming gap graphs: the sums can be controlled
by combinatoric factors cn for the subgraphs gi ′ of g j ′ .
Metric Equivalence

We need to establish some facts about comparability of the metric |x − y|( j) with |x − y|.
The issue is that graphs exhibit decay in |x − y|( j) (blocks ¯̄b(i), i ≤ j contracted to points)
but there are counting factors exponential in the size of blocks—specifically sums over states

or metaspins in blocks b̄(i) and background spin configurations in ¯̄b(i) \ b̄(i). Recall that
blocks b( j) have size < L j ; b̄( j) includes a collar of width L j − 1 in the metric |x − y|( j−1);

and ¯̄b( j) includes a second collar of width 15
14 L j−1. Comparability of the metrics will ensure

that the size of b( j) increases by no more than a fixed factor, e.g. 8, in forming ¯̄b( j). Then

the state-counting factor 2|b̄( j)| and the background-spin counting factor 2| ¯̄b( j)|−|b̄( j)| can be
controlled by the smallness of the graph, (γ /ε)L j , or its probability, εL j . This is a crucial
element of our method, because the maintenance of uniform exponential decay is essential
for controlling state sums. Separation distances that grow rapidly with block size ensure that
the fraction of distance lost to blocks is summable, and so |x − y|( j) is always at least a
positive fraction of |x − y|. The construction is similar in spirit to that of [9].

The separation rule is that blocks b( j) have diameter< L j , and that pairs of blocks satisfy

dist(b(i)
1 , b( j)

2 ) > dm ≡ exp(L1/2
m+m0

), if min{|b(i)
1 |, |b( j)

2 |} ∈ [Lm−1, Lm). (4.10)

This type of rule can generate blocks with large, hierarchically organized gaps. But there is
a limit to how spread-out blocks can be. Consider a block b( j) with |b( j)| ∈ �Lm−1, Lm). If
any gap in b( j) is greater than dm−1, then it would divide b( j) into two parts. At least one
of the parts would have volume <Lm−1 while being separated by a distance >dm−1. This is
impossible, because it would mean that part would have become a separate small block at
some step i ≤ j . (The diameter of the part is obviously smaller than L j , since it is a subset
of b( j) and diam(b( j)) < L j .) There are no more than Lm − 2 gaps, so the limit on gap size
implies that

diam(b( j)) ≤ (Lm − 2)dm−1 ≤ qmdm−1, (4.11)
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where q ≡ 15
8 , Lm = qm . As these blocks are separated from each other and from larger

blocks by a distance dm , we see that the fraction of the distance between larger blocks that is
occupied by blocks with |b(i)| ∈ [Lm−1, Lm) is bounded by rm ≡ qmdm−1/dm . Proceeding
from larger to smaller values of m, we find that the fraction of distance that is free of blocks
of any size is at least

∞∏

m=1

(1 − rm) ≥ exp

(
−2

∞∑

m=1

rm

)
, (4.12)

provided rm ≤ 1
2 . The super-exponential growth of dm withm (dm = d

√
q

m−1 ≈ d1.37m−1) implies
that

∑∞
m=1 rm is small, for large enough m0. In detail, we may put ζ = 1− q−1/2 ≈ .27 and

write

rm = qm exp
(
L1/2
m−1+m0

− L1/2
m+m0

)
= qme−ζq(m+m0)/2

≤ 4!
ζ 4

(
ζ 4

4! q
me−ζq(m+m0)/4

)
e−ζq(m+m0)/4 ≤ 4!

ζ 4 e
−ζq(m+m0)/4

, (4.13)

and then it is clear that
∑∞

m=1 rm can be made arbitrarily small by choosing m0 sufficiently
large. By (4.12),we obtain the desired smallness of the fraction of distance occupied by blocks
satisfying our separation conditions. This forms the basis for the following two lemmas, one
controlling the expansion of blocks due to collars, and one on metric equivalence.

Lemma 4.1 Let m0 be sufficiently large. Then the following bound holds for any i:

diam( ¯̄b(i)) ≤ 8 diam(b(i)). (4.14)

Proof Note that a block b( j) has diameter in [L j−1, L j ), because if it were smaller than L j−1,
it would have been a block b(i) with i < j . Let us assume (4.14) inductively for i < j . Any
blocks b(i) that might appear in the collar must obey the separation condition with respect to

b( j). From the discussion in the paragraph above, we can choose m0 so that blocks
¯̄b(i) with

i < j take up a small fraction of the width of the collar. Since b( j) has a minimum diameter
L j−1,we see that adding the two collars (the first ofwidth L j and the secondofwidth 15

14 L j−1)

expands its size in | · |( j−1) by no more than a factor (2(L j + 15
14 L j−1) + L j−1)/L j−1 ≤ 7.

Allowing for blocks ¯̄b(i) with i < j , we increase the factor to 8 and recover the inductive
assumption. ��

Although we cannot expect comparability of metrics for points very close to blocks, the
next lemma gives comparability when the distance involved is at least as large as the current
length scale.

Lemma 4.2 Let m0 be sufficiently large. Then the following bound holds for any x, y, j with
|x − y|( j) ≥ L j :

|x − y| ≤ 6|x − y|( j). (4.15)

Proof The worst case for this estimate will be when |x − y|( j) = L j , for example if x is in a

block ¯̄b( j) and y is a distance L j away. The block
¯̄b( j) has maximum size 3L j +2 · 1514 L j−1 ≤

5L j in | · |( j−1). Allowing for a small amount of expansion from blocks on other scales, we
find that |x − y| ≤ 6|x − y|( j). ��

This result on metric equivalence is used in a number of places to handle situations where

graphs of size L j touch a block ¯̄b( j) and/or blocks ¯̄b(i) with i < j . We have an exponential
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factor like εL j to work with, but the decay has to be spread out over the blocks as well as the
graph. But with metric equivalence, we get at least 1/6 of the original decay rate. This also
allows us to handle the associated state sums as well, while preserving exponential decay.
Similar issues arise in the single-body analysis of [27], but they were easier to handle because
state sums were linear (rather than exponential) in the volume, so collars could be chosen
logarithmic (rather than linear) in the volume of a block.

4.2.2 The Jacobian

In order to estimate probabilities of a resonant graph, we use a Markov inequality—see
(4.26) below. This provides a bound in terms of the expectation of the graph to the s = 2

7
power. The graph has a number of energy denominators, so it is important that we are able
to demonstrate the finiteness of the −s moment of the product of the denominators of the
graph. Each denominator corresponds to the energy change from flipping a set of spins (or
metaspins, in the case of block energies). To leading order, the energy change from flippping
σi is ±hi , plus something independent of hi . As the random variables hi have a bounded
density, the −s moments are bounded. A similar bound applies to block energy differences,
provided we assume noncriticality of their dependence on the random variables. The goal of
this subsection is (1) to describe when it is possible to obtain good bounds on−s moments of
a product of denominators and (2) to estimate the Jacobian that results from using the energy
denominators as integration variables, instead of the parameters hi , etc. that appear in the
Hamiltonian (1.1). All these issues apear in a simpler context in [27], where the same “change
of variable method” is used to bound −s moments of products of energy denominators.

The main result of this subsection is the Jacobian bound, Proposition 4.3. Using a con-
venient normalization, the Jacobian determinant is ±1 to leading order for a “good” set
of denominators (see below). Allowing for perturbative corrections, derivatives of energy
differences are close to their leading behavior, and hence the Jacobian determinant can be
bounded above and below by an exponential in the number of denominators.

Let us begin the analysis with a discussion of the structure of the graphs that arise from
our construction. Each graph has a number of energy denominators produced at various
scales. We need to work with a hierarchically organized structure of denominators. Each
denominator can be visualized as an arch over the collection of sites/blocks flipped in the
associated subgraph. Denominators from later steps arch over earlier ones. Arches are either
strictly contained in one another or else completely disjoint. This structure follows from
the way denominators are introduced—see (3.11), (4.7). However, if two subgraphs have
a site/block in common, the underlying random variables are identified, creating unwanted
dependence, which shows up graphically as overlapping arches. Therefore, we will need to
require that as one proceeds up the hierarchy, there are no repeat visits, which means each
new denominator introduces a new independent variable. As long as this is the case, there is
no linear relation amongst the denominators, and they can be used as integration variables,
provided we can bound the Jacobian. (If there are repeat visits, then we will need to throw out
some denominators—i.e. replace themwith uniformbounds—in order to find a set that has the
hierarchical property. The details of how this is done will be deferred to the next subsection.)

To leading order, each energy difference in the graph is a sum of energy differences of the
sites/blocks of the graph. So we think of each site/block energy difference as an independent
variable (but no more than one variable for each site/block). For example, a flip at site 1
produces an energy difference 2h1 + a1. A flip at site 2 will produce an energy difference
2h2 + a2 if compared to the previous configuration; it produces 2h1 + 2h2 + a1 + a2 if
compared to the starting configuration. Either way, the two denominators are independent.
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(Here a1, a2 are h-independent constants coming from the exchange interaction Ji Szi S
z
i+1.)

If a third flip occurs at either site 1 or 2, the new denominator will not be independent,
because it can be written as a linear combination of the first two denominators. In general,
any flip at a new site will introduce a denominator independent of the ones that come before,
simply because it introduced a new independent variable: the energy difference at the new
site. Blocks will be treated as fat sites with metaspin variables. We allow for only one energy
difference in the block to be considered independent (otherwise we would need to assume
probabilistic properties about multiple energy differences in blocks). So only steps to new
sites/blocks introduce new variables that generate independent denominators. Our assumed
bounds on the distribution of energy differences allow us to integrate the −s power of each
denominator in turn, keeping the unintegrated variables fixed. We are free to choose any
set of independent denominators, even an incomplete (non-spanning) set. Any remaining
denominators, including all non-independent denominators, are bounded in sup norm.

The above discussion applies to the leading order approximation for energies as a simple
sum of contributions from sites/blocks. Terms like Ji Szi S

z
i+1 do not depend on the random

variables in the sites/blocks they connect, so they merely introduce constant shifts as in the

example above. However, as we saw in the second step, energies E (i ′)
σ receive perturbative

contributions with h-dependent energy denominators. In the kth step, energies E ( j ′)
σ are

updated to E (k′)
σ through perturbative terms and from the eigenvalues of newly formed small

blocks. Denominators in a graph for E (k′)
σ depend on E (i ′)

σ for i < k. We want to check
the dependence on the underlying random variables by differentiating with respect to hi (or
with respect to other random variables at our disposal). We apply the chain rule repeatedly,
down to the first scale if possible. But when a derivative hits a block energy at the scale of
its formation, we stop and apply our basic assumption on non-criticality of those energies.
The graphical expansions are well controlled, so it should not be a surprise that they can be
differentiated, and the Jacobian connecting a set of independent denominators of a graph to
the underlying random variables is close to the noninteracting case.

