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Abstract. It is shown that r-particle irreducible kernels in the two-dimensional 
A¢4-l,r¢2-Jl¢ quantum field theory have (r + 1)-particle decay for IJ112 A 2 <i; 1. 
As a consequence there is an upper mass gap and, in the subspace of two
particle states, a bound state. The proof extends Spencer's expansion [20] to 
handle fluctuations between the two wells of the classical potential. A new 
method for resumming the low temperature cluster expansion is introduced. 

Introduction 

Much progress has been made recently in describing in detail pure phases of 
quantum field models in low temperature regions of coupling. Glimm et al. [16] 
developed a convergent expansion for the Schwinger functions of the 
A¢4-l,r¢2-JL¢ model in two dimensions (with !JL)2},2<i;l), establishing also the 
mass gap of the theory. Subsequently their expansion technique has been applied 
to some ¢� models with three minima [22, 23], to the two-dimensional pseudo
scalar Yukawa model in the two-phase region [1], and to the Coulomb gas in the 
sine-Gordon representation [2, 3]. Investigators have concentrated on proving the 
cluster property of correlations and the mass gap, leaving the higher spectrum 
unexplored. 

A wealth of information is known about the spectrum of single phase JcP(¢)z 
theories with A small. The n-particle cluster expansion [14] was used to establish 
the existence of isolated one-particle states and to show that for }, < }.(n, e), n field 
operators are sufficient to generate all states of energy less than (n + 1) m(l -e), 
where m is the single particle mass. Spencer [20] introduced an expansion for 
r-particle irreducible kernels, proving (r+ 1)-particle decay. For even theories this 
information was used to analyze the mass spectrum below 3m-s [8, 9, 21], with 
results including asymptotic expansions for bound state masses and scattering 
amplitudes, and asymptotic completeness in this energy region. Burnap [5] 
showed (without resorting to the n-particle cluster expansion) that in general 
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circumstances the upper mass gap follows from decay properties of one-particle 
irreducible kernels. He applied the result to the .A¢� theory [ 4] . For .AP(<f>)z 
theories with odd powers of 4> in the interaction, Glimm and Jaffe [13] adapted 
the n-particle cluster expansion [14] to establish discreteness of spectrum below 
2m and Koch [ 17] used irreducible kernels to analyze bound states in detail below 
2m. 

In this paper some of the above results on mass spectra are established for the 
two-dimensional [!J>(<{>)=.A¢4-±¢2-fl.¢-Ec model with !fl.I �.A2�1. The external 
field will vary with .A according to the relation f1. =A2f1.'( 1  + V1sy +4y2), where 
y=.A512 fl.' and fl.' E [O, 1) is fixed. Ec is adjusted so that inf[!J>=O. The classical 
polynomial f!ll has an absolute minimum at � + (8.A) -l/2 +.A 2 fl.' and a relative 
minimum at C � -�+· The model is defined in a finite volumeA as in [16]. 
In terms of the variable cp = 4>-� +, the polynomial becomes [!J>( cp + � + ) 
=.Acp4 +(2.A)1i2 ( 1 + ysy)cp3 + Vlsy(l + V2y)cp2 +tcp2. Denote the free Gaussian 
measure for the Euclidean field cp(x) by dcp, where the covariance is (-Ll + 1 )  -1• 
The interacting, finite volume expectation with + boundary conditions is 

where 

< >= JRe-v dcp 
R 

Je-v dcp ' 
(1.1) 

V= J : ),cp(x)4 + (2),)112(1 + VSY) cp (x)3 + yTSy(1 + V2y)cp(x)2: dx. ( 1 .2) 
A 

Wick ordering will always be defined using the free covariance. Dependence on A 
will usually be suppressed. Truncated expectations are defined in the usual way 
and are written with semicolons, for example (R1; R2) = (R1 R2) (R1) (R2). 

With these boundary conditions, the infinite volume limit of the model is a 
pure phase with exponential clustering [16]. (r+ l)-particle decay of r-particle 
irreducible kernels will be established in this paper. This leads to the following 
result. 

Theorem 1.1. Given an s>O, let 1 be sufficiently small and positive. The spectrum of 
the mass operator M consists solely of two eigenvalues, zero and m(l) = 1 + O(.A), in 
the interval [0, 2m(l) a). When restricted to the subspace of states generated by up 
to two field operators, there is exactly one eigenvalue mB(l) of M in the interval 
[2m(l)-B, 2m( .A)). The binding energy 2m(), )-mil) is equal to 3612 + O(.A 512). 

The proof of Theorem 1 . 1 ,  assuming decay properties of irreducible kernels, is 
contained in the literature [5, 7-10, 17, 21]. The expansion of this paper applies to 
irreducible kernels and to their 1 112-derivatives. Hence perturbation theory for the 
kernels considered in [17] yields the estimates on m(l) and mB(.A) that are in 
Theorem 1.1 .  The reader is referred to [17] for a complete discussion of the mass 
spectrum on the subspace of one- and two-particle states. The absence of any 
spectrum other than m(l) in the interval (0, 2m(l)-s) follows from [5]. The effect 
of three or more field operators on the spectrum between 2m(l) - B and 2m( .A) is not 
considered here, because the results of the n-particle cluster expansion are lacking 
for this model. 
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The decay estimates on irreducible kernels are proven by using an expansion in 
decoupling parameters and in parameters which control large fluctuations of the 
field. When the measure is completely decoupled, r-particle irreducible kernels 
vanish to (r + 1)1h order in the decoupling parameters, leading to (r + 1)-particle 
decay. The expansion in decoupling parameters is based on Spencer's expansion 
[20] and his methods are used to evaluate and bound derivatives. As in [16], 
convergence from decoupling lines may be obtained only in regions far from 
fluctuations between minima. However, as these large fluctuations have very small 
contribution to the measure, they may be eliminated with only a small error. Once 
an appropriate region free of large fluctuations has been isolated, Spencer lines 
[20] may be introduced to exhibit multiparticle decay. 

All derivatives are bounded by means of analyticity [12, 20]. To establish 
bounds uniformly in large domains of complex parameter space (and in A) the low 
temperature cluster expansion of [16] is applied. The method for removing large 
fluctuations perturbs the theory sufficiently weakly to allow the use of an 
inequality on partition functions that was proven in [16]. The inequality is 
incorporated into a new resummation of the expansion using some ideas of 

Pirogov and Sinai [18]. Constraints on the resummed expansion are handled with 
some techniques of Balaban and Gawvdzki [1]. 

The remainder of this paper is organized into five sections. In Sect. 2, the 
interpolating measures are defined and conditions are derived for the vanishing of 
irreducible kernels and their derivatives. In the next section, the expansion is 
generated and a resummation is performed. In Sect. 4, analyticity techniques are 
used to bound individual terms of the expansion. This reduces the problem to a 
proof of a uniform upper bound with clustering for generalized measures. The low 
temperature cluster expansion is performed in Sect. 5, and its convergence is 
proven assuming bounds on individual terms. These bounds are proven in the final 
section. 

Remark. After submitting this article for publication, we received a preprint of 
Koch [24] establishing similar results for J1 = 0. In contrast to his work, our 
method is suited to handle the case of a nonzero external field. 

2. Irreducible Kernels 

Following [16], we insert a partitiOn of unity into the measure to make a 
decomposition according to whether the field in a unit square is on average in the 
plus well or in the minus well. Let di denote the unit square in JR2 with lower left 
corner at i=(£0, i1)E;l2. Define the average field in di by 

<f>(di) = J ¢(x)dx (2.1) 
.d} 

and Jet a.= ± 1 be an Ising spin variable in d}. We introduce approximate 
characteristic functions of [0, oo) and ( oo, 0] : 

00 ( t) - -1!2J -(�-z)2d X+ s - n e z, 
0 

(2.2) 

(2.3) 
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Note that x++x-=1. Then set xr= f1 x,.i(<j>(Ll7)) where 2: denotes a spin 
Lll>;A 

configuration, that is, a function on the squares in A taking values 1. We take A 
to be a large square composed of unit lattice squares. We use the identity 1 = LX.r 
to expand the measure according to spin configurations: r 

e-v dq>= L:x.re-v dq> .  (2.4) 
.r 

Here the sum runs over all spin configurations 2: in A. It is worth recalling the one
to-one correspondence between spin configurations in A and sets of Peierls 
contours which mark boundaries between seas of aligned spins. We set (j, = + for 
Ll; �A, so all spins outside the outermost contours are +. 

Two additional length scales will be needed. We choose l � ilogA.j114 � 1 to 
exhibit the approximately Gaussian character of the measure far from phase 
boundaries. We choose L� llogA-12 � l to define what regions are far from phase 
boundaries. For convenience, take l and Ljl to be integers. 

Let b denote a bond of the lattice l7l2 . For each b introduce two parameters ub 
and rb, each taking values in [0, 1] . The u-parameters are introduced to remove 
those terms of L: with phase boundaries within L of particular bonds of l7l2• When 

.r 
the unwanted terms have been removed, the r-parameters introduce Dirichlet data 
on bonds of l7L2• Expanding in the u-parameters yields a sum over phase
boundary-free regions oflR2. The expansion in r-parameters is used to control this 
sum. It is a two-dimensional analog of Spencer's expansion. 

The u-dependent measure is 

(2.5) 

When ub = 0, there are no phase boundaries within L of b. We introduce Dirichlet 
data into dq> in the standard way [15]. The measure dq>(r) has zero Dirichlet data 
on b when rb=O; free boundary conditions on b when rb = 1. We shall never use the 
r-parameters to place Dirichlet data within L of 2: or in seas of minus spins. This is 
enforced by allowing r b ::1= 1 only if ub = 0 and 2: + near b. 

