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DIRECTED POLYMERS IN A RANDOM ENVIRONMENT * 

JOHN Z. IMBRIE t 

Abatnet, In thin lecture, I will define a rryatem of walks or path8 traversing ah environment 
which in random in space and time. Firat, I will diecuas nome rigoroun results on diffusive behavior 
above the upper critical dimension (joint work with T. Spencer). Then I will dkuao what ia believed 
to happen in lower dimensions. In particular, I will ahow how in one apacial dimension one can explain 
the exact value of the critical exponent dencribing the long-time displacement of the polymem. 

To begin with, let us consider a noninteracting system of walks (no random en- 
vironment). Th e walks are paths in Zd, parametrized by an integer-valued time 
coordinate. Thus each walk w  is a function from the integers in [0, T] to Zd, with 

(1) (w(t+1)-w(t)(=l. I , 

The measure is the uniform weighting of such walks, denoted as follows: 

(2) J.dwq .(A)= I 

The subscript 0 indicates that all walks begin at the origin. The mean-square 
displacement of the walk is given by 

(3) I w(T)’ dW,T = T, 

which is diffusive behavior, with diffusion constant (coefficient of T) equal to unity. 

We can obtain (3) easily by defining a “free propagator” 

(4 po(T,s) = 
J 

&(w(T) - z) dW,T I 

and its Fourier transform 
T 

(5) po(T,k) = I+ $ f: L(cosk; - 1) a 
r=l 

Then we calculate I 
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By perturbing this measure, we can obtain several interesting systems. For ex- 
ample, the weakly self-avoiding walk is defined by a measure proportional to 

where 0 < A 2 1 describes the strength of self-repulsion. The system we will focus on 
here is defined using an environment which ia random in space and time. Thus, we let 

{h(4 4~tE]o,T],~Ez” be a collection of independent, identically distributed random 
variables. We suppose the distribution is bounded and symmetric about h = 0; for 
example la(t, z) = f 1 with equal probabilities. 

The partition function ia 

(8) Z(T) = 
/ 

fi (1-f da@, w(t))) dw,T , 
t=1 

where c parametrizes the strength of the disorder. The mean-square displacement is 

(9) N(T) (4Q2) = qT) - = & /w(TJ2ij (1 “i- A(t, w(t))) Lfw: . 

We are interested in statements about (w(T)‘) which can be made with probability 
one (with respect to h), and also in statements about the average value of (am). 

The effect of the random environment is to enhance or suppress the tendency of 
the walk to traverse various regiona of space-time. It is perhaps better to think of 
.time as an extra spatial dimension, singled out by the fact that walks must move at 
a constant rate in that direction. This explains the term ‘directed polymer.” 

Diffusive Behavior In High Dimension, If the spa&l dimension d is 1 or 
2, nondiffusive behavior is expected even for small E. This will be discussed more 
fully below. For d > 2, however, the following result holds 151: 

THEOREM 1, Let d > 2 and e be small. Then there i~ a 8 xz- 0 such that for 
almost every environment h the following estimate holds for all T: 

(10) (w(T)‘) = T (1 I- O(T-@)) . 

Note that the diffusion constant is independent of c - it iz not renormalized by the 
random environment. The constants implicit in the O(T-‘) estimate may depend 
on h. However, they do so in a controlled manner so that 

(11) (w(T)*) = T(l -I- O(P)) . 

(Here the bar denotes averaging with respect to ‘h.) 
In order to show what lies behind this result and why d = 2 is the borderline 

dimension, we consider a simpler problem. Let us show that diffusive behavior occurs 
with large probability. This may be demonstrated relatively simply by bounding the 
fluctuation of numerators and denominator separately. For the partition function we 

have 

(12) Z(T) = 1, 
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since all nonconstant terms in 

(13) Z(T) = 
/ 

n TT. ( 1+ eh(t* z)+(z) - t)) dw,T 
t * 

are linear in each h(t, z), and h(t, z) = 0. Next, we evaluate _ 

(54) wq2 = JJrI, rI,rcl+ ~~(~~4~bl(~) - 4)(lf ~h(t,++a(t)- z))] 

XdW,T(Wl) dwoT(w2) * 

Upon averaging, only terms constant or quadratic in each h(t, z) survive, and using 
h(t, z)” = 1 we have 

(15) zoz=JJII 11( 1+ Eas(wl(t) - +qwa(t) - s)) qf-(WI) dW,T(wa) . 
t 2 

When this product is expanded out and integrated, we obtain the perturbation ex- 
pansion for Z(T)2. The terms can be represented diagrammatically as a chain, where 
each line between two vertices represents a free propagator po(tj+l - tj, zi+l - cci) 
(see Fig. 1). The reason for this structure is that the two walks are forced to coincide 
in space each time an interaction occurs. In these diagrams, the spacetime locations 
of the vertices must be summed over, subject to the condition tl < t2 < . . . < t,. 
There is a factor c 2n for a graph with n interaction verticee, and we sum n from 
0 to 00. 