Behavior of block energies Block energy differences E ( j ′)
α − E ( j ′)

β depend on random

variables out to a distance 15
14 L j from a block b̄( j) in | · |( j−1). This is from dependence

of graphs on energies E (i ′), i ≤ j − 1—see (4.50) below. Recall that our parameter space
is h = (hi , Ji , �i ) with γi = γ�i . The random variables hi , Ji , �i are independent, each
having a distribution supported on [-1,1], with a density bounded uniformly by a constant
ρ0. Thus if the block has size n there are no more than ηn parameters, for some fixed η.
All eigenvalues have bounded derivatives with respect to these variables, since the operators
Szi , S

x
i are boundedby1 in norm.Weneed to assume that all energydifferences arenoncritical,

i.e. at least one direction in the space of random variables produces a nonzero directional
derivative. In practice, we will use a coordinate system in which energy differences move
to first order with respect to one of the coordinates. Let us focus on the case of spherical
coordinates since (as we will show in Sect. 5) radial derivatives can be bounded from below
if there is a minimum level splitting. The angular coordinates will be treated as “spectator”
coordinates, that is, fractional moments of energy denominators are bounded by integrating
over the radial variable with bounds independent of the angles. Let r = |h| be the Euclidean
norm of h, and use it as the radial coordinate. We make the following assumption:

Assumption A1 (cb) (Non-criticality of energy differences) For all h and all pairs of eigen-

states α, β for the matrix H ( j−1)′
0 + J ( j)sint in a small block b̄( j) of size n, the difference of

eigenvalues satisfies
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∣∣∣∣
∂

∂r
(E ( j ′)

α − E ( j ′)
β )

∣∣∣∣
−1

≤ cnb , (4.16)

We will relax this assumption in Sect. 5 by allowing failure on a set of small probability. But
for simplicity, we work here with this strong non-criticality assumption.

For ease of exposition, let us introduce variables h̃x for each site/block x . For sites,
h̃x = 2hx so that bare energy differences move at unit speed. For each block in the graph
of independent denominators, we let h̃x be the coordinate in the radial direction, rescaled

so that E ( j ′)
α (h̃x ) − E ( j ′)

β (h̃x ) moves at unit speed. The eigenvalues are distinct, except
on a curve of measure 0, given by the vanishing of the discriminant. (The discriminant
cannot vanish identically. Take any magnetic fields h1, . . . , hn in the block with no relation
±h1 ± h2 . . . ± hn = 0. As they are scaled to infinity together, they dominate all other
terms in the Hamiltonian, and the eigenvalues are separated.) Therefore the eigenvalues are
continuously differentiable.We illustrate with a simple one-site example, H = ( h γ

γ −h

)
, with

both h, γ random. The eigenvalue difference is 2
√
h2 + γ 2 = 2r = h̃ in polar coordinates,

and the radial derivative of the eigenvalue difference is 2. Of course, if γ is not allowed to
vary, we would have a critical point at h = 0, where assumption A1(cb) would fail.

We should point out that there is some arbitrariness in the selection of α, β in the blocks of
the denominator graph. The denominators form a tree graph of energy denominators linking
distinct spin configuration energies, since by construction each new denominator goes to a
configuration with a new site/block flipped. The choice of how to order the denominators can
affect the choice of α, β in a block. Intervening flips may cause a change in state in the block,
so that a second denominator may reflect a different state change at a block. However, once
a block variable is linked into the expanding denominator graph, it is treated as fixed, along
with any other energy difference in the block (we do not have enough information to treat
other differences as independent.) Subsequent denominators depend on new variables outside
the block, so they are independent of previous ones. There is also some arbitrariness in the
selection of variables when there are fewer denominators than sites/blocks being flipped. In
such cases extra variables may be treated as fixed, all analysis done uniformly with respect
to the values of the extra variables.

It will be helpful to order the denominators in the graph g j ′ as follows. First run through the
denominators from the first step (single spin flips). Then proceed to denominators introduced
in the second step (graphs g1′ with two or three steps—the new denominator coming from an
A(2)

σ σ̃
with σ σ̃ differing by two or three flips. Continue through all length scales up to j . Each

denominator in the sequence introduces a new independent variable h̃ y , and it is convenient
to number the h̃ y’s in the same order as the denominators. Let us introduce the notation

D( j ′)
σ σ̃

= E ( j ′)
σ − E ( j ′)

σ̃
(4.17)

for the denominator connecting σ to σ̃ . The dependence on h̃ y is given by the leading term
from scale 0 (or from scale i for energies of blocks b̄(i)) plus corrections given by graphical
expansions. Thus

∂D( j ′)
σ σ̃

∂ h̃ y
= ±(1 − δσ(y)σ̃ (y)) + ∂

∂ h̃ y

j−1∑

i=1

∑

gi ′

(
J (i ′)
σσ (gi ′) − J (i ′)

σ̃ σ̃
(gi ′)

)
, (4.18)

where the Kronecker δ makes the leading term ±1 if and only if σ(y) �= σ̃ (y). The cor-

rections come from diagonal entries of J (i ′) that were absorbed into H ( j ′)
0 , and also from

differences E (i ′)
σ − E (i ′)

σ̃
of energies of blocks b̄(i) after diagonalization; see (3.18)–(3.22)

123



On Many-Body Localization for Quantum. . . 1025

and the analogous equations in the general step, (4.51)–(4.53). To keep the notation in (4.18)

simple, let us allow J (i ′)
σ σ̃

to refer either to the initial block energies or to the perturbative
corrections at subsequent scales. We defer for a moment the discussion of block energy dif-
ferences, and focus now on the perturbative terms. By the inductive hypothesis, they obey
the bound (4.6). Note that our ordering convention implies that the matrix±(1−δσ(y)σ (ỹ)) is
lower triangular, with ±1’s on the diagonal, and ±1 or 0 below the diagonal. (Here the pair
σ σ̃ runs over n choices coming from the n denominators, and y runs over the n independent
variables.) Thus to leading order, the eigenvalues of the Jacobian are ±1. Our challenge now
is to show the corrections are small.

If we apply the chain rule to the h̃ y-derivative on the right-hand side of (4.18), the deriv-

atives flow to the denominator energies in each term J (i ′)
σσ (gi ′) or J

(i ′)
σ̃ σ̃

(gi ′). We need to be
cognizant of the fact that jump steps in gi ′ are actually sums of (long) graphs, and these graphs
have denominatorswhichwill depend on h̃ y . So for the purposes of this discussion,we expand
out every jump step at level i < j into the sum of all its constituent graphs, see (3.12) or
(4.40). The grouping of graphs into jump steps is a convenient way to keep track of the way
estimates from smaller scales merge with Markov inequality bounds to produce bounds on
longer scales. But when needed, we may go back to the underlying sum of graphs. Another
point to mention is the fact that the energy graphs gi ′ do not have the “independent denom-
inator” property that we assume for g j ′—it is not needed because we have inductive bounds
on those graphs. By the Leibniz rule, the h̃ y-derivative produces a sum of terms with one of
the denominators in gi ′ duplicated and the corresponding denominator differentiated in the
numerator. The extra denominator can be bounded from below as in (4.8I), and the result is an
extra factor of ε−|gi ′ |. The original graph is bounded as in (4.6). Altogether, we obtain a bound

∣∣∣∣∣
∂

∂ h̃ y
J (i ′)
σσ (gi ′)

∣∣∣∣∣ ≤ (cγ /ε2)|gi ′ |

(gi ′ !)2/9
sup
τ τ̃

∣∣∣∣∣
∂D(i ′)

τ τ̃

∂ h̃ y

∣∣∣∣∣ , (4.19)

where the constant c is inserted to account for the sum of denominators τ τ̃ in gi ′ .

Let τ�τ̃ denote the set of sites/blocks where τ �= τ̃ . The denominator D(i ′)
τ τ̃

is part of
a graph that covers τ�τ̃ and it extends to a place where σ �= σ̃ , because otherwise the
difference in the second term of (4.18) would vanish.

We may repeat the process, inserting (4.18) on scales i < j . There is a leading term ±1,
plus further graphical expansions. The ±1 terms and the expansion terms are localized near
the places where τ �= τ̃ , so there needs to be a sum over such sites—but there are no more
than |gi ′ | of them, so the sum can be handled with an increase in the constant c in (4.19).
The process stops at scale 1 (if h̃ y is 2hy) or at scale i (if h̃ y is the radial variable for a block
b̄(i)); at that point the derivative produces a factor ±1. Throughout the process, a graphical
connection is maintained to σ�σ̃ ; hence when it concludes, there is a connection from y to
σ�σ̃ . In fact, there is a double connection, because the graph must flip each site/block not
in σ�σ̃ at least two times, so as to return it to its starting value. Repeatedly applying the
bounds from the last section on graphical sums, we find that

∂D( j ′)
σ σ̃

∂ h̃ y
= ±(1 − δσ(y)σ̃ (y)) + O(γ /ε2)1+dist(y,σ�σ̃ ), (4.20)

where dist(y, σ�σ̃ ) is the number of steps from y to σ�σ̃ .
Let us return to the case of derivatives of block energy differences. When a derivative hits

a block energy, it flows to the Hamiltonian of the block and we have to take the expectation of
the resulting operator. The Hamiltonian is given by a leading term plus a graphical expansion
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with h̃-dependence in the denominators. We are only concerned with terms that depend on
h̃ y for y outside the block. All the terms are bounded in norm as in (4.6), so we can proceed
to apply the chain rule as discussed above, and the resulting bounds serve to control the
derivatives of block energies. As for the perturbative terms, we end up with decay from the
block to y for the derivative of a block energy with respect to h̃ y , and (4.20) remains valid.

The denominator D( j ′)
σ σ̃

is part of a graph that specifies a sequence of flips taking σ to σ̃ .

We write D( j ′)
σ σ̃

as a telescoping sum of energy differences for each spin flip:

D( j ′)
σ σ̃

=
∑

x

d( j ′)
x , (4.21)

where d( j ′)
x is an energy difference as in (4.17), arising from changing the spin at x from its

value in σ to its value in σ̃ . Note that d( j ′)
x depends on the spin configuration out to a distance

O(L j ), but we do not make the dependence explicit in the notation. Of course, each d( j ′)
x is

just a local difference of energies, so as a special case of (4.20) we have an estimate:

Jxy ≡ ∂d( j ′)
x

∂ h̃ y
= ±δxy + O(γ /ε2)1+dist(x,y). (4.22)

Now letting x, y run over the n sites/blocks associated with the independent variables h̃ y ,
we may write the Jacobian in matrix notation: J = Ĩ + �. Here Ĩ is a modified identity
matrix, with signs allowed. The matrix � has absolute row and column sums bounded by
O(γ /ε2), from the decay in (4.22). By a standard result on matrix norms, the same bound
applies to ‖�‖ (see for example Proposition 10.6 of [50]). Hence ‖�‖ = O(γ /ε2). By
Weyl’s inequality, � cannot move the eigenvalues of Ĩ by more than that amount. Therefore,

∣∣ log |detJ | ∣∣ ≤ O(γ /ε2)n. (4.23)

Let L be the matrix 1 − δσ(y)σ̃ (y), which, as previously noted, is lower triangular. (But now,
with the signs removed, it has 1’s on the diagonal.) The matrix L expresses the relation

(4.21) between the denominators and the single flip energies d( j ′)
x . Thus the full Jacobian

∂D( j ′)
σ σ̃

/∂ h̃ y is LJ , and its determinant is the same as detJ , with the same bound (4.23).
Thus we obtain the main result of this subsection:

Proposition 4.3 For a given cb, let ε = γ 1/20 be sufficiently small. AssumeA1(cb) and induc-
tive bounds (4.6) and (4.8I). Then any system of n hierarchically organized denominators
obeys the following Jacobian bound:

∣∣∣∣∣log
∣∣∣∣ det

∂D( j ′)
σ σ̃

∂ h̃ y

∣∣∣∣

∣∣∣∣∣ ≤ O(γ /ε2)n. (4.24)