We introduce Spencer lines [20] in order to exhibit multiparticle decay. Let 
be the lines x0 = il in lR2, for i E7l. For each i, fix 2;�.¥; to be some finite union of 
bonds of the l7l2 lattice. Introduce Dirichlet data on 2; with the parameter 
t;E [0, 1]. Denote the resulting measure by dq>(r, t). We allow t;::l= 1 only if 2; is in a 
sea of+ spins. The set {2;} will vary from term to term in the expansion in the u
and r-parameters in order to satisfy this constraint. 

We state the above restrictions in terms of a condition that must be satisfied at 
all times. 

Condition A. For all b, if rb=i=1 then ub =O  and enough u's are zero so that all the 
nonvanishing terms of L: in (2.5) have (ji = + within L of b. Similarly, for all i, if 

.r 
t; =1= 1 then ub = 0 for all b � 2; and all nonvanishing terms have rr, = + within L of 2;. 

We may now define an expectation which depends on u, r, t, {Sf;}, and A. 

L: f1 ubJ Rx.re-v dq>(r, t) <R) = .r b:dist(b,.r);;L 
.z:: I1 ubS xxe-v dq>(r, t) 
I b:dist(b,I) � L 

(2.6) 
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We allow for R's containing derivatives. This expectation is used to construct the 
irreducible kernels and to give them appropriate dependence on the parameters. 
As an example, consider the one-particle irreducible kernel k (x, y) [20]. 
Suppressing dependence on u, r, etc., we define the following kernels when 
Condition A holds. 

S(x, y) = ( cp(x); cp(y)), 

F(x, y) =(S-1) (x, y), 

k (x, y) = (r-c-1 ) (x,y) . 

Here we use operator inverses and C is the covariance of dcp(r, t). 

(2.7) 

(2.8) 

(2.9) 

We need to express k (x, y) as a Neumann series of connected expectations as in 
[20]. In Sect. 4 this representation will be used to introduce dependence on 
additional parameters h(r:x). We follow [20] in this calculation except that we leave 

derivatives b
(j
cp 

as such and do not explicitly differentiate the interaction. The 

presence of the x-factors in (2.6) make it awkward to differentiate the interaction 
when integrating by parts. We obtain 

and 

c; 1 (cp(x); cp(y)) = b(x- y) + ( cp(y); J�x)) 
=11.(x, y)+ A(x, y) 

--1 )-/ (j . (j ) CY A(x, y - \3cp(y), 6cp(x) 
=B(x, y) . 

(2.10) 

(2.11) 

Note that these derivatives act on the x-factors in (2.6) as well as on e-v. In both 
cases there will result an overall factor at least as small as .A.112. We express kin 
terms of the operators A and B: 

Or, 

k =r - c-1 

=(11.+A)-lc-l -c-1 

= - (11.+A)-1B. 

k =  - (11.+BCf-1B .  

(2.12) 

(2.13) 

We refer ahead to Theorem 4.1 for the estimates that guarantee that the Neumann 
series in (2.12) and (2.13) converge for small A-. 

The next proposition gives conditions for the vanishing of k (x, y) and :r. k (x, y) . 
• 

Proposition 2.1. Suppose Condition A holds and there exists a complete contour r of 

r=O bonds or t=O lines separating x from y. Then k (x, y)=O and !_k (x, y) 0. at; 
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Proof Denote the interior of r by Y. The measure used in (2.6) factorizes across r: 

JI f1 ubRyR�YXIe-vdcp(r,t) 
I b:dist(b,I) �L 

= (S I rr ubRYXIr.Ye-V(Y)dcp(r, t)
) InY b�Y I= +onr dist(b,InY)�L 

(2.14) 

Here I: n Y is the restriction of the spin configuration to Y and 
XInY f1 Xa,(<f>(LIJ)). Ry and R_y are supported in Y and "'Y, respectively. 

L1J� Yr'lA 
The u-factors may be distributed as in (2.14) because dist(EnY, "'Y)>L. 
Factorization implies that connected expectations between Y and "' Y vanish. The 
covariance C(r, t) also vanishes between Y and "'Y. Therefore r, c-1, and k 
vanish between Y and "' Y. 

The following calculation is as in [20]. The formula for differentiating 
expectations 

�i <cp(x);cp(y))= -!J<cp(x);cp(y);cp(zl)cp(zz)>(�
i 
c-l)(zl,Zz)dz (2.15) 

holds for the expectation (2.6). By factorization, if x andy are separated by r, then 
(2.15) becomes 

!_S= -s(!__c-1)s. 
ati ati 

(2.16) 

The factor of 1/2 is cancelled by the two possibilities for positioning z1 and z2 
relative to r. We use (2.16) to calculate ,.,0 k: 

uti 

�i k(x,y)= (a�i 
(r-c-1))(x,y) 

Proposition 2.1 is proven. 

( -r(a�i 
s) r- a�; 

c-1) (x, y) 

(rs(�i c-1)sr �i c-1)(x, y)=O. (2.17) 

For other irreducible kernels, similar constructions and proofs apply. For R in 
(2.6), we will consider generalized derivatives whose actions may be restricted in 
various ways. For example, the analog of the expectation (r;I: p<kl(x;)

) 
in P(<f>)2 

theories is constructed in section four. (P(kl denotes the kth derivative of P.) These 
expectations may be used to construct the kernels considered in [17]. We also 

consider derivatives ox(x) which are the same as 
b
;

x) 
except that they act only on 

x-factors or their derivatives. 
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The first r derivatives with respect to t vanish at t = 0 for r-particle irreducible 
kernels constructed in this way. The proofs depend only on factorization, 
integration by parts, and analogs of (2.15). These properties hold for the 
expectation (2.6), as we saw in the case of k (x, y). We omit further details. 

In order to handle A 112-derivatives of irreducible kernels, we prove that the 
generalized expectations are coo in }, 112 .  Since 

a ).l(Zx�( <p(Ll1)+ (+)=(a ).1/2( +)aiLl1 )xQ(<p(Ll1) + (+)in J" d<p(r, t)' 
we see that A 1/2-derivatives of generalized expectations yield sums of other 
generalized expectations. On these we perform an asymptotic expansion in A 112 as 
in [16]. Each integration by parts produces derivatives of x-factors as well as the 
usual perturbation expansion. We establish in Sect. 4 that expectations of aix)'s 
are exponentially small in A 1/2 and that truncated expectations cluster. Hence the 
derivatives of x- factors contribute only to the remainder in the asymptotic 
expansion, and the A 112-derivatives are bounded as A,--.0. Using their repre
sentation in terms of convergent Neumann series of expectations, irreducible 
kernels and t-derivatives of irreducible kernels are also coo in A 1/2. As in [17], we 
commute ..1,112-derivatives with t-derivatives to see that A 112-derivatives of irreduc
ible kernels vanish to the appropriate order in t at t =0. 

For the sake of definiteness, we consider only k (x, y) in the remainder of this 
paper. From the above remarks, we see that the expansion applies as well to other 
r-particle irreducible kernels considered in [5, 6, 17, 20]. However, A must be taken 
sufficiently small, depending on r. 

3. An Expansion for Irreducible Kernels 

In this section we prove two-particle decay of k (x, y), assuming some bounds on 
derivatives of k with respect to u, r, and t. These bounds will be proven in Sect. 4. 

Theorem 3.1. Let e>O be given. Then for A sufficiently small and u=r=t=l, 

J k (zl, z2) f (z 1' z2) dz � ll fll Loo e- 2(1-eJixo-Yo!. (3.1) 

Here C0(Llx x Lly), where Llx and Lly are /-lattice squares with lower left corners at 
x and y, respectively. 

Proof For simplicity, write simply k for the left hand side of (3.1). For every b 
within L of A we apply the identity 

1 a 
k (ub=l)=k (ub=O)+ f -k (ub)dub .  (3.2) 

0 aub 
The result is the following expansion for k: 

k (u = 1)= IJ dua�uk(u, r) . (3.3) 

The sum runs over all possible configurations of u=O bonds and a� bonds. For 

each configuration we let r u be the union of the }!_ bonds. The remaining bonds 
au 
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u=O. We use the notation iJ�u= I1 �. The integration runs over the 
beTu DUb 

have 
differentiated ub's. 

We begin to control the sum by performing a resummation. Resumming a 

bond b means fixing the state ( u = 0 or a�) of all bonds but band applying (3.2) to b 

in reverse. We define for each term of (3.3) the set of bonds to be resummed. 
Clearly this definition must be invariant under changes in state of bonds to be 
resummed, for otherwise both terms on the right hand side of (3.2) would not be 
present. When the definition is invariant, we say the resummation is without 
constraint. a a 

We say a set of bonds is a 
i)u 

contour if it is a simple closed contour of 
au 

bonds. We resum all bonds that are interior to some : contour. Changing a 

configuration inside a :
u 

contour cannot alter the fact that bonds inside the 

contour are resummed. Hence the resummation is without constraint. After 

resummation, every configuration consists of a collection of 0
a 

contours, with 
u 

a 
u= 1 inside the contours. Bonds outside all contours may be either 

au 
bonds or 

u=O bonds. 
We expand in the r-parameters for bonds with ub = 0. These bonds (as well as 

:
u 

bonds) have no :
u 

contours surrounding them, by construction. Therefore 

every term in L with a phase boundary around b is multiplied by 0 = I1 ub'· E b':dist(b',E)�L 
Thus the spins near b agree in sign with the plus phase that exists in "'A. This 
property of the resummed u-expansion is what will allow the use of inequalities on 
partition functions in section five. The inequalities are crucial for handling the case 
f1 + 0. In addition, Condition A will not be violated by introducing Dirichlet data 

on u = 0 bonds outside 0°u 
contours. For each such bond the identity 

(3.4) 

is applied. The result is 

k(u=r= 1) = L J dudriJ�uiJ!'rk(u, r). (3.5) 

Here r, is the union of the � bonds and a;r= I1 a

a 
. The sum runs over all 

OT bETr rb 
configurations of-� bonds, -� bonds, r=O bonds, and u= 1 bonds that may be & � a 
obtained by the above construction. Thus every bond inside a 

ou 
contour has 

u= 1, while every bond outside all :
u 

contours is either :
u
' :

r
' or r=O. 