The series is well behaved if a single bubble is convergent. We compute 

(16) c po(t, x)” = po(2t,O) w t-d’2 , 
z 

which is summable in t if d > 2. This implies that 

(17) (Z(T) - 1)’ 5 O(c2) . 

Chebyshev’s inequality now yields small fluctuations of Z(T) with high probability. 
Choose 0 < q < 1, and we have 

(18) Prob(lZ(T),- 11 > cl-*) 5 O(E~~) . 

A similar argument can be used to control the numerator N(T). We have 

(19) N(T) = T 
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FIQ. 2. 

(20) (N(T) - q2 I O(E2)T 

(21) Prob(lN(T) - Tl > O(E’-‘)T) I O(+) 1 

Combining (18) and (21) we obtain diffusion with large probability: 

(22) Prob(l(w(T)a) - 2’1 > 0(~r-‘“)T) < O($) . 

These arguments show clearly that above two dimensions, fluctuations are typi- 
cally too small to alter the long-time behavior. We would like to be able to obtain 
diffusion even in the presence of exceptional fluctuations. To do this we need a pr- 
cedure for handling the set of h’s where the above arguments fail. Specifically, we 
need to be able to identify the times at which the behavior of h leads to exceptional 
fluctuations. 

Define an “irreducible” kernel 

(23) pr(t, Z) = CL, rIy=--; [&i Eh(tiJi)Po(ti -L-l, 2i - +i-I,] 

xch(t, z)po(t - tn-1, 5 -5+-t) . 

This kernel, which depends on h, is useful for the pointwise bounds we seek. Graphi- 
cally, we draw diagrams with unintegrated h’s indicated with wavy lines (see Fig. 2). 
These diagrams are simply the expansion of Z(T) in powers of h, (The final line 
from t to T sums up to unity.) In fact, it is easy to see that 

(24) Z(T) = 1-b c P& 4 * 
z,t 

Next, we partially resum (24) using the following quantities: 

(25) 

We can express Z(T) as a sum of terms Z(2i, 2j + L) with 0 5 e i 2j* We expect 
that Z(Z’r , Tz) will usually decrease like T;(d’a-ll’a, and we define ‘nonexceptional” 
events Ej accordingly: 

(26) Ej = {h : IZ(Zi, 2j + -t)I < ~t~‘~‘2-i~ for e=O,l,..., 2j-1). 
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Here B = (d - 2)/4 - 9 > 0. On the set ni Ej we have for all T 

(27) IZ(T) - 11 5 c.z1--9 c 2-je = O(?0) . 
i 

A similar analysis on N(T) leads to diffusive behavior on the “good” set: 

(28) l(+!J2) - TI 5 O(z-) . 

We will, of course, need an estimate on Prob(Ei), the probability of a large 
0uctuation between time 2j and 2j+l. We use Chebyshev estimatea again, but 
with larger powers of Z(Tl, Ti) to achieve better control over probabilities. With 
m fixed at some moderately large integer, perturbative estimates lead to 

(29) Z(Tl, ,p 5 T,-2m(d-2)‘4 f (Cg2m . 
! 

Hence, we have 

(30) Prob([Z(Tl, Tz)( > .?-“T~‘) < (~E)~~~Z’~~~* , i 

and for large enough m we can Burn the right-hand side over L = 0, 1, . . ., 2J’ - 1. 
Thus, 

(31) P(E;) 2 (c,)~T-;(2m~-1) 

and I 

(32) P(njEi) 2 1 - O(P”“) , I 

Now that we have control over the times of large fluctuationa, let us euppoae that 
Ej is the first event to fail. Thus, on the set 

(33) F’= Eon...nEj-lflq 

we restart the procedure at time I = 2j+‘. We define new UgoodD sets ’ 

(34) Ej,a = {h : za,v(2j, 2j -t I) < csEl-~2-~e 

for e=o,1,..., 2j - 1 and for all 

n{h : zs,sro (2j,2i + e) < cel.-~2-je f r L 07’“’ o = , , . . . ,2j + I, 

where yo maximisea p(s,y)} . 

Here Z,,,(Tr, Ta) ia the same as Z(Tr, Tz) except we have shifted the origin of 
apace time to (a, y). Also, p(s, y) = (6(w(s) - y)) is the interacting diffusion on the 
time interval [0, s]. (We should also assume bounds on quantities based on N(T) aa 
well, but we omit any discussion of such terms for the sake of brevity.) 

Again, we can show that Prob(niEj,a) is close to unity, On this act we have 
diffusive behavior at large times, no matter how badly behaved ~(8, y) ia.. For 
example, even if the behavior ia ballistic through time s, we control the diffusion 
from all points accessible at time a, and at large times the initial behavior is washed 
out. 

As 8 growa, the constants in our bounda deteriorate, aa ia evident in (34), To 
prevent the partition function from getting too close to nero, however, we need to 
control one term in an s-independent manner. This explains the second set in (34). 