Note that the choice of normalization for the variables h̃ y obscures the size of the lower bound
(4.16) on the rate of variation of eigenvalue differences with the original variables. When
estimating fractional moments of energy denominators, we will need to include factors c

ny
b

when the block at y has size ny .
It turns out that the multi-denominator estimates of the next subsection can be organized

so as to avoid working with block energy variables. Those estimates are mainly about getting
uniform exponential decay, and due to the diluteness of resonant blocks, the decay can
be extracted from the spaces between blocks. Nevertheless, the case n = 1 of (4.24) is
indispensable for controlling single-denominator resonances, in particular for block energies.
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4.2.3 Resonant Graphs

The Jacobian bounds allow us to estimate probabilities of resonant graphs. The arguments
are based on similar estimates in the corresponding subsection of [27]. First, let us consider
case I of the resonant condition (4.8). This is a single denominator estimate, so by (4.24) with
n = 1, we see that the energy difference moves at close to unit speed with the variation of
any one of the variables corresponding to flips of spins/metaspins in the transition σ → σ̃ .
So the resonance probability is proportional to ε

|ḡ j ′ |. In the case of a block variable for some
b̄(i), there is also a factor of the area of the sphere of radius r in R

ηLi , since there are up to

ηLi random variables in ¯̄b(i). Putting m = ηLi , we have that r ≤ √
m, and then the area is

bounded by rm · 2πm/2/�(m/2) ≤ cLi
area for some carea. Also, the rescaling r → h̃ y leads

to a factor c| ¯̄b(i)|
b ≤ cLi from (4.16). As discussed at the end of Sect. 4.2.1, our constructions

ensure that |ḡ j ′ | is always large enough so that exponentials in block sizes can be absorbed
into the exponential decay in |ḡ j ′ |. Thus the probability for condition (4.8I) is bounded by
(ρ1ε)

|ḡ j ′ |, for some constant ρ1.
Next, let us consider probability bounds for case II of (4.8), which applies to short graphs

with I (ḡ j ′) ≥ 7
8 |ḡ j ′ |. Consider the simplest case in which all the denominators in g j ′ are

independent. This will happen if there are no multiple visits to sites/blocks in g j ′ , which
means that each flip introduces a new independent variable. This means there are no erased
subgraphs – those are introduced for the general case (below) to deal with repeat visits. (Note

that a variable for a block b̄(i) must be part of a graph that extends into ¯̄b(i), which we count
as a repeat visit. So we do not have block variables in this example.)

We claim that

A(k)prov
σ σ̃

(ḡ j ′) ≤ γ
|ḡ j ′ |

ḡ j ′ !
∏

τ τ̃∈Gd
k

∣∣∣E (i ′)
τ − E (i ′)

τ̃

∣∣∣
−1

. (4.25)

Here Gd
k is the denominator graph for A(k)prov

σ σ̃
(ḡ j ′), which is the same as the denominator

graph of J ( j ′)
σ σ̃

(g j ′), plus the denominator forσ σ̃—recall the definition (4.7). The bound (4.25)
arises from unwrapping the definitions. In particular, as explained after (4.7), jump steps on
scales i < j are replaced by their upper bound γ |gi ′′ | – this means that jump steps contribute

their share of factors of γ . (These factors represent the improved bound |A(i ′)
σ σ̃

(g(i−1)′′)| ≤
γ |g(i−1)′′ |, which is used in place of jump steps in A(k)prov

σ σ̃
(ḡ j ′), see (4.2)). But this is the only

use of inductive bounds—the rest of the graph has all its subgraphs expanded out to the level

of elementary flips. Thus J ( j ′)
σ σ̃

(g j ′) is obtained from the ad expansion (4.42) and the rotation

(4.53) applied to J ( j−1)′ . Continuing down to the first level, each spin flip comes with a factor
of γ , as required in (4.25). The factorials 1/n! and n/(n + 1)! ≤ 1/n! from the ad expansion
accumulate exactly as per the definition (4.3)—including the lack of carry-forward at jump
steps, which arises from the lack of factorials in the jump step bound γ |gi ′′ |.

Applying the Markov inequality to (4.25), we obtain

P

(
A(k)prov

σ σ̃
(ḡ j ′) >

(γ /ε)
|ḡ j ′ |

(ḡ j ′ !)2/9
)

≤ E
(A(k)prov

σ σ̃
(ḡ j ′))s(ḡ j ′ !)2s/9

(γ /ε)
s|ḡ j ′ |

≤ ε
s|ḡ j ′ |

(ḡ j ′ !)2/9 E

∏

τ τ̃∈Gd
k

∣∣∣E (i ′)
τ − E (i ′)

τ̃

∣∣∣
−s

. (4.26)
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As in Proposition 3.1, we take s = 2
7 . In the second inequality, we have used the available

factor (ḡ j ′ !)−s from (4.25); after a partial cancellation it becomes (ḡ j ′ !)7s/9 = (ḡ j ′ !)2/9 in the
denominator. We have chosen constants so as to equalize the factorials between both sides of
the Markov inequality. What remains are the denominators: the fact that their s-moments are
bounded allows us to extract good decay of the probability with |ḡ j ′ |. The Jacobian estimate
(4.24) from the last section shows that we can effectively use the denominators as integration
variables.

In detail, it is convenient to insert a partition of unity for each denominator, according to

whether D( j ′)
τ τ̃

≡ E (i ′)
τ − E (i ′)

τ̃
is bounded by 1 or not. The choice of which ones are smaller

than 1 entails a factor 2 per denominator, in total no more than an exponential in |ḡ j ′ |. For
the large denominators, we have |D( j ′)

τ τ̃
|−s ≤ 1. For the small ones, we use (4.24) to estimate

E

∏

τ τ̃

|D( j ′)
τ τ̃

|−s ≤
∫ ∏

τ τ̃

[
|D( j ′)

τ τ̃
|−s dD( j ′)

τ τ̃

] ∣∣∣∣ det
∂D( j ′)

τ τ̃

∂ h̃ y

∣∣∣∣
∏

y

C(y) ≤ cn
∏

y

C(y). (4.27)

Here n is the number of small denominators; C(y) = 1
2ρ0 for sites (with the rescaling

h̃ y = 2hy , its density is half that of hy); C(y) = c| ¯̄b(i)|
b cLi

area for blocks (from rescaling and
polar coordinates, as in the (4.8I) bound above). As explained in the first paragraph of this
subsection, the factors for blocks are always controlled by an exponential in |ḡ j ′ |. Thus there
is a constant ρ1 such that

P
(
A(k)prov

σ σ̃
(ḡ j ′) > (γ /ε)

|ḡ j ′ |/(ḡ j ′ !)2/9
)

≤ (ρ1ε
s)

|ḡ j ′ |/(ḡ j ′ !)2/9. (4.28)

We are using the same constant ρ1 for probability bounds for both conditions, (4.8I) and
(4.8II). Note that if cb becomes large, then ρ1 grows as well, but no faster than a fixed power
of cb. (This is determined by the maximum ratio of block sizes to graph size, and is under
control because of the comparability of metrics, see the last paragraph of Sect. 4.2.1.)

Next we consider the general argument for bounding the probability of (4.8II). The idea is
that sections of the graph where repeated sites/blocks occur have to be short—otherwise the
graph cannot reach far enough inZ to satisfy the condition |I (ḡ j ′)| ≥ 7

8 |ḡ j ′ |. Inductive bounds
will be applied for sections of ḡ j ′ that overlap with each other. For such sections, there is no
gain in the Markov inequality, and no decay as in (4.28) in the size of the subgraph. But we
retain decay on a substantial fraction of ḡ j ′ , and so a bound similar to (4.28) can still be proven.

Let us review some basic facts about the structure of ḡ j ′ . It consists of a number of
subgraphs ḡ( j−1)′ , and each ḡ( j−1)′ consists of subgraphs ḡ( j−2)′ , and so on. (We can also
have subgraphs two or more levels down.) Jump steps are replaced with their bounds γ |gi ′′ |,
as discussed after (4.7), so they do not appear in these lists of subgraphs. Thus we have
a hierarchical, nested structure. A subgraph corresponding to an A factor has an overall
denominator; subgraphs corresponding to J factors havenooverall denominators.Any further
A subgraphs come with their own overall denominators. Thus the denominators respect the
hierarchical organization of ḡ j ′ . Each denominator depends to leading order only on the
variables within its associated subgraph. When there are no repeated sites, the hierarchical
organization of denominators translates to the spatial structure of denominators (and leads to
the lower triangularity of the matrix L of the previous subsection). For each subgraph, recall

that I (ḡi ′) denotes the smallest interval in Z covering all the sites or blocks ¯̄b(ĩ) with ĩ ≤ i
that contain flips of ḡi ′ . Clearly, if I (g) ∩ I (g̃) = ∅, then there is no dependence between
the variables in I (g) and I (g̃). Any overlap between I (g) and I (g̃) will necessarily shorten
the distance |I (ḡ j ′)| that ḡ j ′ can span.
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If we look at the entire interval I (ḡ j ′), there will be a set of disjoint segments in Z where
sites/blocks are covered more than once due to repeated flips of ḡ j ′ . We call these segments
“looping segments,” because the graph is looping back to previously visited sites. We can

assume that any two looping segments Tα, Tβ have at least one site or block ¯̄b(i) between that
is not in a looping segment. Let |Tα| denote the size of a segment, where each site/block with
n visits is weighted by a factor n − 1. Visits are counted by looking at the individual flips of
ḡ j ′ ; any jump step counts as a visit to all the sites/blocks covered by the jump. Note that some
flips of ḡ j ′ can occur at places that are subsequently subsumed into a block—nevertheless
all the flips inside such a block count as separate visits to the block. Every time ḡ j ′ returns
to a previously visited site/block, it fails to extend I (ḡ j ′). Hence |ḡ j ′ | − |I (ḡ j ′)| is at least
as large as the sum of the lengths |Tα| of the looping segments. Therefore, by the condition
for short graphs (4.8II),

∑

α

|Tα| ≤ |ḡ j ′ | − |I (ḡ j ′)| ≤ 1
8 |ḡ j ′ |. (4.29)

Let us consider the denominator graph prior to the identification of variables in the looping
segments; each flip of ḡ j ′ is associated with an independent variable. All denominators
are independent. This can be seen by observing inductively that the property holds for A
subgraphs; J subgraphs always have a free variable, which makes the overall denominator
on the next scale independent. Of course, a repeat visit to a looping segment forces us to
identify variables of the flips with earlier variables, and independence is lost. However,
denominators from a sufficiently long length scale do retain their independence. Let � =
2maxα |Tα|, and let i be such that � ∈ [Li−1, Li ). Consider the denominator subgraph
Di formed by links introduced at step i and afterwards, with graph length in the range
[Li , Li+1). As a subgraph of a graph with independent denominators, the denominators of
Di are independent. Furthermore, even after the identification of variables, the denominators
in Di are independent. This is because each denominator covers at least Li variables, and
since identifications occur within disjoint Tα with 2|Tα| ≤ � < Li , there will always be
a free variable for each denominator. If there are n visits to a site/block, then n variables
are identified there, and the site/block contributes n − 1 to |Tα|. Hence no more than 2|Tα|
variables are lost in Tα . (The worst case is when there are two visits per site/block of Tα ,
which leads to a loss of two variables for each unit of |Tα|.) Once a denominator extends
outside of Tα , it spans an independent variable adjacent to Tα—by construction, there are
gaps of size ≥ 1 between the Tα , and they contain only singly-visited sites/blocks.) Note
that jump steps have no denominators, as they have been replaced with their upper bound.
So jump steps do not produce any dependence between variables.