For each term of (3.5), let W be the closure of the connected component of 
lR2\{r=0 bonds} that contains Llx. By Proposition 2.1, the term vanishes unless 
also LIY£; W. The measure factorizes across aw, so connected expectations vanish 
between Wand "'W. Using the representation of k as a convergent Neumann 
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Fig. 1. A typical term in the expansion for k. Solid lines indicate Dirichlet contours; dashed lines 
a a 

indicate- bonds. Shaded regions have u=r=O, while region 2 has u=r= 1. All other bonds are-� � 
bonds. W consists of regions 1 and 2, while V consists of region 1 only. The positions of Llx and LIY are as 
indicated. Spencer lines (not shown) are inserted above the arrows 

series of connected expectations (2.12), we see that k does not depend on the status 
ak ak . of the bonds of � W Thus -;-- = � =0 for b outs1de W, and the only uub urb 

nonvanishing terms have u=r= O outside W Therefore, we need only sum over W 
and its bond configuration. a Let V be the set obtained by deleting the interiors of ou contours from W All 
bonds of W\ V have u =r= 1 .  Vis a connected union of lattice squares because W is, 
and because the components of W\ V are open sets whose boundaries(: contours) 
meet oW or each other at isolated points or not at all ( see Fig. 1). u 

We next introduce Spencer lines. Let I be the set of integers i such that 2!, 
- a . 

separates Llx from LIY and such that .2?; never meets a ou bond. Define the Spencer 
1. b - 1 · a me at iE I to e .2?; = .P;n W 2!; does not eave V because It may not cross -au 
contours. Thus the bonds of 2!; are either r = 0 bonds or� bonds. Condition A is 
not violated by introducing these Spencer lines. or 

With ti = 0, there is a complete contour of r = 0 bonds or t = 0 lines separating 
Llx from LIY. From Proposition 2.1 we conclude that k(t;= O)= :C. k(t;= O)=O . 

• Therefore we may apply Taylor's formula with remainder to obtain 

k(t 1) =  sn [(1-t;) :� l k(t)dt . 
•Ef t, J (3.6) 

The integration extends over t;E[O , 1] for iEJ. We evaluate u- and r-derivatives of 
k by differentiating the right hand side of (3.6). 

The next proposition gives the bounds on derivatives of k that we use to 
control the expansion and obtain two-particle decay. 
Proposition 3.2. Let k Jk (z1, z2)f(z1,z2)dz be as in Theorem 3.1 and let s>O be 
given. Consi der terms of the above expansion. There exist positive constants a, c such 
that for 2 sufficiently small 

I(}Tu(}Frn �k � <iif ll e-a.<-li2l21Tui!L2e-cliFrle-2(1-e)tiii (3.7) U r iEJ otf = £00 
• 
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Here IF.,I and IJ,:I are the number of bonds in r., an d J,:, respectively , an d II\ is the 
number of integers in I. 

The proof of Proposition 3 .2 is deferred to section four. Note that the case 
x0 = y0 of Theorem 3.1 is a special case of this proposition. In the rest of this 
section we consider only x0 =I= y0• We showed above that nonvanishing terms in (3.5 ) are determined by Wand 
its configuration. These are in turn uniquely determined by V and its configuration 
because the bonds of W\V have all been resummed to u= r= 1. V does not 
necessarily contain Ax or AY but it must at least surround them. Since V is 
connected, the number of V's with a given number of lattice squares IV\ is bounded 
by e0(lJIVI. Each square has no more than 34 possible configurations (:u' :r, or 

r= O on each of four bonds) . Thus the total number of terms with a given IV\ is 
bounded by e0(lJIVI. 

To every square of V we may associate at least half of a derivative bond (:u 
or �). Otherwise W would be divided into parts by r = 0 bonds, contradicting the or 
construction of W. (It is impossible to have I WI= 1 because x0 =I= y0.) Therefore, 

IF..I +IF.! �diVI. 
- 8 For every iE(x0jl,y0/l] (or (y0jl , x0jl]), either iEI or 2?i meets a ou bond of W. 

No more than two 2?/s may intersect one :u bond. Therefore III+ 2IF.,I � lx0-Yol /1. 

We split the convergence associated with tu bonds into two parts : one to control 
I VI, the other to assist in the two-particle decay. Taking A. small enough so that 

�a), 1i2l2jL2�cl and ±aA.-112zljL2�2l 
we may bound each term using (3.7): 

lo�uo�r n :t�2 k I� l lf ll v,e-cl!VIf2e- 2(1-e)ixo-Yol. 
�EJ l 

(3.8) 

Taking the supremum over the region of urt-integration, we have for A. small 
OCJ 

enough L e0<1JIVIe-cliVI12 � 1 so that the sum of all terms is less than 
ll f ll r,ooe_frf:_;Jixo -Yol. This completes the proof of Theorem 3.1. 

4. Analyticity Bounds 

In this section we prove Proposition 3.2 using analyticity techniques [12, 20]. 
Derivatives of k are bounded by obtaining bounds on k uniform in large domains 
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of complex parameter space and by applying Cauchy's formula. The chief 
advantage of these techniques is the avoidance of factorial growth in the number 
of derivatives. We shall establish large analyticity domains for u. For r- and 
t-derivatives, however, we must follow Spencer [20] by introducing dependence 
on additional parameters h( rx) which possess large domains of analyticity. The r
and t-derivatives are then expressed in terms of h-derivatives. 

Let [<2l be the disjoint union of two copies of I and let f3 be the union of [<2l 
with the set of bonds in r;.. For any rx r;;;.plet 3�1 = f1 0� f1: and denote the set of 

bEa I b iEa t; 
partitions of f3 by £1J(f3). The basic formula for r- and t-derivatives is [15] 

oftS Rxl:e-v dq>( r, t) 
= I S f1 [1-a�tc · Lftp]Rx1:e-v dq>( r, t). (4.1) 

rre&({J) aEn 

We localize the derivatives of covariances by expressing C(z1, z2) as a sum 
C(z1, z2)= I Ci(zpz2), 

je?L4 
(4.2) 

(4. 3) 

Here xi!' xh are the characteristic functions of the /-lattice squares with lower left 
corners at lj1, lj2, respectively. 

We now express the right-hand side of (4.1) in terms of new parameters h(!Y.): 

oft J Rxl:e-v dq>( r, t) 

I [nah
a
( )

l sn f1 (1+! h(1Y.) o�tcj.Lftp)Rxl:e-vdq>( r, t) ih�o· (4.4) 
rrE&({J) aErr IY. J aErr JE7L4 

Let 3� = I f1 "ho( ) . Define the h-dependent expectation by inserting the 1 + hLI 
trEEP({J) OCE1t U (/. 

factors of (4.4) into (2.6) 

We use these new expectations to define k ( h) from the formula (2.13). The 
covariance C( r, t) is given the following h-dependence: 

q r,t, h, x, y) S fi TI (1+t h(1Y.)a�tcj.Lftp)q>( x)q>( y)dq>( r, t). (4.6) 
a�{J jE7L4 

Convergence of the Neumann series in appropriate domains of the parameters will 
be guaranteed by Theorem 4.1. We remark that h-dependence is introduced only 
after integrations by parts and other constructions have been applied to express 
kernels and their A. 112-derivatives in terms of sums of products of expectations. 
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Let FR denote the numerator of (4.5). From (4.4) we have o�tFRih=o =bfFRih=o 
and similarly for C(h). The operator of behaves just like 8�1 with respect to 
products and quotients. This implies that 

8�/R)Ih=o =o�t(FR/Fe)ih=o =of<R)Ih=O 
O�tklh=o=O�klh=O · 

See Lemmas 3.1 and 3.2 of [20] for proofs of these facts. 

(4.7) 

We need to consider R's with derivatives 0� so that we may be able to estimate 

expectations such as Bin (2.11). We must first isolate the a-function contributions 
to expectations with derivatives. For example, when two derivatives act on a 
function of J : <p(x)n: dx, there are two terms: 

--� ---6- Q(J: <p(xt: dx) 
b<p(x) orp(y) 

= n(n-1): cp(x)"-2: Q'(J: <p(xt :dx)b(x- y) 

+ n2: <p(x)n-1 : : <p(yt-1 : Q"(J: <p(x)": dx). (4.8) 

We denote the first term by a;(x)QJ(x- y), and the second by o'�'(x)o"'(y)Q. 
Similarly o�(x) is defined as the term that results when k-1 derivatives all act on 

the : cp(xt-1 : factor in 
a�x) 

Q. In general, when several operators o�'(xi) act on Q 

we use the formula 

(4.9) 

Note that the o�''s do not act on each other. If any ki > n, we get zero. The 
generalization of (4.9) to functions of arbitrary :<p(j)»: is straightforward. For 
products, we have a Leibnitz rule: 

Ordinary derivatives may be expressed in terms of the 8�(x)'s using the formula 

Here i,� is the smallest integer in f'?:_.Y. 
The R's we consider in the next theorem are of the form 

n1 nz n 
R s w(x) Il : <p(xY': Il o�(xJ Il ox(xi) dx' (4.12) 

i=l i=nt+l i=n2+l 

where w(x
1
, ... , x")ELP([l .di) is supported in a product of Z-lattice squares, and 
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p > 1 is fixed. a (x) is the same as �) except that it operates only on x-factors or x u<p(x 
their derivatives. For the truncated expectation (R1; R2) we let w be a function of 
both sets of variables and let the integration be implicit in the notation. Infinite sums 
of products of expectations of R's of this form are sufficient to construct the 
irreducible kernels and their A 1/2-derivatives. When we write (R1; R2) it is 
understood that the derivatives of R1 do not act on the monomials of R2• We define 

n1 
degR = L pi+ 4(n- n1 )  and assume all k;�4. Let D(RpR2) be the distance 

i� 1 
between the supports of Rl and Rz . We define o(R) =Hz- nl to be the number of a�·s 
in R and ox(R ) to be the number of ax's. 