Of course, we need to analyze the sets E;,,, and so on. The process continues 
until a complete string of successes, nj%, occurs for some s. This will happen 
eventually for almost every h. In this manner the Chebyahev estimates can be pushed 
to obtain diffusion with probability one. 
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Directed Polymers in Low Dimension. If the spatial dimension is one or two, 
we expect nondiffusive behavior, even for weak coupling. Let us define an exponent 
< = c(d) which measures the asymptotic behavior of the distance the path moves 
from the origin: 

(35) (W(q2) - P’ . 

Diffusive behavior corresponds to < = l/2. There are several arguments for the 

value c = 2/3 in one spatial dimension. I will discuss one line of argument below. 
Numerical results ($61 confirm the exponent < = 213 in one dimension. In higher 
dimensions, a value near 213 is obtained, but the data do not confirm or deny the 
possibility of a ‘super-universal” exponent which is independent of dimension. See 
[g] for further discussion of this point. (In high dimensions we expect nondiffusive 
behavior for strong disorder, and we use this regime in making comparisons with the 
low dimension cases.) 

The key to our understanding of the value of f in one dimension lies in the relation 
between directed poIymera and a forced Burgers equation. Let w(t, z) denote the 
unnormalized weight of paths ending at t, CC. This weight obeys the following equation 

(36) 
dw a2w -=- 
at ax2 +hw. 

,Let us work in d = 1, and with continuous space and time. The random environment 
h acts as a potential perturbing a diffusion equation. 

Although this is a linear equation, we perform a Hopf-Cole transformation to 
obtain a forced Burgers equation. We put f = - log w, and a few simple computations 
transform the equation to 

(37) 
where we use subscripts to denote partial differentiation. Now putting u E f= we 
obtain 

(38) Ut = uxx - (u2)z + h, , 

which is Burgers equation with a conservative forcing term (derivative of white noise). 
This transformation is usually used in the other direction to convert Burgers equation 

into a linear equation. Here we exploit some special properties of Burgers equation 
to gain insights into the directed polymer system. 

Several approaches have been used to obtain the scaling x - ta13 in the context of 
Burgers equation. Fisher, Huse, and Henley [2] obsemed that an invariant distribution 
exists for the equation. If the data are distributed like exp(- s dx I,“) at one time, 
then they are so distributed for all subsequent times. Assuming that this distribution 

reflects the long-time behavior, this implies that ]f(t, 0) - f(t, x)1 - CC’/‘. Balancing 
this against the extra free energy x2/t from stretching the polymer to a height z 
in time t, we obtain the desired scaling. 

Other approaches are based on renormalisation group analysis of the forced Burg- 
ers equation [3], and on a Bethe-ansats solution of a related system (a commensurat+ 

incommensurate interface model with impurities) [7]. 
We will discuss still another approach that goes back to Burgers [l], who un- 

derstood the scaling in the context of the (unforced) Burgers equation with random 
initial data, He studied solutions to the equation 

(39) Ut = I/7.&* - uu* 
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in the limit as the viscosity u tends to &era. The Hopf-Cole transformation % 

(40) u = -2v(logw), , 

and gives us the diffusion equation 

(41) t& = YW,, . 

The randomness is put back in by taking initial data distributed like exp(- s dz fz), 
aa above, where fi = -u. The problem is admittedly rather far from the one we 
started with, but one can argue that the long-time behavior should be the same. 

The solution to the equation can be written down exactly for arbitrary initial 
data. It involves a series of shock fronts, separated by regiona where u varies almost 
linearly with x. The scaling between x and t shows up in the typical distance 
between shock fronts The solution can be constructed as follows. To find u(t, z), 
first plot the initial data f(0, z) against x. Plot also the family of parabolas 

(42) y&) = (2 - sg/2t + c , 

with G varying. As c decreases, at some point the parabola will first contact the 
initial data curve. Say the contact occurs at a single point [. Then the limit of the 
solution as y t 0 is 

(43) 

If t is large, t will vary slowly with z, and we have an almost linear behavior. At 
some values of x, however, the contact occurs at two points, and in that case there 
is a discontinuity or shock as we shift from one value of < to the other in (43) (see 
Fig. 3). As t increases, the parabola flattens out and the distance between double 
contacts (or shocks) increases. 
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Our assumption is that the initial data curve is a sample path from Brownian 
motion (exp - f dx jz). The problem, then, is to determine the typical distance 
between double contacts when the parabolas (42) are dropped onto the plot of a Brow- 
nian path. While this seems at first sight like a difficult problem, the t-dependence can 
be determined simply by a resealing of coordinates on the plot. We put x’ = x/t2j3, 
y’ = y/t113, where y is the vertical coordinate. Such a scaling leaves Brownian 
motion invariant, while putting the parabola into a &independent form 

(44 y/(x’) = (x’ - xg2/2 f c’ 

Whatever the distance between contacts is in the primed variables, it must be that 
the distance scales as t2i3 in the original variables. Thus, we obtain the claimed 
dependence of the intershock distance on t. 

Despite all the indications that c = 2/3 in one dimension, no proofs have yet 
been devised. It is doubtless a challenging, but worthwhile problem. 
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