We now describe the “erasure” procedure; in particular we give an algorithm for deter-
mining the set of erased subgraphs. As we add denominators from the (i − 1)st step and
below, some will be internal to one of the looping segments (i.e., all the variables on which
the denominator depends are in the looping segment). We will have to replace the corre-
sponding A’s by uniform bounds (γ /ε)|g|/(g!)2/9 from (4.2). The denominator is effectively
erased from the denominator graph, along with all denominators nested inside. There may
be denominators on scale i − 1 or above that connect Tα to its complement. (Again, we may
visualize a denominator as an arch that encompasses all of its variables.) In order to keep
those denominators independent, we may need to drop (i.e. erase) a denominator on scale
i − 1 or below on either side of Tα . This is so that a variable on either side of Tα is freed
up (i.e. it is no longer used to integrate short denominators, so it is available for integrating
long denominators.) Thus, when necessary, we choose a denominator that extends at least
one step away from Tα . It may start inside of Tα or at the first site outside of Tα . In order to
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h1 h2 h3 h4 h5
Tα

d1

d4

d2 d3

d5

Fig. 2 Denominators to the right of Tα . In this example, denominatorsd2, d3, d4, d5 are no longer independent
once h1 and h2 are frozen. Therefore, d4 is dropped, along with subsidiary denominators d2, d3. This frees
up h3. Then d5 has an independent variable

free up the denominator on scale i , we need to erase a denominator that is directly subsidiary
to it, i.e. up to scale i − 1. See Fig. 2.

Through this construction, we obtain a denominator graphDi−1, consisting of non-erased
denominators on scales ≥ i − 1. All of the denominators are independent, even with the
variables in Tα’s with |Tα| ∈ [Li−1, Li ) frozen. We continue through shorter length scales,
erasing denominators as needed to preserve independence after the freezing of variables in
the Tα . Each looping segment with |Tα| ∈ [Li−1, Li ) may have a collar of erased sections
of width < Li on each side. The looping segment “spoils” an interval of size no longer than
2|Tα|+ 2Li ≤ (2+ 2 · 15

8 )|Tα| < 6|Tα|. (One could do better with a more detailed analysis.)
Recall that the total length of all the looping segments is no greater than 1

8 |ḡ j ′ |. Thus the
total length of the “spoiled” intervals where non-probabilistic bounds are employed is no
greater than 3

4 |ḡ j ′ |. This leaves at least 1
4 of |ḡ j ′ | free of dependence issues, i.e. with either

independent denominators or jump steps. Therefore, we will get a comparable number of
factors of εs from the Markov inequality.

Note that block variables are automatically eliminatedwith this procedure, because graphs

traversing ¯̄b(i)\b̄(i) are treated asmultiple visits to ¯̄b(i), which leads to erasures near the block.
They cannot be eliminated when estimating probabilities for case I of (4.8). However, that is a
single-denominator estimate, so the issue of correlation between denominators does not arise.

We may now return to the probability bound as in (4.28), only now any graph with
|I (ḡ j ′)| ≥ 7

8 |ḡ j ′ | is allowed. We claim that

P

(
A(k)prov

σ σ̃
(ḡ j ′) >

(γ /ε)
|ḡ j ′ |

(ḡ j ′ !)2/9
)

≤ (ρ1ε
s)

|ḡ j ′ |/4/(ḡej ′ !)2/9. (4.30)

Here ḡej ′ ! is a modified factorial, which contains only the factorials in non-erased sections. As

described above, the erased sections of g j ′ contribute factors of (γ /ε)|g|/(g!)2/9 instead of
γ |g|/g! in the expectation. Thus they match up with corresponding factors on the other side
of the inequality A(k)prov

σ σ̃
(ḡ j ′) > (γ /ε)

|ḡ j ′ |/(ḡ j ′ !)2/9. Hence they contribute no smallness
to the bound on the probability, and we are forced to make due with the modified factorial
ḡej ′ ! in (4.30). But at least 1/4 of ḡ j ′ is clear of dependence issues, so we are able to glean
|ḡ j ′ |/4 factors of εs in the Markov inequality. Recall that the graph ḡ j ′ is defined from g j ′
by forgetting the order of subgraphs in erased sections. The order only affects denominators
internal to erased sections; the rest of the graph is unaffected, as it only involves the energies
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at the start and finish of erased sections. So in ḡ j ′ we sum over the usual graphical structures,
but some subgraphs are specified as erased, whichmeans any further collections of subgraphs
are ordered from left to right inZ.We do not need to worry about whether these graphs’ initial
and final states match up properly. The point is to organize the event sum so that the erased
factorials are not needed. The single event {A(k)prov

σ σ̃
(ḡ j ′) ≤ (γ /ε)

|ḡ j ′ |/(ḡ j ′ !)2/9} ensures that
every A(k)

σ σ̃
(g j ′) is similarly bounded, for any g j ′ that reduces to ḡ j ′ after the erasure procedure.

So there is no point in defining separate events for each ḡ j ′ . Note that sums over subgraphs
in erased sections are organized from left to right in Z, so no factorials are needed to control
them. (The leftmost point of any subgraph starts at a point within or immediately adjacent
to the previous subgraph, so there is no factor that depends on the number of subgraphs in a
collection.) This only works for event sums; graphs such as A(k)

σ σ̃
(g j ′) depend on the ordering

of all their subgraph collections, so in graphical expansions we retain that structure and the
factorials that go with it.

The Markov inequality produces decay from integrating denominators only in non-erased
sections of a graph. One might ask what is the purpose of carrying along the erased sections,
whose contributions cancel out in (4.30). The answer is that in order to control event sums,
a graphical connection is needed between initial and final states of erased sections. Then
the complete sum over resonant events can be controlled—using only the decay from non-
erased sections, which constitute at least 1

4 of the length of the graph. Note that the order of
subgraphs in erased sections is not needed to construct a connection between initial and final
state—any path will do.

4.2.4 Block Probabilities

The following proposition gives the core result on the exponential decay of the connectivity
function for the resonant blocks B(k).

Proposition 4.4 Let P(k)
xy denote the probability that x, y lie in the same block B(k). For a

given cb, let ε = γ 1/20 be sufficiently small, and assume A1(cb). Then

P(k)
xy ≤ (cρ1ε

s)(|x−y|( j)∨L j )/8. (4.31)

Recall that j = k−1 and |x− y|( j) is the metric in which blocks ¯̄b(1), . . . , ¯̄b( j) are contracted
to points. Uniform comparability of |x − y|( j) with |x − y| was established in Subsection
4.2.1.

Proof The bound (4.30) ensures that there is a positive density of factors of εs as we estimate
P(k)
xy . As in the proof of (3.4), we lose a factor of two in the decay from the geometric mean

construction. Other aspects of the sum over graphs were described in Subsection 4.2.1, in
particular the fact that only (2/9)th-power factorials are needed to control sums over collec-
tions of subgraphs. As we just discussed, those factorials are not needed for erased sections,
since we are now summing over coarser partitions of events based on ḡ j ′ , but still satisfying
the bound (4.30). Resonant graphs in the kth step have L j ≤ |g j ′ | < L j+1, which leads to
the minimum in the exponent above. Thus we obtain (4.31). ��

Next we consider the small block connectivity functions.

Proposition 4.5 Let cb be given. Let Q(k)
xy denote the probability that x, y lie in the same

small block b̄(k). There exists a constant c2 > 0 such that for ε = γ 1/20 sufficiently small,
A1(cb) implies

Q(k)
xy ≤ (cρ1ε

s)1+c2k21{|x−y|≤4Lk }. (4.32)
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Let R(k)
xy denote the probability that x, y lie in the same small block b̄(i) on any scale i ≤ k.

There exists a constant c3 > 0 such that for ε = γ 1/20 sufficiently small, A1(cb) implies

R(k)
xy ≤ (cρ1ε

s)1+c3(log(|x−y|/4∨1))21{|x−y|≤4Lk }. (4.33)

Proof A block b̄(k) can arise from a fairly spaced-out collection of resonant blocks from
earlier scales.However, the factors of εs in (4.31) control the sumover core sets b(k) consistent
with the event Q(k)

xy . Let us break up b(k) into components C(m) by connecting any pair of
sites with separation distance < dm+1. Each component C(m) has 1 or more subcomponents
C(m−1), and so on. If there is more than one subcomponent, the sum over each separation
distance produces a combinatoric factor dm+1. Our separation rules state that if a subset has
volume in [Lm, Lm+1) and is separated by a distance dm , then it would form a small block
b( j) on an earlier scale, in which case it would not be part of b(k). Hence any component
C(m−1) of b(k) (separated as it is from other such components by at least a distance dm) has
a minimum volume Lm+1. Thus the combinatoric factor per site of C(m−1) is bounded by
d1/Lm+1
m+1 . If we combine the combinatoric factors per site produced by subcomponent sums

on all scales we obtain
∏

m

(dm+1)
1/Lm+1 = exp

( ∑

m

L1/2
m+m0+1L

−1
m+1

)
≤ c0. (4.34)

Since (4.31) provides a factor εs for each site of b(k), it should be clear that the sum over b(k)

is under control.
We established in Subsection 4.2.1 that the separation conditions imply that any small

block with core volume |b(k)| ∈ [Lm−1, Lm) has diameter less than (Lm − 2)dm−1. But
note that if (Lm − 2)dm−1 < Lk−1, then b(k) would have satisfied the diameter conditions
diam(b(k)) < Lk in an earlier step.Hence all blocks b(k) satisfy aminimumvolume condition:

|b(k)| ≥ Lm−1,where m is the smallest integer such that (Lm − 2)dm−1 ≥ Lk−1. (4.35)

Recall that dm ≡ exp(L1/2
m+m0

) and Lk ≡
(
15
8

)k
. Thus (4.35) implies that Lm−1+m0 ≥

c1(k − 1)2, which means that

|b(k)| ≥ 1 + c2k
2 ≥ 1 + c3(log(|x − y|/4 ∨ 1))2. (4.36)

Here we make use of the fact that if x, y ∈ b̄(k), |x − y| ≤ 4Lk . (The bound |b̄(k)| ≤ 4Lk

follows as in the discussion at the end of Sect. 4.2.1: the diameter of b(k) is less than Lk

in the metric | · |( j); add a collar of width Lk on each side and allow for a small expansion
of distance due to blocks on smaller scales.) The key aspect of (4.31) is that it establishes
a minimum density of factors of εs throughout the core volume of b(k). (This includes the
extra volume coming from the minimum volume condition on B(k), established just below
(4.9).) Thus we obtain (4.32).

Note that R(k)
xy is a sum of Q(i)

xy over i such that |x − y| ≤ 4Li ≤ 4Lk . Summing (4.32)
over i ≤ k, we obtain (4.33). ��

We have obtained a rate of decay uniform in k for the probability that x, y belong to
the same small block. The decay is faster than any power of |x − y|. This is the rate that
governs our estimates on averaged correlations. Statements regarding exponential decay of
correlations with probability 1 depend on the low density of blocks at each scale, decreasing
with k so that |x − y|(k) remains comparable with |x − y|. The situation parallels that of [9],
which established exponential decay with probability 1 in the one-body context.
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4.3 Perturbation Step and Proof of Inductive Bounds

Having established diluteness of the resonant blocks in Sect. 4.2, we focus here on determin-
istic estimates on graphs in the nonresonant region.