We make a number of definitions which will enable us to describe domains of 
analyticity in the next theorem. Let I:_� r; be the union of the bonds in a and let 
I a J<2 lna be the integers in a. Define d(a ) = sup li -jj if I a=!= 0 has no duplications; 

i,jEl� 
d(a) = -1 if I a= 0; otherwise d(a) = oo. Define o(a) =sup dist(b, £'; )/l; if a contains 

b,iea 
only bonds or only integers then set o(a) 0. As in [15], let L(J:_) denote the set of 
linear orderings of the bonds in I:_ and define £'(I:_)= U L(T'). For each 

r.:ra 
OE £'(I:_) we define a length Jol in units of l that arises in estimating derivatives of 
covariances. If o (b1, ... , bn), define b'1 b1 and bj inductively as the first bond 
after bj_1 not touching bj_1• Then set loJ = L dist(bj, bj_ 1 )/1. If b2 does not exist 

. "> 2 we set Joj 0. By conventiOn, {0}EL(0). 1= 

Theorem 4.1. Let e > 0 and p > 1 be given, and let }, be sufficiently small. Consider 
bond conf igurations occurring in the f inal form of the expansion of section three. 
There exist positive constants a, c, g, d, and K such that (R1 ;R2) is analytic in u 
and h and 

I(R1; R z)l � llwiJLPM(degR1Rz)Ab(R,R2)/2eK1degR,R2e-gD(R,,R2) (4.13) 
for u, hE22!(n). Here n is any element of f!J(/3) and 22f(n) is the complex domain defined 
by 

I I < a)" -1!2/2jL2 b j_b d ub =e ' a a u  on 

ub = 0, b a u = 0 bond 
ub =1,b a u =1 bond 

-1 
lh(a)J � ( L e-cl !ol) eclli(a)e2c1JT�Ie(l-e/2)1(d(a)+ 1), 

OEL(T�) 

h(a)=O, a¢n . 

(4.14) 
aEn 

If ox(R 1R2 ) > 0, a factor e - dJo -112 can be included on the right-hand side of (4.13). The 
bound (4.13) holds uniformly in degR1R2 if M is also allowed to depend on lt. An 
analogous bound holds without clustering for untruncated expectations. 

This theorem will be proven in Sects. 5 and 6 with a low temperature cluster 
expansion. We remark that bounds uniform in degR1R2 are needed to prove for 
fixed ;[ that one-particle irreducible expectations of arbitrarily high degree have 
two-particle decay, as required by [5]. We now prove a lemma for Proposition 3.2. 
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Lemma 4.2. Under the hypotheses of Theorem 4.1, k= Jk(z1 ,z2)f(zvz2)dz is 
analytic and uniformly bounde d  by llf llv"' for u, h in �(n), for any fEC0(L1x x .1). 
Proof We express the B-operator of (2.11) in terms of expectations of o�'s: 

B(x, y) (5�x); c5�y)) = (o�(x))c5(x- y)+ (o'�'(x); a"'(y)). (4.15) 

Theorem 4.1 guarantes that (o�(x)) and (o'�'(x); o"'(y)) are locally in U, q < oo. Also, 
(o"'(x); o'�'(y)) decays exponentially in Jx- yj. Moreover, both expectations involve 
at least one derivative so there is an explicit factor of A 1'2 in (4.13) which more than 
dominates the diverging factor eKldegR,Rz. Also, for any function gE Lq(L1), we have 
C(h)gEC0nL00(IR2). Together these facts imply that (1l+BC)-1 is a convergent 
Neumann series for A small enough. For details see [17]. Using again the factor ), 112 , 
we have 

for A small. 

J k(z 1, z2)f(z 1, z2)dz J- ((11 + BC) -1 B)(z 1, z2)f(z 1 , z2)dz 
� J lf JI Loo (4.16) 

Proof of Proposition 3.2. We apply Cauchy's integral formula to evaluate 
derivatives of k. From (4.7) we have 

02 
O�"o;r n a---zk=o�uc)�kjh=O 

iEl t; 
= L a�u n _Jl_klh=O n:e[i1J(p) GtE1t Q h( (X) 
= I fk TI [<u;,-u�)-2 

d u�J TI l�(rx)
�

2 
dh(rx)] , (4.t7) 

rre[!1J(p) beTu 2m aerr 2m 
where f3=F,uJ<2l. The parameters ub, rb, t; are all in [0 , 1] . The contours of 
integration are the largest ones allowed by (4.14): 

I 1 j- aA.- 1/2F/L2 ub - e 
-1 

Jh(rx)l= ( L e-cllol) eclb(a)e2clJT�Ie<1-e/2)l(d(a)+l). (4 .18) 
OEL(T,) 

This yields the bound 

lo�uo[r n :: k l � jj f JJv,e -aJ. -l/ZFjr ui!L2 e-2(1-e)IIII e- 2c!ITrl 
lEI t; 

·e-•llll/2 I n :z= e-cl lol e-clb(a)e- el(d(a)+ 1)/4 . (4.19) 
rrE[i1J(p) aen oeL(T ,) 

Here we have used the fact that I 1Fa 1= 1Fr l and I ( d(rx)+1)�21II. Hence (3 .7) 
a en 

will be proven if we can show that 
e-cl!Trle-•llll/2 I Il L e-cljole-c/6(a) e-el(d(a) + 1)/4 � 1. (4.20) 

1tE[i1J(p) iXETr oeL(T,) 

We use some counting arguments from [15]. 
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We start by expanding the left hand side of (4.20) into a sum. 

e-cliTrl e-ELIII/2 L Il [ e-c!lode -clb(ai) e-el(d(a;) + 1}/4]. 
{(o;,a;)) i 
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(4.21) 

Here {(o;, Ct;)} is a set of ordered pairs (o;, a;) with O;E !i'(F,), O; ra.,, and {a;} :?J({J). 
We allow o; = 0 and we occasionally ignore the distinction between O; and the set of 
bonds ordered by o;. The sum in (4.21) is bounded as follows: 

L fl [e-cllode-clo(ai)e-El(d(a)+ 1)/4] 
{(O;,a.;)} i 

� fl (1 +e-ctiole-clb(a)e-sl(d(a)+ 1)/4) 
(o,a) 

�exp ( 2:: e-clloie-cl"<"le-•l(d(a)+ 1)/4) 
(o,a) 

=exp ( L e-ctiole-ctJ(aJe-et(d(a.)+l)/4) expf L e-cl(d(o:)+lJ/4·) · (4.22) 
(o,a) \ap(2) 
o*e ' 

In the second exponential, there are III choices of min a, the smallest integer in 
a. Fixing min a, there are at most 22c choices of a with d(a) + 1 =C. This 
combinatoric factor is dominated by e-etct4, so the second exponential is bounded 
by e0<1JIII. In the first exponential, fix o. The sum over min a and the sum over Ct are 
controlled by the factors e-clo(aJ and e-ct(d(a)+ ll/4, respectively. The number of 
O;E !i'(F,) with lo;l �m is bounded by IF,Je0<1Hm+lJ [15]. Thus the second exponen
tial is bounded by e0<1>1Trl_ Putting these bounds into (4.21), we obtain (4.20). This 
completes the proof. 

5. The Cluster Expansion 

Theorem 4.1 is proven in this section with the use of the low temperature cluster 
expansion of [16]. We introduce a new way of organizing the expansion that is 
related to some ideas ofPirogov and Sinai [18]. Since we consider 11=FO, we do not 
have a symmetry <jJ-+ </J. However, an inequality on partition functions that was 
proven with correlation inequalities in [16] is available for use. The ability to 
make use of this inequality is the main advantage of the method of removing phase 
boundaries given in section three. It allows us to handle a nonzero external field. 
The idea of the resummation technique is to multiply every factor in the cluster 
expansion by an appropriate ratio of partition functions. The ratio is bounded by 
1 by the inequality on partition functions. 

The resummation transforms the cluster expansion into a form in which the 
techniques of Balaban and Gawvdzki [1] are applicable. Their ideas originate in 
the work of Kunz and Souillard and are related to the formalism of [11]. The 
notion of connectedness that we need is more complex than that of [1]. 
Nevertheless, explicit division by the partition function is possible and the 
Kirkwood-Salzburg equations of [1] may be used to prove convergence of the 
expansion. 
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We start by generating the basic expansion and establishing bounds needed for 
convergence. Some technical estimates are deferred to Sect. 6. In the second half of 
this section we define the resummation and prove convergence of the expansion. 

The first step is the expansion in phase boundaries. In accordance with (4.5), we 
have 

where 

(R)=FR/F0 

FR= 'IFR,l:' 
1: 

(5.1) 

FR,r= fl ud fl fl (1+!h(a) o�1Cj·L1"')Rxre-v dq;(r, t) . (5.2) 
b:dist(b,J:)�L ar;p je7L4 

We translate q> as in [16] by a function on IR2 that depends on 1:. The new field 
1p(x) has a mean that behaves roughly like a,�+ and that is exactly a,�+ farther 
than L/2 from 1:. Choose a coo bump function ((x) on IR2 satisfying 

O�((x)�l 
((x)=O for 

((x)= 1 for 
!xi>! 
lxl�±-

Let 17 be a small constant (independent of A.), and define the new field by 

(5.3) 

(x)= (x)+� _ 
J( -Ll +ry)-1 (x-y)(((x- y)/L)a(y)�+dy 

(5.4) 
1JJ q> + J(-Ll+ry) 1 (y)((y/L)dy 

The meaning of 1p depends on 1:, though the dependence is not explicit in the 
notation. Let d1p(r, t) denote the Gaussian measure in which 1p(x) has mean zero 
and covariance equal to that of dq;(r, t). We define Q (L'), the translated interaction 
for the spin configuration L' by the equation 

(5.5) 

See [16] for an explicit formula for Q (L'). Note that 1p(x)-q;(x)=O wherever r=t= 1 
or t=t= 1, by Condition A. 

In each F R,J: we introduce Dirichlet data into d1p(r, t) on those bonds of the l7l2 
lattice that are farther than L from 1:. Denote the set of such bonds by .%' (1:). The 
covariance in the o�1CFfactors and in the measure now depends on a new set of 
parameters {sb}be!m(J:) which interpolate between zero Dirichlet data (sb= O) and 
absence of Dirichlet data (sb = 1 ). We perform a cluster expansion in these new 
parameters : 

FR,r(s=l)= 'I Jds o[sFR,r(s) . 
rs�@(J:) 

(5.6) 

Here r. denotes a subset of .%' (1:) and o[s= fl -0° . The integral runs over the 
bers sb 

range [0, 1] for each sb, ber •. For be.%'(1:)\F. we set sb=O in (5.6). 
Let ZK denote the closures of the connected components of IR2\{s 0 bonds}. 

For simplicity we defer the integration against the test function w of (4.12) and take 
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R to be a product of: <p(xi)P':'s, o�(x;)'s, and ox(x;)'s. We claim that FR,£ may be 
written as a product of F's associated with each ZK: 

F R,r(s) = f1 F R,r,zJs) 
T< 

(5.7) 

· J f1 f1 (1 + th(()()0�1Ci · LI"')Rz"'Xrnz,., e-Q(£nZ"',Z"')d1p(r, t, s) . 
a'i,/1 jE7L4 

Lfj1 V.1j_,r;Zr-c 

In this formula, it is understood that derivatives a� and 6
/j
<p 

in RzK and Ll"' have 

been applied in the integrand as it was before the translation to the 1p-field. When 
this convention is not in effect, we will use the letter 1p rather than <p to denote 
derivatives, e.g., Ll'�' instead of Ll"'. The bonds of Zl( are by construction farther 
than L from any J:nZK .. Therefore the u-factors may be distributed as in (5.7). The 
factor Rxe-Q may be written as a product, as in [16]. Moreover, 

(5.8) 

unless both Ll h and Ll hare in the same Z". Thus (5. 7) is valid. In fact, f1 runs only 
a'i,fJ 

over()( such that for all b, iE()(, bnintZ"::J=0=l=:t'/1intZK. For the other x's we have 
8�1Ci=0. 

The quantity FR,r,z"' depends only on EnZr< and sb, bEZ". We may write (5.1) 
and (5.7) as 

(5.9) 

Each boundary segment of ZK is either in a sea of+ spins or in a sea of- spins. Let 
az: be the + boundary of ZK and az- be the - boundary. Denote the triple 
(ZK, az:, az;) by 7LK. We call such a triple a cluster. We reorder the summations 
in (5.9) by summing first over all terms compatible with a given {7L,J and then 
summing over all possible {7L,J's. With 

we have 

Q(7LJ = L J ds a;snZK FR,rnz,.,,zJs) (5.10) 
InZK,TsnZK compatible with 7l K connected 

(5.11) 

{7LK} is admissible if U ZK = IR2 and the 7L,/s agree on boundary signs. This step is 
I( 

possible because I; in (5.6) factors into independent sums for each Z". 
r,r. 

We also define partition function type objects Q(W). In contrast to 7L, \V need 
not be connected. 

Q(W) (5.12) 
{Z><J admissible in\V K 
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Here Q0(�K) is the same as e(�K) except R = 0 for every term in (5.10). {�K} is 
admissible in W if U ZK = V and the �._'s agree with each other and with W on 

K 
boundary signs. 

We now formulate bounds on e(�,J and Q(W) which yield convergence of the 
expansion. Denote by IZI the number of 1-lattice squares of Z. 

Lemma 5.1. Under the conditions of Theorem 4.1, there exists a constant c1 >0 such 
that for), sufficiently small and az- 0, 

II Q(�) II Lq � M 1 ( degRz) ),o(Rz)/2 eKldegRz e-c,l(IZI 1). (5.13) 

If az-=!=0 the factor )cd(Rz)/2 is replaced by )c - degRz/2. If az-=!=0=!=oZ+ or if 
<5iR2)>0 we include factors of e-a;.-112• This bound is independent of degR2 if 
)cd(Rz)/2 is replaced by Jc - degRz/2• Here q, p are dual Holder exponents and the Lq 
norm is with respect to the product of the 1-lattice squares in which the uncontracted 
variables of Rz lie. If Rz = 0 we replace the Lq norm with absolute value signs. 

With R = 0 and L1 any l-lattice square, we have 

le(L1, 8L1, 0) 1 - 1 � eczJcl/lJ2. 

for some constant c2. Finally, if u=r t= 1 and h=O in V, we have 

Q(W) � Q(W+)'  

where w+ = (V, av, 0). 

Proof For e(L1, oL1, 0) there is only one term in (5.10) that contributes: 

e(L1, oL1, 0) = F R.E= +,LI. 

(5.14) 

(5.15) 

(5.16) 

For L1 h = L1 h = L1 we have 8�1Cj=0 so that the (1 + hoCL1) factors are absent in (5.7). 
The product of u's in (5.7) is empty. With R=0 we are left with 

Q(L1, fJLJ, 0) = Jx1:, + e 
-Q(E= +,LI) dlp(S = 0 On OLJ). (5.17) 

The right-hand side is bounded below by e-czJJilz2 in [16, Lemma 4.2.2]. This 
proves (5.14). 

With u = r t = 1 and h = 0 in V, Q(W) and Q(W+) are partition functions of the 
type considered in [16]. The inequality (5.15) is proven using correlation 
inequalities in [16, Lemma 4.2.3]. 

We now establish (5.13) with the use of the following lemma, proven in Sect. 6. 

Lemma 5.2. Under the conditions of Theorem 4.1, if I:= + then 

llarsF II <M (degR )Jcd(Rz)/2eKldegRz e -cliTsl 
s R,l:,Z Lq= 1 Z 

. e-d,Jc -11211:1 eO(l)IZI (5.18) 

for some d1 >0. III denotes the length of the phase boundary 1:. For a degR2 
independent bound, or if I: is not identically +, we replace the factor A_o<Rz)/2 with 
A - degRz/2. If <5/Rz)>O, we include a factor e-d,A 112

• Here rs�intZ, l:=l:nZ, s=O 
on oZ, and ll·llu is as in Lemma 5.1. 



Mass Spectrum of the Jc¢4- ±¢2- Jl¢ Model 187 

If IZI = 1, (5.13) follows immediately. Consider the case IZI > 1. The factor 
XJ<Rz)/Z in (5.13) may be obtained from e -a,;. _,121EI in (5.18) with a decrease in d1 if E 
is not identically+ and az- =0. We may extract a factor e-dJ.-112 with a decrease 
in d1 if az- =i= 0=1= az+ because lEI> 1 for all terms of the sum (5.10). 

The number of J:'s with a given lEI is bounded by C�i�1). Therefore 

1: compatible 
with7l 

(5.19) 

The number of r;s in Z is bounded by e0<tliZI. Z\Ts cannot have more than one 
component. Thus in order for E, rs to be compatible with 7L, there must be a 
certain density of either phase boundaries or bonds of rs. This is expressed in the 
inequality 

(5.20) 

Therefore, 

(5.21) 

for ), sufficiently small. The factor e-ctiZI/Z dominates the e0<1liZI factors and 
establishes (5.13). This completes the proof. 

Proof of Theorem 4.1. We rewrite the expansions (5.11) and (5.12) in terms of new 
objects Q(7L).Q(W)/.Q(\Y+). Consider first (5.12) with av-= 0. For a term in L' let 

(7lK} 
{7L;} be the clusters that are not surrounded by minus loops of any cluster. For 
each 7L;, let ti,a be its minus loops. Note that the 7L/s are positive, i.e., they have 
plus external loops. Therefore intt;, anZ; = 0. We resum the expansion (5.12) inside 
all t1,(/.'s. As in Sect. 3, this resummation is without constraint. Let 
Vi=Vn U intti,a and let \V;=(v;,av;nav+ , U t1,a). The resummation inside the 

a a 
t1,a's yields TI .Q(\YJ Thus (5.12) becomes 

i 

.Q(W)= 
{7lt) positive i 

restricted 

Restricted means that no 7L1 is surrounded by a minus loop of {7LJ 
We claim that the following formula holds for any \Y with av- 0: 

.Q(W) 

(5.22) 

(5.23) 

Here L is over 7L,/s that may be surrounded by minus loops. The 7LK's may 
{7lK) 

disagree with each other on boundary signs but they may not disagree with 'W. 
They may not overlap and their union must equal V. We prove (5.23) by induction 
on lVI. If lVI = 1, then .Q(W) = e0(W) so that (5.23) holds. Suppose (5.23) holds for 
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lVI < N. Rewrite (5.22) as 

Q(W) L IT lQO (�J 
Q(W

� j IT Q(W() 
{Z;} positive i Q(W; ) i 

restricted 

(5.24) 

and substitute (5.23) for Q(Wt). Since 1¥;1 < lVI =N, this is a valid operation. The 
result is 

(5.25) 

The unrestricted sums over {�h} relieve the restriction on I; so that the sum over 
{Z;) 

{�.J = {�;, �J is unrestricted. This proves (5.23) for arbitrary W with av- =0. 