4.3.1 Bounds on A(k)

Here we perform the rotations that eliminate low-order interactions from the Hamiltonian.
Then, after resumming long graphs, we will obtain the inductive bound (4.2) for k = j + 1.

As in Sect. 3.2, we write
J ( j ′) = J ( j ′)per + J ( j ′)res, (4.37)

with

J ( j ′)per
σ σ̃

=
∑

g j ′ :σ→σ̃ , Lk−1≤|g j ′ |<Lk , g j ′ ∩Sk=∅, σ �=σ̃

J ( j ′)
σ σ̃

(g j ′), (4.38)

A(k)
σ σ̃

=
∑

g j ′ :σ→σ̃

A(k)
σ σ̃

(g j ′) =
∑

g j ′ :σ→σ̃

J ( j ′)per(g j ′)

E ( j ′)
σ − E ( j ′)

σ̃

. (4.39)

Long and short graphs; jump transitions We say a graph g j ′ is long if |g j ′ | > 8
7 |I (g j ′)|.

Otherwise, it is short. Wewill need to resum terms with long graphs, for given initial and final
spin configurations σ, σ̃ and a given interval I = I (g1′). The data {σ, σ̃ , I } determine a jump
transition. Long graphs are extra small, by (4.2), so for probability estimates we do not need
to keep track of individual graphs, and we can take the supremum over the randomness. Let
g j ′′ denote either a short graph from σ to σ̃ or a jump transition taking σ to σ̃ on an interval
I . The length of g j ′′ is defined to be |g j ′′ | = |I | ∨ 7

8 L j . The jump transition represents the
collection of all long graphs from σ to σ̃ with a given I (g j ′). Then put

A(k)
σ σ̃

(g j ′′) =
⎧
⎨

⎩

A(k)
σ σ̃

(g j ′), if g j ′′ = g j ′ , a short graph;∑
long g j ′ :σ→σ̃

A(k)
σ σ̃

(g j ′), if g j ′′ is long. (4.40)

With (k) = exp(−A(k)), we define H (k) = (k)trH ( j ′)(k) and then as in (3.14) we can
write

H (k) = H ( j ′)
0 + J ( j ′)res + J ( j)lint + J (k), (4.41)

with

J (k) =
∞∑

n=1

n

(n + 1)! (ad A(k))n J ( j ′)per +
∞∑

n=1

(ad A(k))n

n! J ( j ′)res. (4.42)

We may now prove the inductive bound (4.2) for k = j + 1.

Proposition 4.6 Let γ be sufficiently small. Then

|A(k)
σ σ̃

(g j ′′)| ≤
{

(γ /ε)
|g j ′′ |/(g j ′′ !)2/9, in general;

γ
|g j ′′ |, if g j ′′ is a jump step.

(4.43)

Proof For short graphs, we have

|A(k)
σ σ̃

(g j ′)| ≤ (γ /ε)
|g j ′ |/(g j ′ !)2/9, (4.44)
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by the resonant condition (4.8II). For long graphs, we bound numerator and denominator
separately in (4.39). The inductive bound (4.6) applies to the numerator, and the resonant
condition (4.8I) bounds the denominator from below. After summing over the long graphs
that contribute to g j ′′ , we have

A(k)
σ σ̃

(g j ′′) ≤ (cγ /ε2)
8
7 |I (g j ′′ )|∨Lk−1 , (4.45)

because all long graphs have |g j ′ | ≥ 8
7 |I (g j ′)| ∨ Lk−1 = 8

7 |g j ′′ |, see Definition (4.4). Recall
that γ = ε20, so c8/7γ 1/7ε−16/7 ≤ 1, and we obtain

|A(k)
σ σ̃

(g j ′′)| ≤ γ
|g j ′′ |, (4.46)

which completes the proof. (Since (4.46) is a stronger estimate, we actually have
|A(k)

σ σ̃
(g j ′′)| ≤ (γ /ε)

|g j ′′ |/(g j ′′ !)2/9 for all g j ′′—recall that g j ′′ ! is defined without any facto-
rials from jump steps.) ��

4.3.2 Bounds on J (k)

In this subsectionwe prove the bound (4.6) for k = j+1, while at the same time giving details
on how J (k) is expressed as a sum of graphs. By (4.42), J (k) is a sum of terms involving one or
more commutators of J ( j ′) with A(k). The simplest situation is when there is no gap between

g j ′′ and g j ′ in [A(k)
σ σ̃

(g j ′′), J
( j ′)
τ τ̃

(g j ′)]. Here we need to be careful about what we mean by

a gap. For any block b̄(i) involved in either graph, we use the fattened version ¯̄b(i), defined
as b̄(i) plus a collar of width 15

14 Li−1. Then we specify that gaps do not include any sites in

any of the ¯̄b(i) involved in the graphs on either side. Obtaining decay in ¯̄b(i) is problematical,

because of the dependence of the block energies of b̄(i) on variables in ¯̄b(i)\b̄(i). But we deal

with the wider collars by contracting blocks ¯̄b(i) to points when defining the metric | · |(i).
With this definition in mind, consider the case with no gap. Then g j ′′ and g j ′ are combined in
the new graph gk for J (k), and we may bound the terms of the commutator separately, using
(4.2), (4.6). This leads to an estimate

|J (k)
σ σ̃

(gk)| ≤ γ (γ /ε)|gk |−1/(gk !)2/9, (4.47)

which matches up with (4.6).
If there is a gap between g j ′′ and the graph generated by J ( j ′) or by previous commutators

with J ( j ′), then we need to exploit cancellation between terms to obtain decay in the gap.

Let us consider the case of a single commutator [A(k)
σ σ̃

(g j ′′), J
( j ′)
τ τ̃

(g j ′)]. The two terms AJ
and J A differ in that energy denominators in A are computed two ways, that is, before and
after the transition τ → τ̃ . Likewise, the energy denominators in J are computed before and
after the transition σ → σ̃ . But let us focus on the effect the transition τ → τ̃ has on A; the
effect that A has on J ’s denominators is similar. The energies in A’s denominators are E (i ′)

ν

for various spin configurations ν and scales 0 ≤ i ≤ j . Differences D(i ′)
νν̃

= E (i ′)
ν − E (i ′)

ν̃
have a graphical expansion, see (4.18). The expansion exhibits the non-local dependence on
the spin configuration. For each denominator in A(k)

σ σ̃
(g j ′′), we write

1

D(i ′)
νν̃

(τ )
− 1

D(i ′)
νν̃

(τ̃ )
= D(i ′)

νν̃
(τ̃ ) − D(i ′)

νν̃
(τ )

D(i ′)
νν̃

(τ )D(i ′)
νν̃

(τ̃ )
, (4.48)
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where the dependence on τ or τ̃ is written explicitly. The commutator can be written as a
sum of terms switching each denominator in turn from τ to τ̃ using (4.48). In the numerator
we write

D(i ′)
νν̃

(τ̃ ) − D(i ′)
νν̃

(τ ) =
i−1∑

m=1

∑

gm′
δτ τ̃ J

(m′)
σσ (gm′), (4.49)

where δτ τ̃ takes the difference betweenvalues at τ and τ̃ .As in the discussion following (4.18),

we repeat the process by applying (4.48) to the denominators of J (m′)
σσ (gm′). We are doing a

discrete version of the chain rule of Sect. 4.2.2 to probe the dependence on τ . (Here, however,

we use fattened blocks ¯̄b(i), sowe do not need toworry about dependence of block energies on
τ ; we are investigating only their perturbative corrections.) The process can stop for any term
whose chain of graphs crosses the gap between g j ′′ and g( j−1)′ . As in Sect. 4.2.2, each jump
step of g j ′′ is written as the sum of its constituent graphs, see (4.40). This is necessary so that
we may probe the dependence on τ everywhere it occurs. Each step of the process lowers the
scale index on the denominators by one or more. At some point, the graphs must span the gap
since otherwise the last δ J would vanish—the energies E (1′) depend only on τ one step away.

There is a limit to the range of dependence of energies on τ . Energies E (m′), m ≤ j

appear in A(k)
σ σ̃

(g j ′′). They are diagonal entries J
(m−1)′
σσ (g(m−1)′), so their order is< Lm . This

means the range is < 1
2 Lm , since g(m−1)′ has to double back to undo any flips performed

in its first half. But energies E (m̃′) appear in these graphs for m̃ < m, extending the range
of dependence. The greatest possible total range is for a sequence g( j−1)′ , g( j−2)′ , . . . , g1′ ,
leading to a maximum range of

1
2 (L j + L j−1 + · · · ) = 1

2 L j (1 + 8
15 + · · · ) ≤ 15

14 L j . (4.50)

As mentioned earlier, this bound is important because it limits the number of spin config-
urations for which we need to control resonance probabilities. An exponential number of
configurations is controlled by exponentially small resonance probabilities. This calculation

validates the definition of ¯̄b(k) as b̄(k) plus a collar of width 15
14 L j . (It shows that

¯̄b(k) contains

the region of dependence of the interactions J ( j ′)
σ σ̃

(g̃ j ′) for g̃ j ′ contained in b̄(k); these are the
only ones involved when block rotations are performed—see (4.52).)

The double-back nature of the energy graphs implies that their graph length |gi ′ | is at least
twice the length of the intervals spanned, I (gi ′). Hence they all become jump steps gi ′′ with
an improved rate of decay ∼ γ |gi ′′ | as in (4.2), instead of (γ /ε2)|gi ′ |. There is an important
caveat, however: the first doubled denominator from the chain rule may be greater in span
than the size of the energy graphs generated. This would happen if the gap between g j ′′ and
g( j−1)′ is smaller than L j . (Subsequent double denominators are internal to g and theymay be
bounded using (4.8I), leading to the (γ /ε2)|g| bound.) See Fig. 3. As a result, the first double
denominator has to be treated probabilistically (Markov inequality) along with all the other
non-jump step denominators in A(k)

σ σ̃
(g j ′′). Otherwise the extra ε−1 factors—potentially as

many as |g j ′′ |—would lead to non-uniformity of the decay estimates with k. Further details
on this will be given below—see the last paragraph of this section.

Our immediate goal is to ensure that the expansion can be organized so that not too
many extra denominators arise. To this end, consider what happens when multi-commutators
from (ad A(k))n act on J ( j ′). We need to demonstrate that decay at rate γ can be obtained
for all gaps. But now that we are dealing with graphs with doubled denominators, it could
happen that in a later step a doubled denominator gets differenced again as in (4.48). We
need to cap the multiplicity of denominators at 3, because unlimited powers would force
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doubled denominator

A
(k)
σσ̃ (gj ) J

(j )
ττ̃ (gj )

g

Fig. 3 Energy graph g is double the length of the gap between g j ′′ and g j ′ . A denominator in A(k)
σ σ̃

(g j ′′ ) is
doubled because the commutator creates a difference, which is re-expressed using (4.48)

the fractional moment exponent s to zero. We allow a denominator to be differenced to
close a gap to the left and to the right. See Appendix 1 for a discussion of how we organize
these gap-closing differences to achieve this, while at the same time maintaining manageable
bounds on graphical sums. The net result is a graphical expansion for (ad A(k))n J ( j ′) as a
sum of graphs gk involving the usual subgraphs g j ′ plus a collection of jump step graphs
gi ′′ with i < j that connects them all together. We call them gap graphs. Thus gap graphs
consist of all the energy graphs from (4.49) that were generated in the process of bridging
the gaps. The doubled denominators themselves remain with the main portion of gk , unless
they were already in a jump step. The gap graphs can be summed up, and as for other jump
steps, we obtain decay at rate γ across gaps. We obtain the required bound (4.47), now
with an understanding that gk includes the additional gap graphs as subgraphs. As with the
other jump steps, gap graphs are “spectator” graphs—replaced with uniform bounds—in the
Markov inequality. This means that, like jump steps, they do not contribute factorials to (4.3).
Note that the “active” denominators do not depend on the “spectator” parts of the graph as
they see only the initial and final configuration of the jump.