An analogous formula holds for Q(W) = Q(W) I LJQv g0(Ll, 8 Ll, 0) and 
Q(O)(�) Q(O) (�) I }jz Qo(Ll, oLl, 0): 

i2M= L: 
{Z.,) positive 

unrestricted in W 

(5.26) 

We need not consider �" =(Ll, oLl, 0) in {5.26) because e0(Ll, oLl, 0) = 1. With 
FR = FR I Jl2 Q0{Ll, oLl, 0), (5.26) holds for .F0 = Q{IR2). (Note that g0 (Ll, oLl, 0) 1 

if LlnA=0.) 
Equations (5.22)-(5.26) are closely related to some equations in [18]. We desire 

a generalization of these equations for R =f: 0. Multiplication by ratios of partition 
functions containing R-factors must be avoided. This entails a consideration of\V's 
with av- =f:0. 

The basic objects we need to consider will be denoted EIDj�). �is a connected 
cluster, but ID need not be. ID may not even make sense as a cluster. We will have 
oD+uaD-r:oD, but no other relation between D, oD+, and oD- is assumed. The 
subscript p is either 0 or 1. If the outer boundary of� is minus, then S 10j�) is 
defined to be zero. If� is positive, let {tJ be its minus loops. We can assume that 
D = U Da and Dar: intta. Define ID= ID+ if p =0; ID= ID if p = 1. If ID disagrees with a 
� on 

A
bounda�y sig�s, t�en SID,

�
(�)=�. Let lL= (V intta, 0, V ta) and set 

W= lL\ID=(L\D, o(L\D)noD+, o(L\D)n(oD-uoL -)). IfW does not make sense as 
a cluster with every component of oV given a unique sign or if Q(W)=O, then 
SID,p(�=O. Finally, for� positive and W a sensible cluster with Q(W)=t:O, we define 

(5.27) 
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8'JD,p(7l) is a dressed-up version of the objects appearing in (5.26). The purpose 
of the definition is to have ID indicate regions with R-factors that cannot be 
included in V. The subscript p determines whether it is appropriate to delete lD or 
ID+ from V. sgj?L) is defined similarly but with ?:!0 replacing Q in (5.27). 

We next introduce operations that change the subscripts ID, p on E. Using 
these operations, the expansion will be converted to a form very close to that 
considered in [1]. The operations are different from the ones used in [1] and are 
more complicated. We say a cluster is a vacuum cluster if it contains no R-factors ; 
otherwise it is a nonvacuum cluster. For the first type we use the letter X; for the 
second we use the letter "\Y. 7l may refer to either type. We consider arbitrary X's 
but only positive \Y's in defining the operations. We use the notation 
lDuX=(DuX, o(DuX)n(oD + uax + ), o(DuX)n(oD - uoX - )) 

U("\Y lY ) = changes sgjlY1) to sg_ 0 (lY1) if a minus loop of lY2 surrounds lY1 
{ 0 if "\Y1 and "\Y2 overlap 

1 ' 2 
changes E£j"\Y2) to sg_0("\Y2) if a minus loop of lY1 surrounds lY2 
1 otherwise, 

0 if X and lY overlap 
changes sgjlY) to sg_ 0(lY) if a minus loop of X 

surrounds lY and X is positive 
U(X, lY) = changes EJD,p(X) to i:i(X) if a minus loop of )Y surrounds X 

[leaves g(X) alone if X and lY do not overlap] 
changes Eg,p(lY) to sgu%)lY) if a minus loop of lY surrounds X 
1 otherwise, 

0 if X1 and X2 overlap, or if they disagree 
on the sign of a common boundary 

changes EJD,p(X1) to i:i(X1) if a minus loop of X2 
surrounds xl and x2 is positive 

changes EJD,p(X2) to (?(X2) if a minus loop of X1 
surrounds x2 and xl is positive 

U(X1, X2) = [leaves g(X1) or (?(X2) alone if X1 and X2 do not overlap 
or disagree] 

changes EID,p(Xl) to 8'1Dv%2)X1) if a minus loop of xl 
surrounds X2 and X1 is positive 

changes EJDjX2) to 3'1Du% ,jX2) if a minus loop of X2 
surrounds X1 and :%:2 is positive 

1 otherwise. 

We resum the expansion (5.11) by summing over all {lY8}'s consistent with a 
given {X,.} and then summing over {X,.}. u xr must contain all the squares in 

r 



190 

which R-factors appear. We also divide by f1 g0(Ll, oLI, 0) 
Ll 

ft R = I I1 ii(X.) I I1 li°CW.) . 
lxrl r !'!fs} s 

J. Z. Imbrie 

(5.28) 

Here lY5 =j::(Ll ,  oil, 0), but by adding such squares to {X., lY.}, it must be possible to 
obtain an admissible {:if,.}, in the sense of (5.1 1 ). 

As in (5.22), let {:if:1} be the clusters that are not surrounded by the minus loops 
of any cluster. Z; can be either a lYs or an X.. For each Z1, let t' ; , "  be its minus loops. 
As before, the 7L;'s are positive. We fix {Z1} and {X.} and resum the rest of the 
expansion. The summation inside U t1,oc yields a partition function Q(W) as 

"' 
before. In this case, however, the presence of X.'s inside ti, a means that the X.'s 
must be deleted from V. Setting V;= lL1\ y X., where lL1= (y intt'1·"' 0, y t,,a) we 
obtain 

f R = I I I1 ii(X..) I1 [(i(Ol(:if:;)Q(V;)] . 
lxrl {Z;} positive r' i 

restricted Xr•¢{Z;} 

Expressing g<0l(:if:1)Q(V1) in terms of E's, (5.29) becomes 
F R = I I I1 ii(X..) I1 [E�;� l (Z;)Q(Vt)] ' 

{Xr} (Z;} positive r' i 
restricted X r•<lo(Z;} 

where ID1 = U X.·· r�:Xr-' � Li 

We rewrite (5.26) in terms of E's to obtain 
Q(Vt} = I I1 E�"'"0(lY") , 

unri�tr�cfed\�ve Vt Kt 

(5.29) 

(5.30) 

(5.31) 

where ID"' U X.•, L",= U intt"'·"' and t''"·" are the minus loops of lY",. In 
r':X,.,� LK; a 

deriving this step, we have matched the way V" was defined for (5.25) with the way 
V was defined for (5.27). We used p=O in (5.3 1 )  because Vt appears on the left
hand side, not \Y1• With Wt appearing, any minus loops in X.!s going into IDK, had 
to be changed to plus by using p =0. We may relax the condition that {lY "J can be 
supplemented with (Ll, oLI , 0)'s to agree with Vt on boundaries, because terms 
violating the condition havesg"'"0(lY ",) =0 for some lY",. Inserting (5.31) into (5 .30) 
yields 

We rewrite this expression in terms of sums of products of E��l1(Z)'s. The 
differences in subscripts on E's are handled with the U-operations 

I I I I1 U(X.t ' X.) 
{X,.} {Zi} positive {Y"'} positive r1 < r2 

restricted unrestricted in v1 Vi 

· f1 U�, lY,) f1 U(lY,1, lYs) f1 E 0 •  1 (X,.) f1 E�, 1 (lY.) . ( 5.33) 
r,s s1 < s2 
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The U-operations commute, because the effect of a U cannot be undone by 
another U. Every X,. that is surrounded by a minus loop has its E converted to a (j. 
This yields the f1 e(X,..) in (5.32). Every Ys that is surrounded by a minus 

y' :Xr•¢{ll;) 
loop has its 31 converted to 30. w;s and X,.'s with minus loops surrounding X,..'s 
have the X,..'s joined with their ID subscripts. Thus the subscripts on E's in (5.32) 
are achieved. 

We make use of the U =0 and E =0 cases to remove the restrictions in (5.33). In 

the sum I , X,.'s with minus outer boundaries cannot appear unless surrounded 
i%r. lli) 

by a minus contour of some 7Li. But 3('%,.) = 0  for X,.'s with minus outer 
boundaries, and E(X,.) is not converted to (?("'%,.) if X,. is not surrounded by a minus 
contour of a 7Li. Therefore we may lift the restriction. The restriction that the w;s 
in {7L;} not disagree with X,.'s on common boundaries may be lifted because for 
such terms EL(Y5)=0. As in the passage from (5.25) to (5.23), the sum over {7L;} 
and {\YK} becomes an unrestricted sum over {Y5} positive in 1R2\ yXr. We may 

extend this to an unrestricted sum in 1R2, because the extra terms have overlapping 
1 

X,.'s and w;s so that U 0. We change from I to I I and then extend 
{'ir's} k ! (W, , . . . ,Wk) 

I to overlapping \Y's. Here (\Y 1, . . . , Yk) is an ordered family of \Y's. Finally, 
(w, . . . ,Wkl 

we extend I to all sets of X,.'s, including overlapping X,.'s and X,.'s that disagree 
{%,) 

on common boundaries. The extra terms have U =0. The result is 

- 1 
F R = I I kl I IT U(X,.,, X,.) n U(X,., Ys) {Jilr) k • (W,, . . .  ,Wk) r, < rz r,s positive 

k 
. n U(Ys,, Ys) IT E0 , l (X,.) IT E�, l(Ys) .  
s 1 < sz s=. 1 

(5.34) 

Every R-factor must be contained in some X,.. The sums are unrestricted in all 
other respects. The X,.'s need not be positive. The expansion now has the same 
form as the one in [1]. 