The bound just proven for J (k) leads to the corresponding estimate (4.6) for J (k′) after
the block rotations are performed. Note that by (4.4), the minimum size of a graph g j ′′ in
an A(k) term is 7

8 Lk−1. The minimum size of a J ( j ′) graph is Lk−1. Combining these, we
obtain a minimum size of 15

8 Lk−1 = Lk for graphs gk . This has been assumed throughout,
so it needs to be verified as part of our inductive assumptions.

We return to the issue of the doubled or tripled denominators, and their effect on the
Markov inequality. The main difference is that (4.26) requires s < 1

3 if we want E(�E)−3s

to be finite. This is consistent with our choice s = 2
7 . Also, it is somewhat inconvenient

having the two denominators D(τ )

νν̃
and D(τ̃ )

νν̃
in (4.48). So we use a Schwartz or Hölder

inequality to bound the expectation of doubled or tripled denominators by a geometric mean
of expectations where multiple denominators are actually 2nd or 3rd powers. Thus it will be
sufficient to prove bounds on expectations where the denominators have that structure. This
is helpful because the Jacobian bound of Sect. 4.2.2 can then be used to estimate the −s
moments of the denominators as before.

4.4 Diagonalization and Conclusion of Proof

We reorganize terms as in Sect. 3.3:

J ( j ′)res + J ( j)lint + J (k) = J (k)ext + J (k)sint + J (k)lint. (4.51)
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Terms whose graph intersects Sk and is contained in Sk are put in J (k)sint (small block terms)
or J (k)lint (large block terms). Diagonal terms of order less than Lk are included in J (k)sint.
This ensures that in the next step, all interactions will be of order at least Lk .

Let O(k) be the matrix that diagonalizes small blocks, so that

H (k′)
0 = O(k)tr(H ( j ′)

0 + J (k)sint)O(k) (4.52)

is diagonal. (The diagonal entries of H (k′)
0 are the energies E (k′)

σ , which now include all
effects up to order Lk − 1.) Then put

H (k′) = O(k)trH (k)O(k) = H (k′)
0 + J (k′) + J (k)lint. (4.53)

Here J (k′) is the rotated version of J (k)ext. It has a graphical expansion with bounds as in
(4.5), (4.6), as proven in the last section. Graphs gk′ include matrix elements of O(k), O(k)tr,
as appropriate.

Define the cumulative rotation

R(k′) = R( j ′)(k)O(k). (4.54)

Then as in earlier steps we prove that

E Avα

∣∣∣∣
∑

σ σ̃

R(k′)tr
ασ Sz0R

(k′)
σ̃α

∣∣∣∣ = 1 + O(εs). (4.55)

The probability that 0 is in a small block is less than cρ1εs , by (4.33). The rotation of Sz0
generates a graphical expansion much like the one for the rotation of H . The leading term is
±1 and the corrections are O(γ /ε)—see (2.21) and the discussion after.

Let us consider the behavior of connected correlations 〈Ox ;Oy〉(k)α . Cancellation of graphs
forces graphs to span the distance from i to j . Graphs do not penetrate large blocks, and there
is no rotation in large blocks, therefore 〈Ox ;Oy〉(k)α vanishes if any large block intervenes
between i and j . Suppose that |x − y|/8 ∈ [Lm−1, Lm). Then as in the discussion following
(4.11), no more than half the distance from x to y could be covered by blocks b̄( j) with
j < m. The probability that a larger scale block covers part of the segment from x to y is
bounded by (cρ1εs)1+c̃2m2

, by (4.32). Hence we have an estimate:

|〈Ox ;Oy〉(k)α | ≤ (cγ /ε)|x−y|/2, with probability 1 − (cρ1ε
s)1+c3(log(|x−y|/8∨1))2 . (4.56)

Of course, in step k there are no blocks on scales> k, so we would actually have exponential
decay for 〈Ox ;Oy〉(k)α with probability 1 for |x − y| > 8Lk+1. But (4.56) gives a bound that
is valid for all x, y, k, so it carries over to the limit k → ∞. (The limit will be discussed
below.) We obtain exponential decay except on a set whose probability decays rapidly with
the distance. Averaged correlations are dominated by the probabilities of rare events (i.e.
blocks). Thus

E Avα|〈Ox ;Oy〉(k)α | ≤ (cρ1ε
s)1+c3(log(|x−y|/8∨1))2 , (4.57)

which decays faster than any power of |x − y|, but not exponentially.
If we let the procedure run to k = ∞, off-diagonal matrix elements vanish in the limit.

Then the eigenvalues of the starting Hamiltonian are given by the diagonal elements of

H∞
0 ≡ limk→∞H (k′)

0 . The eigenfunctions are given by the columns of R(∞) ≡ limk→∞R(k′).
Block formation has to stop eventually in a finite volume �, by the Borel–Cantelli lemma,
because by (4.32) their probabilities are summable. After that, all the matrices involved
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converge rapidly. The bounds (4.55)–(4.57) remain true in the limit, which completes the
proof of Theorem 1.1, with assumption A1(cb) replacing LLA(ν,C).

4.5 Infinite Volume Limit and Local State-Labeling Operators

We show that eigenvalue differences and local expectations converge in the � → ∞ limit,
with probability one. The eigenstates are labeled by spin/metaspin configurations α for each
finite volume �. Away from resonant blocks, there is a one-to-one correspondence between
an ordinary spin configuration and the state label α. As (4.55) shows, Sz expectations are
close to the labeling configuration values, so in that sense eigenstates resemble the γ = 0
eigenstates, which are concentrated on the labeling spin configuration. This is analogous to
the concentration of eigenfunctions near individual sites in the one-body Anderson model at
high disorder. Of course, resonant blocks interferewith this naïve labeling scheme, because of
mixing and entanglement of the unperturbed states in the block. In a block, labels are assigned
when the diagonalization step is performed there. This involves a finite-dimensional matrix
that has unique eigenvalues with probability one. (The discriminant cannot vanish on a set
of positive measure without being identically zero, and as we explained earlier one can find
parameter values where it is nonzero.) Therefore, except for a set of measure zero, one
can label block states in order of increasing energy. We have been calling the block states
“metaspins” because like ordinary spin variables, they label the local state in the block. A
block of size n has 2n metaspin values, hence they can be put into one-to-one correspondence
with ordinary spin configurations in the block.Our constructions and estimates show that local
expectations are determined up to errors of order (γ /ε)� by the spin/metaspin configuration
out to a distance � in the k → ∞ limit.

The abovementioned properties are equivalent to the existence of an extensive set of
quasi-local operators that commute with the Hamiltonian [47–49]. We may construct such
operators as follows. Working in the basis we have constructed, in which H is diagonal,
define an operator that assigns the spin/metaspin value to each eigenstate possessing that
label. Such operators are diagonal in this basis, as is the Hamiltonian. So after returning to
the original basis we obtain operators that commute with H and that are quasi-local (because
R(∞) is given by a convergent product of local rotations).

Our procedure produces convergent expressions for the eigenvalues in a box�. However,
if we wish to investigate their behavior in the limit � → Z, we should work with eigenvalue
differences corresponding to states whose labeling configurations α, β differ only locally in a
fixed regionR. As discussed in Sect. 4.2.2, eigenvalue differences have graphical expansions
with exponential decay localized toR—see (4.6), (4.18). Graphs generated in step k depend
on the randomcouplings only in a neighborhood ofwidthO(Lk) about the graph (dependence
arises because of denominator energies). Expectations of observables localized inR likewise
have local graphical expansions. These expansions can be used to demonstrate convergence
of eigenvalue differences and expectations as� increases toZ through a sequence of intervals
�K ≡ [−K , K ]. Convergence of the infinite volume limit was demonstrated in the one-body
context in [27] for eigenfunctions and eigenvalues. We outline a similar argument here for
eigenvalue differences and expectations.

When investigating convergence as �K → Z, it is convenient to use a K -independent
construction of resonant blocks. In each step of our procedure, a graph will be considered
resonant if it is resonant for any value of K . Then, in addition to the usual graphical sums
for estimating probabilities for resonances, there is a sum over values of K that lead to
distinct resonant conditions for a given graph. Recall that we sum over every background
spin configuration in a neighborhood N of ḡ so as to catch every possible resonance. There
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are no more than diam(N ) possibilities for K , so this sum can easily be handled along with
the background spin sum. With this setup, we maintain probability bounds such as (4.32).

Compare the graphical expansions of an expectation or local energy difference associated
withR in two different boxes, �K1 and �K2 , with K1 < K2. The difference involves graphs
that extend from R to �c

K1
. (Jump steps need to be rewritten as sums of constituent graphs

so as to isolate the ones extending to �c
K1
.) Consider the event EK (R) in which there exists

a path from R to �c
K with length less than 1

2dist(R,�c
K ), in the metric where blocks ¯̄b(i)

are contracted to points for all i ≥ 1. By summing over the two paths from R to �c
K1

and over configurations of blocks along each path, it should be clear that P(EK (R)) decays
exponentially like γ κdist(R,�c

K ) for some κ > 0. By Borel–Cantelli, there is almost surely
a K0 such that EK (R) fails for all K > K0. Bounds on a given graph are governed by the
distance it covers between blocks. Hence, as long as K1 > K0, we obtain bounds that decay
exponentially in dist(R,�c

K1
). In this way, we obtain almost sure exponential convergence

of local quantities in the � → Z limit.

5 Level Statistics

At this point, we have proven many-body localization (MBL) under assumption A1(cb),
which states that energy differences move to first order with the randomness—see (4.16).
Here we use MBL as a shorthand for all of our conclusions, including

(i) Existence of a labeling system for eigenstates by spin/metaspin configurations, with
metaspins needed only on a dilute collection of resonant blocks.

(ii) Bounds on the probability of resonant blocks, (4.31), (4.32), (4.33), which establish
their diluteness.

(iii) Diagonalization of H via a sequence of local rotations defined via convergent graphical
expansions with bounds as in (4.2).

(iv) Bounds establishing closeness of expectations of local observables in any eigenstate to
their naïve (γ = 0) values, when observables are not in resonant blocks. These lead to
statements like (4.55), which show that most states resemble the γ = 0 states locally.

(v) Almost sure convergence of local energy differences and expectations of local observ-
ables as � → Z.

(vi) Exponential decay of connected correlations, except on a set of rapidly decaying prob-
ability, see (4.56).

(vii) Faster-than-power-law decay of averaged connected correlations as in (4.57).