We follow [1] and obtain an explicit factor of F0 from (5.34). Define A(7L, \Y) by 
U = 1 +A and expand the products of U's in (5.34). 

(5.35) 

Here G is a graph of unordered pairs {X,., Y5} or {Y5,, Y8) (called lines £'). Let Gc 
be the part of G that contains lines connected directly or indirectly to some X,.. Let 
G0 = G\Gc. G is said to be connected with respect to {"'%,.} if G0 = 0. We sum 
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separately over the )Y's in Gc and the Ws in G0. This yields 

{5.36) 

The second factor is F 0• Hence we rna y give the final form of the expansion : 

Here <P is defined by 

<P{7L1 ,  . . . ,7Lj ; Yp . . . ,Yk) = L IT U(7L,, , 7L,) IT A(£') 
Gc r1 < rz !eeGc 

j k 
· IT 5��)1 (7L,) IT 5�, 1 ("\Ys) 

r= 1 s= 1 

and Gc is connected with respect to {7L1 ,  . . .  , 7L). 

(5.38) 

The Kirkwood-Salzburg type equati0ns of [1] may be applied to prove 
convergence of the expansion. The equation expresses <P as a sum of terms 
involving <P's with fewer clusters and with some subset Q of {l¥1 , . . .  , Yk} moved 
across the semicolon : j 

<P(7Ll, . . .  , 7Lj ;  )¥1, . . . , "\Yk) = L IT U(7L1, 7L,) IT A(7Ll'  "\Ys) 
Q r =  2 SE!J 

(5.39) 

In order to prove convergence of the sum over (Y 1, . • .  , Yk) in (5.37), we assume by 
induction that the sum converges for smallerj + k and with U's acting on clusters left 
of the semicolon. Substituting (5.39) into (5.37), the induction hypothesis applies to 
control sums over (Ys)s¢!2· 

Two sources of convergence control the sums over (Ys)sE!J· The first is that a 
term vanishes unless all A(7L1 , l¥8)=1=0 for sEQ. In [1] this meant that all Y., sEQ 
had to overlap or surround 7L1.  Here one cannot always infer that w;s overlap or 
surround 7L1  because U(7L1 ,  l¥8) =I= 1 is possible for w;s surrounded by a minus loop 
of 7L1 .  However, by a judicious choice of 7L 1  from {7L,} we can arrange for A(7L1 ,  l¥8) 
to be zero for w;s not overlapping or surrounding 7L1 • We choose 7L1  E {7L,} to be 
any X or Y whose minus loops do not surround any other X in {7L,}. Then for a Y 
surrounded by a minus loop of 7L 1  we have ID= 0 in 5�_/Y). When ID= 0, changing 
p from 1 to 0 has no effect. Therefore U(7Lp l¥8) = 1 and A(7L1,  l¥8) = 0. 

The number of w;s with I �I = N that overlap or surround 7L1  is bounded by 
jZ1 I e0<1lN. This combinatoric factor and the sum over {X,.} in (5.37) are controlled 
by the second source of convergence : exponential decay of 5\glp(?L) with liZI . We 
need the bound (5. 1 3) with 5�lp(7L) replacing Q(7L). Using (5.14), we see that the 
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bound holds for e(�). The ratio Q(\Y)jQ(\Y+ ) in (5.27) is bounded by 1 by (5. 1 5) if 
u r = t 1 and h = 0 in V. 

For cases when u ::j= l, r ::j= l, t ::j= l, or h ::j= O in V, we do not have a bound on 
Q(\Y)/Q(\Y+). However, the expansion of Sect. 3 was designed so that u, r, and t 
differ from 1 only in regions not surrounded by minus contours. More precisely, 
terms in I with minus contours around regions with u 9= 1, r 9= 1, or t 9= 1 are 
multiplied �y 0 = TI ub. We need h 9= 0 only in regions with 

a
a
· bonds or a

a 
b:dist(b,!)�L 1 t 

lines. Therefore, we may take g(�) 0 without affecting the expansion if� has a 
minus contour surrounding regions with u 9= 1, r 9= 1, t 9= 1, or h 9= 0. This implies 
that S�lp{�) = O whenever the bound on Q(\Y)/Q(\Y+ )  is not available. 

In all cases the bound (5. 13) holds for S�lP(�). Convergence of the expansion 
(5.37) and Theorem 4.1 now follow as in [1]. The factors in (5.1 3) associated with R 
and the U regularity accumulate in the product of S 's in (5.37) and (5.38). For fixed 
degR, any missing factors of ),b<Rzl/2 or extra factors of ), -degRz/2 coming from X's 
with ax- =F 0 are compensated by factors of e -d).- 112 from associated �'s with 
az- =F0 ::J=az+.  After contracting with w, one obtains the bound 

(R ) �  llw i iLPM (degR )J,b(R)/2eKi degR (5.40) 

uniform in A for fixed degR , or uniform in degR for M depending on A. If 6/R ) > O  
we can include a factor e- a;. · 112• For the truncated expectation (R 1 ;  R2 ), we may 
extract an extra decay e-gD(R, ,R2l, as in [1] .  This establishes the bound (4.13) of 
Theorem 4. 1 . As A is finite, analyticity in u and h is immediate. Theorem 4. 1 is 
proven. 

6. Bounds on Terms of the Cluster Expansion 

This section is devoted to the proof of Lemma 5.2. We follow [20] in much of this 
section. The basic estimates on integrals such as .fxxe-Q<Eldlp come from [16] .  

Let B0 be  the set of  pairs (a,j) that enter the product [l [l in (5.7). We expand 
the product into a sum a j 

I TI th(a)a�tcj . Lf<p . 
B � Bo cr = (a,j)EB 

(6. 1) 

We define some distances (in units of l) which will be used to control the 
combinatorics. Let y be a union of !-lattice bonds, and let i (a) be the least integer in 
a, if a contains integers. Define 

d(j, y) ��� (dist( Lf j, , b) + dist(Ll  h' b))/l 

d(a) = (dist( Ll h' Lf h) + dist(Lf h' £i(a) ) + dist(Ll h' £i (a)))/l + d(j, T,) .  (6.2) 

We intend to prove that 
ars .f TI [�h(a)aa c . . LJ ] R  X e-Q(J:nZ, Z) d"'(r t s) s 2 rt J <p Z J:nZ -r ' ' 

<rEB 

� ll w i iLPM 1 (degR z) ;,<�<Rz)f2eKldegRze - cWs l 
• e-d4:<. - 1121!1+ eO( l l iZI [l e- cld(u) , 

o-EB 

(6.3) 
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where /l'/ + = /l'/ + 1 if �\(Rz) > O and /l'/ + /l'/ if o/Rz) =O. The factor ..1:'<Rz>l2 is 
replaced by A -degRz/2 if 17 is not identically + or if (6.3) is to be uniform in degRz. 
Here we have reintroduced a test function w into R2. Lemma 5.2 follows from (6.3) 
because 

L: n e-cld(a) = n (1 + e-cld(a)) 
B f; Bo aEB <1EBo 

:;::; n exp(e-cld(a)) :;o:; eO(l) IZI . (6.4) 
asBo 

We have used the fact that 

L e-cld(a) :;::; L L; 0(1)e-cld(a)/2 
aeBo it i2 

:;::; L:; 0(1) :;o:; 0(1)/Z/ . 
h 

The u-factors of (5.7) can be handled with a decrease in d4 in (6.3) because 

n ub :;::; e8a). - 1/Z II I . 
b dist(b,I)�L 

The number of bonds within L of 17 is less than 8/l'/L2/F, hence (6.6). 

(6.5) 

(6.6) 

We apply the derivatives a;• in (6.3). In each term introduced by the 

differentiation let F1 be the set of bonds b such that ·a·()__ acts on some a�tcj, and let 
sb 

F2 = F8\F1• There are at most 21r1 choices of F1 and F2• This combinatoric factor 
may be absorbed into e0(1 )1ZI , so we fix rP r2 from now on. For each a = (rx,j), let Ya 
be the set of bonds such that a

a 
acts on a�tcj. We are reduced to bounding 

sb 
f [ L L TI a�cjy · L1"'] [ L TI h(cx)a�"o�tCj · L1,] 

;ftE&(Tz) {jy}yEft YE;ft _!yo-) O'EB 
· RzXr"ze-Q<rr�Z,Z)d1JY(r, t, s) (6.7) 

by the right hand side of (6.3). Here we have applied (4. 1) for a;z and expanded arc 
into its localizations jY. 

Let () index the terms in the s urns in ( 6. 7), that is, () = { { y"}, fz, {j Y} YE:ft}. Each 
time a derivative acts on Xrnz, 12 terms result. We take the supremum and include a 
factor of [2 for each such derivative. Let T(B) be the number of terms that result 
from applying the derivatives in (6.7). We take the supremum over these terms and 
let We be the resulting polynomial in 1p that multiplies x� e-Qdlp in (6.7), where x� is 
a possible derivative of Xr· We bound the 8-term of (6.7) by 

T(B) f WeX�nze-Q(l:nZ,Zld1p(r, t, s) 
(6.8) 

where p1 , p2 are dual Holder exponents. We take p1 large enough so that the 
following bound of [16] applies : 

II X�r�ze-Q(l'nZ,Z) II LP' (d1J!) :;::; (TI n(L1 1) ') e-ds4 . 1/2( 1I I + lx' ll eO( l)IZ I . ( 6.9) 
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Here n( Li 1) is the number of differentiations of X1: in the unit square Ll 1 and l x'l is 
the number of L1 1 � Z such that n(L1 1) � 1 .  