We would like to show how MBL can be obtained under weaker assumptions that (1)
allow for violation of the minimum level-spacing condition on a set of small probability,
and (2) do not refer to properties of effective Hamiltonians. In effect, A1(cb) is a working
hypothesis that we need in order to continue the induction, but the tools we have developed
are flexible enough to prove A1(cb) with high probability as we go along. (If A1(cb) fails,
we can define a new resonant block and check it again at a longer length scale.) Here is our
fundamental assumption on level statistics. It depends on parameters ν, ε0:

Assumption A2 (ν, ε0) (Unlikeliness of small eigenvalue differences) Consider the Hamil-
tonian H in a box of size n. Its eigenvalues satisfy

P
(
min
α �=β

|Eα − Eβ | < ε̃n
)

≤ ε̃νn, (5.1)

for all ε̃ ≤ ε0 and for all n.
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The exponential decay of probability with n is actually not needed—we could make do with
probability decay similar to (4.33), since that is what is used to control the diluteness of
resonant blocks. But let us work with A2(ν, ε0) for simplicity.

Theorem 5.1 Fix ν > 0 and ε0 > 0. Let ε = γ 1/20 be sufficiently small. If A2(ν, ε0) holds,
then MBL holds as well.

Before proving this, let us show how A2(ν, ε0) follows from the more standard statement
on level statistics that appears on the introduction:

Assumption LLA(ν,C) (Limited level attraction) Consider the Hamiltonian H in a box of
size n. Its eigenvalues satisfy

P
(
min
α �=β

|Eα − Eβ | < δ
)

≤ δνCn, (5.2)

for all δ > 0 and all n.

Clearly, we may take δ = ε̃n in (5.2) and then A2(ν′, ε0) holds for any ν′ < ν, provided
ε0 is small enough (depending only on C, ν, ν′). Thus we have

Corollary 5.2 Let ν,C be fixed, and let γ be sufficiently small. Assume LLA(ν,C). Then
MBL holds.

As explained earlier, we can handle level statistics that are neutral (like Poisson, ν = 1),
or repulsive (ν > 1 as for GOE), and we can handle values of ν smaller than 1, which
correspond to level attraction. Thus we obtain MBL, provided there is a bound uniform in n
on the level attraction exponent ν. Note that, speaking broadly, level statistics are expected
to be repulsive or neutral. However, we are not aware of any general result of that type.

Proof of Theorem 5.1 We need to verifyA1(cb) on a set of sufficiently high probability. The
idea is to compare the energy differences of H ( j−1)′

0 + J ( j)sint that are associated with the

block b̄( j) with those of another Hamiltonian ¯̄H in the volume ¯̄b( j) ∩ �. (Recall that ¯̄b( j)

is b̄( j) plus an additional collar of width 15
14 L j−1, measured as usual in the metric | · |( j−1).)

This allows for the maximum range of dependence in the b̄( j) eigenvalues (through energies

E ( j−1)′
σ in H ( j−1)′ ). Here ¯̄H is the original Hamiltonian in�, restricted to ¯̄b( j), which means

that spins outside of ¯̄b( j) are fixed at +1 (as are the spins in �c). As in our discussion on
volume-dependence in Sect. 4.5, we may define resonant graphs and blocks by including
every possible configuration of spins and of � within the relevant range. Therefore, the set
of resonant blocks b̄( j) does not depend on �.

Let us assume that in ¯̄b( j), the eigenvalues of ¯̄H satisfy

min
α �=β

|Eα − Eβ | ≥ εs�n, (5.3)

where n is the number of sites in b̄( j), and � is a small constant to be chosen below. Note that
the size of ¯̄b( j) is no greater than some multiple m of n, after allowing for the expansion of
distance due to blocks at lower scales. So if we let ε̃ = εs�/m and take ε̃ ≤ ε0, thenA2(ν, ε0)

implies that (5.3) occurs with probability at least 1 − ε̃νmn = 1 − εsν�n . We will discuss
below the case where (5.3) does not hold.

We may perform all our expansions on ¯̄H in ¯̄b( j) ∩ �. We obtain block energies ¯̄E ( j ′)
α .

These agree with the corresponding energies E ( j ′)
α obtained from the expansion in�, because
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as explained earlier, the range of dependence on σ is less than thewidth of the collar ¯̄b( j)\b̄( j).

Furthermore, all remaining terms in ¯̄H ( j ′)(the Hamiltonian ¯̄H after the j th step) are of order
L j , so by (4.6) they are exponentially small—in total no greater in norm than (cγ /ε)n/4. (Note

that separation conditions keep other blocks b̄( j) or B̄( j ′) out of ¯̄b( j). The size of b̄( j) is no
greater than 4L j , from the collar of width L j − 1 about b( j), plus some additional expansion

from smaller blocks.) Thus the minimum eigenvalue spacing in (5.3) transfers to ¯̄E ( j ′)
α and

hence to E ( j ′)
α . (Since γ = ε20, the corrections are much smaller than the minimum gap.)

At the heart of our method is a way to extract local “quasi-mode” energies for transitions
approximated on a length scale L , with errors exponentially small in L . Rotations were
performed for graphs connecting b̄( j) to its complement, up to scale L j , so any residual
effects are exponentially small.

In order to obtain assumption A1(cb) we need to compare derivatives of ¯̄E ( j ′)
α with those

of ¯̄Eα . Since we are making a perturbation with exponentially small norm and derivatives,

bounds on derivatives of ¯̄Eα carry over to those of E
( j ′)
α = ¯̄E ( j ′)

α via second-order perturbation
theory. There will be a sum over intermediate states (no more than exponential in n) and an

energy denominator (bounded below by (5.3)). Thus derivatives of E ( j ′)
α (or more precisely

of differences E ( j ′)
α − E ( j ′)

β ) agree with those of ¯̄Eα up to errors of order (cγ /ε1+s�)n .

Next we use (5.3) to prove a lower bound on the radial derivative of ¯̄Eα − ¯̄Eβ . Note that

the radial variable r appears as a multiplicative factor in ¯̄H , since all couplings hi , Ji , γi
are proportional to r . Therefore energies (and their differences) are strictly proportional to
r . Let us fix the angular variables. Then there is some r0 such that the minimum eigenvalue
separation is εs�n . Any eigenvalue difference can be written as

Eα(r) − Eβ(r) ≡ Dαβ(r) = Dαβ(r0)
r

r0
. (5.4)

Therefore,
∂

∂r
Dαβ(r) = Dαβ(r0)

r0
≥ εs�n√

3mn
, (5.5)

where we use the radius of the integration domain [−1, 1]mn to bound r0 from above. (A
larger value of r0 would mean (5.3) fails throughout the integration domain on the ray we
are considering, in which case there is nothing to prove.) Thus we obtain

∣∣∣∣
∂

∂r

(
E ( j ′)

α (r) − E ( j ′)
β (r)

)∣∣∣∣
−1

≤ (cε−s�)n, (5.6)

since as explained above, the derivatives of E ( j ′)
α agree with these of Eα up to terms much

smaller than εs�n .
Note that (5.6) compares with (4.16) of assumption A1(cb), with cb = cε−s� . Each

time we do a denominator integral in proving an estimate like (4.30), we pick up a factor
of cb, which through (4.16) controls the rate of change of energy differences. So now that
cb = cε−s� , we need to absorb factors of ε−s� into (4.30). As noted in Subsection 4.2.3, ρ1
depends on cb, but it grows no faster than a fixed power of cb (based on the fact that graph
lengths are always at least some fixed multiple of the block sizes involved). In (4.30), each
factor ρ1 is mated with a factor εs/4, and so the additional factors of ε−s� can be handled
with a reduction of the power from s/4 to s/8, for some small value of �. Thus our estimates
work with only this minor modification.
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It remains for us to discuss the case where (5.3) does not hold, an event whose probability

is no greater than εsν�n . We may consider any block ¯̄b( j) with a too-small level spacing as

part of Sk , the next singular region. Its probability is exponentially small in the size of ¯̄b( j),
so we obtain a bound similar to (4.31):

P(k)
xy ≤ cεsν�|x−y|. (5.7)

The rate of decay is εsν� instead of εs , but as long as ε is chosen sufficiently small, the proof
of diluteness of resonant blocks works as before. (Diluteness is the bound (4.33) giving rapid
falloff of the probability that x, y belong to the same resonant block. It should be clear that the
smaller power of γ = ε20 just means that the value of κ that can be achieved in Theorem 1.1
is a bit smaller than what we obtained by assuming A1(cb).) The proof relies on bounds like
(4.31), which provide a probability factor εs for each site of b(k). Then separation conditions
tied to the volume control the sum over admissible b(k) and provide a minimum volume for

a given diameter. All this would work if we defined the volume of a block ¯̄b( j) of size n as
O((log n)2), the same as the minimum volume achievable from sites of Sk via the original
construction. This makes it clear that we could make do with a weaker form of A2(ν, ε0),
replacing (5.1) with

P
(
min
α �=β

|Eα − Eβ | < ε̃n
)

≤ ε̃ν(1+c4(log n)2), (5.8)

for some constant c4. (This could potentially be useful if, in the future, better methods are
developed to control minimum level spacings.) The basic mechanism at play here is that
by Borel-Cantelli, (5.8) guarantees that there is some scale k at which the minimum level

spacing holds. When that happens, we obtain the needed variation of E (k′)
α − E (k′)

β with r ,
and the rest of the proof of MBL works as described in Chapter 4. This completes the proof
of Theorem 5.1. Corollary 5.2 then gives the full version of Theorem 1.1. ��
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Appendix 1: Extending Graphs Across Gaps

Here we describe how to organize the graphical expansions of Sect. 4.3 to exhibit decay
across gaps between graphs while limiting the duplication of denominators.

Consider the general expression for a term in J (k):
(
ad A(k)(g j ′′,n)

)
· · ·

(
ad A(k)(g j ′′,1)

)
J ( j ′)(g j ′,0). (6.1)

Divide the g j ′′,p into non-overlapping groups. The actions of a commutator of a graph in one
group with a graph in another group is simple, as the operators in question involve disjoint
sets of spin indices. As indicated in (4.48), the energy denominators are computed before
and after a spin transition and the difference taken. We have the freedom to use either side
of (4.48) when working with these denominator differences. We use the right-hand side of
(4.48) and the graphical expansion (4.49) only for a minimal set of differences, sufficient to
close the gaps between groups. For the remaining differences, we bound each term on the
left-hand side of (4.48) separately: m differences result in 2m terms; a factor of 2 per graph
is easily controlled, as discussed in Sect. 4.2.1.
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Fig. 4 A lace connecting five groups. Each arch represents a difference operation that provides a graphical
connection and exponential decay across gaps between groups

We use the following algorithm to generate differences and select ones that need to be
expanded as in (4.49). We proceed through the sequence of graphs g j ′′,1, g j ′′,2, . . . in (6.1)
and the associated commutators. If a graph g j ′′,p appears as the first representative of one
of the groups, the associated commutator is written as a sum of terms involving the com-
mutators with each of the previous graphs g j ′′,p−1, g j ′′,p−2, . . . , g j ′′,1, g j ′,0, by Leibniz’s
rule for commutators. As g j ′′,p is the first in its group, there is no overlap between it and
the previous graphs. Then, as was just explained, the commutator can be written as the sum
of two differences. For example, one contains the effect of A(k)(g j ′′,p) on J ( j ′)(g j ′,0) and
the other contains the effect of J ( j ′)(g j ′,0) on A(k)(g j ′′,p). This may be indicated graphi-
cally with a line from one graph to the other and an arrow indicating the direction of the
effect. (The arrow can go in either direction, because each graph’s denominators are affected
by changes in spin configuration induced by the other graph. However, the direction of
the arrow is unimportant in what follows, as either direction will be sufficient to create a
graphical connection across the gap between the graphs.) Note that the expanding set of
lines ensures that each group is connected to its predecessors as soon as one of its graphs
appears. Hence when all commutators have been performed, the graph of difference lines
(the difference graph) connects all of the groups. Many of the lines are redundant, how-
ever.

We define a minimal subgraph of the difference graph using a lace construction similar
to the one introduced in [51]. Starting from the left-most group, we take the first line of the
lace to be the one reaching as far as possible to the right. (Note that there can be no more
than one line between two groups, by construction, as our algorithm specifies that each line
have one endpoint in a new group. Thus there is no ambiguity about which line reaches the
farthest to the right.) The next line of the lace is taken as the one reaching the group farthest
to the right from any of the groups spanned by the first line. (If two lines reach that group,
we take the one originating from the group farthest to the right. This is unique because, as
explained above, there cannot be two lines connecting the same two groups.) We continue,
always choosing the line reaching the group farthest to the right from the groups spanned by
the expanding lace graph, and breaking ties by choosing the line originating from the group
farthest to the right. See Fig. 4.

All lines not in the lace are left as is: a sum of two terms, as in the left-hand side of (4.48).
They are not needed for generating decay across the gaps between graphs. The lines of the
lace graph extend all the way from the left-most group to the right-most one. Therefore, by
exhibiting decay between graphs connected by lace lines, we obtain decay across all gaps
between groups.

The lace graph has the property that no more than two lines emanate from any group.
There can be one line to the left and one to the right, but a second on either side is impossible,
by the rules for constructing the lace graph. As a consequence, we see that no more than two
differences will be applied to any graph. This is important because of the need to limit the
extent of duplication of denominators.
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The first difference creates a double denominator as in (4.48). Then (4.49) can be used to
exhibit decay across the gap between the two graphs. The second difference creates a triple
denominator as follows:When two differences are applied,we have four denominators,which
may be written as d11, d12, d21, d22, with the first index indicating which spin configuration
is involved on the left, and the second index indicating the one on the right. Then we may
use Leibniz’s rule to write

(
1

d22
− 1

d21

)
−

(
1

d12
− 1

d11

)
= d21 − d22

d22d21
− d11 − d12

d12d11

= d21 − d22
d22d21

− d21 − d22
d12d21

+ (d21 − d22) − (d11 − d12)

d12d21
+ d11 − d12

d12d21
− d11 − d12

d12d11

= (d21 − d22)(d21 − d22)

d22d21d12
+ (d21 − d22) − (d11 − d12)

d12d21
+ (d11 − d21)(d11 − d12)

d12d21d11
.

(6.2)

For each term in the final expression, we may obtain decay across the gaps to the left and to
the right when denominator differences are expanded as in (4.49). (If a graph fails to cross
both gaps, the result is zero because it cannot feel both changes in spin configuration.) Note
that denominators can be tripled if differenced from both sides, but (as claimed in the main
text) no power higher than three occurs.

We need to provide estimates on the number of terms produced from applications of
Leibniz’s rule in the above algorithm. Recall that the range of dependence of denominators
on the spin configuration is no greater than 15

14 L j—see (4.50). This becomes a bound on the
number of groups that can be reached with a difference line originating from a particular
ad A(k)(g j ′′,p) operation. When a difference operator hits a group, there is a sum over the
graphs in the group; this may be controlled most simply by assigning a combinatoric factor
2 to each graph in the group. The number of lines incident on a group cannot exceed 15

14 L j

(the maximum number of groups in range). Hence each graph receives no more than a
combinatoric factor 2(15/14)L j . There are also factors of 2 per graph that were mentioned
above, coming from the representation of a commutator as a sum of two terms or as a sum of
two differences. The product of all these combinatoric factors is bounded by cL j ≤ c|g| for
each g ∈ {g j ′,0, g j ′′,1, . . . , g j ′′,n}, in view of the minimum graph size in this step. Thus the
counting factors are in line with ones already considered in Sect. 4.2.1, and are controlled by
the exponential bounds on graphs as in (4.2), (4.6). As one often finds in this type of argument,
dangerous counting factors from applications of Leibniz’s rule are limited by geometrical
considerations—in this case by the range limitation and the cap of one on the number of
commutators per group that are expanded with Leibniz’s rule.

Appendix 2: Index of Definitions and Notations

Here we provide a list of important definitions and notations, along with locations where
they are introduced in the text.

ρ0, bound on probability densities: after (1.2).
ρ1, constant governing probability of an energy difference lying in a small interval: above
(3.5), start of Subsection 4.2.3.
Level spacing assumptions. LLA(ν,C): (1.3); A1(cb): (4.16); A2(ν,ε0): (5.1).
Lk = (15/8)k , length scales: start of Section 1.3.
σ (i), spin configuration flipped at i : (2.1).
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E(σ ), energy of spin configuration: (2.2).
“i is resonant”; ε = γ 1/20; S1, resonant set; B(1), its components: after (2.3).
J (0), J (0)per, J (0)res, interaction and its perturbative and resonant parts: (2.4).
A, A(i), generator of rotation: (2.5),(2.6).
, the associated rotation; H0, diagonal part of H : above (2.7).
J (1), new interaction: (2.7); J (1)

σ σ̃
(g1), the term associated with a particular graph: (2.9).

|g1|, first step graph: above (2.10).
dm = exp(L1/2

m+m0
), extended separation distances: start of Section 2.3.

m0: chosen in Lemmas 4.1 and 4.2.
b(1), small block; b̄(1), collared version; S1, collared version of S1; S1′ , region of large
blocks; S1′ , collared version; B̄(1′), B(1′), large blocks; above (2.11). (Prime means large
blocks only; bar means collar is included.)
J (1)int, interaction terms internal to blocks; J (1)sint, J (1)lint, internal to small, large blocks,
respectively; J (1)ext, non-internal terms: (2.11).

O , small block rotation; ¯̄b(1), second collar block: after (2.12).
H (1′), post-rotation effective Hamiltonian; H (1′)

0 , its diagonal part; J (1′), rotated interac-
tion: (2.13)-(2.15).
g1′ , graph extended by rotation matrix elements: above (2.16).
J (1′)(g1′), the associated interaction term: (2.17).

A(2)prov, provisional rotation generator; E (1′)
σ , post-rotation energy: (3.1).

I (g1), interval of g1; |I (g1)|, its size: after (3.2).
B(2), new blocks: above (3.3).
b(2), new step 2 small blocks; |b(2)|, its size; separation conditions; S2′ , new large block
region; S2′ , collared version; B̄(2′), B(2′), large blocks; S2 is S2′ plus small blocks b(2);
S2, b̄(2), collared versions: (3.3) and after.
P(2)
i j , connectivity function for B(2) blocks; |i − j |(1), metric with ¯̄b(1) blocks contracted

to points; s = 2
7 : Proposition 3.1.

Q(2)
i j , connectivity function for small blocks; b̄(2): above (3.9).

J (1′)per, J (1′)res, perturbative and resonant interactions for step 2: (3.10).
A(2), A(2)(g1′), generators of rotations: (3.11).
Long graphs, short graphs, jump transitions; g1′′ , graph with jump steps representing
sums of long graphs; |g1′′ |, its length: after (3.11).
A(2)(g1′′), generator of rotations with long graphs resummed: (3.12).
(2), the associated rotation: after (3.12).
H (2), new Hamiltonian; J (2), new interaction: (3.13),(3.14).
g2, step 2 graph; |g2|, its length; J (2)(g2), the associated interaction term: (3.16) and
above. g2!: after (3.17).
O(2), small block rotation matrix; H (2′), new Hamiltonian; H (2′)

0 , diagonal part; E (2′)
σ ,

its diagonal entries (energies); J (2′), off-diagonal part: (3.19)-(3.21) and after.
g2′ , graph extended by rotation matrix elements: after (3.22).
J (2′)(g2′), the associated interaction term: (3.22).
R(1′), R(2′), cumulative rotations: (3.23).
Multigraphs; level i subgraphs; gsj ′ , spatial graph; g

d
j ′ , denominator graph: above (4.2).

g j ′′ !, inductive definition of the factorial of g j ′′ ; |gi ′′ |, length of g j ′′ ; (4.3)-(4.4).

|x − y|(i), metric with blocks ¯̄b(ĩ), ĩ ≤ i contracted to points: after (4.4).
ḡ j ′ , reduced graph for probability sums; |ḡ j ′ |, its length; ḡ j ′ !, its factorial: above (4.7).
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A(k)prov, provisional rotation generator; J̃ j ′ : (4.7) and after.
“g j ′ is resonant”; I (g j ′), interval of g j ′ ; |I (g j ′)|, its length: (4.8) and after.
B(k), new block in step k; above (4.9).
b(k), small block in step k; separation conditions; |b(i)|, size of block: near (4.9).
Sk′ , new large block region; B(k′), large block; collared versions Sk′ , B̄(k′), b̄(k): after
(4.9).
Combinatoric factor: start of Sect. 4.2.1.
Tα , looping segment; |Tα|, its weighted size: above (4.29).
Erased subgraphs: after (4.29).
ḡej ′ !, modified factorial eliminating those from erased sections: after (4.30).

P(k)
i j , connectivity function for B(k) blocks: Proposition 4.4.

Q(k)
i j , connectivity function for small blocks b̄(k); R(k)

i j , multiscale connectivity function

for small blocks b̄(i), i ≤ k: Proposition 4.5.
J ( j ′)per, J ( j ′)res, perturbative and resonant interactions for step k: (4.37),(4.38).
A(k)(gk′′), generator of rotations: (4.39).
Long graphs, short graphs, jump transitions; g j ′′ , graph with jump steps representing
sums of long graphs; |g1′′ |, its length: after (4.39).
A(k)(gk′′), generator of rotations with long graphs resummed: (4.40).
(k), the associated rotation: after (4.40).
H (k), new Hamiltonian; J (k), new interaction: (4.41),(4.42).
Gap graphs: after (4.50).
J (k)ext, J (k)sint, J (k)lint, interaction terms external to blocks, internal to small blocks,
internal to large blocks: (4.51).

O(k), small block rotation matrix; H (k′), new Hamiltonian; H (k′)
0 , diagonal part; E (k′)

σ ,
diagonal entry; J (k′), rotated interaction: (4.52),(4.53).
gk′ , graph extended by rotation matrix elements: after (4.53).
R(k′), cumulative rotation: (4.54).

References

1. Anderson, P.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)
2. Basko, D., Aleiner, I., Altshuler, B.: Metal-insulator transition in a weakly interacting many-electron

system with localized single-particle states. Ann. Phys. (NY) 321, 1126–1205 (2006)
3. Fleishman, L., Anderson, P.: Interactions and the Anderson transition. Phys. Rev. B 21, 2366–2377 (1980)
4. Giamarchi, T., Schulz, H.J.: Localization and interaction in one-dimensional quantum fluids. Europhys.

Lett. 3, 1287–1293 (1987)
5. Gornyi, I., Mirlin, A., Polyakov, D.: Interacting electrons in disordered wires: Anderson localization and

low-T transport. Phys. Rev. Lett. 95, 206603 (2005)
6. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)
7. Santos, L., Rigolin, G., Escobar, C.: Entanglement versus chaos in disordered spin chains. Phys. Rev. A

69, 042304 (2004)
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