The following estimate on  derivatives o f  covariances will be used to  bound 
II We II LPt (dljl}' Recall the definitions of L(FJ, lo l ,  o( rx), and d( rx) given in Sect. 4. 
Lemma 6.1 .  Given e>O  and q E [ l , oo), there exist positive constants c, K1 such that 
for }, sufficiently small, 

I I (JYa(}" C · I I < eK•t ( "\' e - cilo l) e-clb(a>e - 2ciiTal e-<1 -e/2)t{d(o:J + lJ  
s r t  J L• = L, oeL(T �) 

· e- 4cld(")e- 2cld(j, y,) ( L e - cl lo l) e -d l ral . 
OEL(yc) 

Here the U norm is either U(Llh x Llh) or, if j1 =j2 and Yavrx =l= 0, Lq(Llh). 

(6. 1 0) 

Proof We begin by scaling distances down by a factor of l, so that Dirichlet data is 
on a unit lattice and the mass is increased to l. The Lq norm decreases by a factor of 
[4fq or [2fq, which may be absorbed into eK'1. We multiply several bounds together 
to obtain (6. 1 0). Each bound is produced by differentiating Cj with respect to a 
subset of yaurx and using the Weiner path representation for derivatives of C. See 
[ 1 5, 1 9, 20] for details. With i, i'E rx  and l i- i'l = d( rx), 

(6. 1 1) 

If d( rx) oo ( that is, rx has duplications) then o �tCj =O  because Cis linear in the t;'s. 
Similarly, 

and 
I I ()Ya(Jil c · I I e/ 1 2 < e - clb(a) e - 4cld(<T) e .. 2cld(j, Yo) 

s rt J L• = 

II (}Ya(J" C · l l e/ 1 2 < 1 1 8rac · l l "/ 1 2 < 0(1)  " e- 3cl lo l 
s rt J Lq = r J Lq = L, OEL(Ta) 

�eO(l)l ( L e-cl lo l) e- 2cliTa l  
OEL(a) 

(6. 12) 

(6. 13) 

for some c >O. Here we have used the fact that !ol � O(l)!Tal - 0(1 ). We may replace 
r, with Ya in (6. 13). Adding 1 to d( rx) with an increase in K1,  we obtain (6.1 0). 

We next estimate the coefficients in lfVa. Recall the difference between � and [np (j� : tp-derivatives act as usual, while <p-derivatives act with V( <p) replacing Q( tp) 
and then are translated to the tp-field. Let N1:(8) be the number of 1.p
differentiations of e-· Q  within L/2 of X plus the number of <p-differentiations (other 
than in R) of e-v  within L/2 of a minus spin. Such differentiations introduce at 
most factors of O(l)r 1 .  [The coefficients in V( <p) are op.112) but translation 
produces factors of O(A.- 312).] Recall that Rz contains 8� and 87 factors, each of 
which we count as one derivative. Let Ni8) be the number of differentiations of 
X1:nz (or of its derivatives). The 12 factor introduced above for each such derivative 
is absorbed into a factor eK21 that we will associate to every derivative. Let N R( 8) be 
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the number of differentiations of monomials or derivatives in Rz or of factors 
produced by such differentiations. If I' = + ,  the coefficients of R are 0(1) because 
then tp = cp. Otherwise they may be 0(1)A - degRz/2 because of the translation from cp 
to tp. Define N 0(fJ} to be the number of tp-differentiations of e-Q farther than L/2 
from I' plus the number of cp-differentiations of e-v that are farther than L/2 from 
any minus spin or that are in R. Each such differentiation introduces a factor 
O(l)A 1 12. All other derivatives act on factors produced by differentiations of e-Q or e-v, hence they introduce only 0(1) coefficients. Let the total number of 
derivatives be N(fJ). 

We now bound II Wolbl {d!p) using Lemma 9.4 of [15]. Expanding in unit 
localizations produces a factor of F at each vertex. Applying Lemma 9.2 of [15] 
for l-lattice squares introduces some additional factors of l2fqr. These factors are 
absorbed into eK21• Note that h(rx) cancels the first four convergence factors in 
(6.10). Let N(LI) be the degree of Wo in 1-lattice square Ll.  Then 

II W, II < ll wl l eK21(N(O)+ degRz) A -Nz;(8) ANo(8)/2 A. - degRz/2 
e LP1 (d1p) = LP 

. TI [e-4cld(a)e-cld(j, y") ( I e-c! [o [) e- c! [ Ya[l 
aEB OEL(y,) 

. TI [e - 2cld(j,, y) ( I e - cl[of) e- cl [y f] TI (p 1N(LI}} ! l/p , eK,N(Ll) . (6. 14) 
yep oeL(y) Ll 

The factor A- degRz/Z is absent if I' = + . 
We estimate I and I in (6.7). {y,} pe&(Tz) 

Lemma 6.2. For A small, 

and 

I TI [e-cld(a)e- cld(j, y,) ( I e - cl[of)] � eO( l ) [Zf 
{y.,} aeB oeL(y.,) 

I TI L e-cl[of � eO(l) [ZI . 
pe&(T 2l yep oeL(y) 

(6. 15) 

(6.16) 

Proof The second bound is Proposition 8.2 of [ 15]. We follow [20] for the first 
bound. The left hand side of (6. 15) is bounded by 

TI e-cld(a) I [e- cld(j,y) ( I e-,z ror)] 
aeB y £; T 1 oeL(y,) 

� TI e - cld(a) I (e-cld(j,o)e -cz ro r) 
aeB oe.P(T ,) 

� fi 0(1)e- cld(aJ � exp [I (0(1)- cld(o'))] 
aeB aeB 

� exp [I O(l)e - O( l)ld(a)] �eO(lJ IZI . 
aEB 

In the last step I has been estimated as in (6.5). 
ueB 

(6.1 7) 
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We combine Lemma 6.2 with (6.14) and (6.9) to bound (6.7) by 

I T(tl) l! wi i LPeK21(N(6) + degRz) A - N"(O) ANo(B)/2 A -degRzl2 e - cliTsl 
{jy}yEp 

. n e - 3cld(u) n e- 2cld(jy, y)e- ds?. - 1i2(11:l + lx'll e0(1 ) 1ZI 
<7EB YEft 

. n [(pl N(Ll)) ! 1/P !  eK3N(LI) n n(Ll l) !] . 
Ll Ll 1 � Ll 

(6.18) 

Here a supremum over {y,.} and jzE[ll(r2) is implicit, and A - degRz/2 is absent if 
l:= +. 

Lemma 6.3. Given positive constants d6, c ,  and K 2, there exist K4, K > 0 such that 

eK2l(N(O) + degRz) ), - N:r:(O) ),No(0)/2 n e - cld(u) fi e - cld(jy, y) 

<reB YEJk 
. e - d6A - I 2 i l r t  t- lx ' I J  � e - K4l<IBI + Ifill Ab(Rz)/2 eKl degRz (6.19) 

for A sufficiently small. For a bound uniform in degRz, Ao(Rz)/2 is omitted. Here 
IB I, lfzl are the number of elements in B, fz, respectively. 

Proof. We pin derivatives of e - Q within L/2 of l: and derivatives of Xr to the 
convergence e - d6..< - lJzqrl + lx'll. Let 9""' denote the set of such derivatives which are 
localized in /-lattice square Ll. We shall prove that 

(6.20) 

for fixed degR2. Here il is either d(iJ) or dUr' y). Taking logarithms, we need to 
show 

I (214 - cld/2) - d6A- 112 [2 I L2 � 0 .  (6.21) 
yll 

Throwing out terms of I with 214 clil/2 < 0  we bound the left-hand side of (6.21)  
yll 

by 

(6.22) 

for degR2 fixed and A small. Here we have used the fact that given j1 there are no 
more than 0(1)16 

choices for j2, a, or y such that d(iJ) or dUY' y) is less than 4/3 jc. 
For degR2 arbitrarily large (6.20) holds provided the derivatives in R2 are not 
included in 9""'. 

Every cp-derivative counted in Nr is contracted with a a�tci with d(iJ) � L/21 
because the bonds and lines in r:t. are farther than L from any minus spin 
(Condition A). Using A - 1e - cL/z � ), 112, the factor ANo(0)/2, and (6.20) applied to each 
Ll , we obtain at least a factor A 112 for every derivative applied to Xr, to e - Q, or to 
e - v. Hence the factor Ao(Rz)/2 in (6.19) for fixed degR2. For arbitrary degR2 we 
must omit this factor. 

Since deg Q = deg V= 4, we must have 
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Hence 

IBI + lftl �(N(B) - J(R2) Jx(R2)) ;� ddegR2 + 2(N0(8) + Nx(8) + N1.(8) - J(R2)) 
(6.24) 

and 

N(B) + degR2 � 2degR2 + 4 (N 0(8) + N/8) + Nr(B) - J(R2)) . (6.25) 

Therefore, 

),_{No(IJ) +Nz(O) +N>:(IJ) - b(Rz))/2 � e-K4l(jBj + I I'll e-Kzl(N(II) + degRz) eKldegRz .  (6.26) 

Note that derivatives in R2 are always counted in N 0 or N x- We have established 
an overall factor of A_(No(O) + Nz(O) + NE(e) - o(Rz))/2, so (6.26) completes the proof of (6.19). 

The next two lemmas follow closely the analogous lemmas in [15, 20]. 

Lemma 6.4. Let M(Ll) denote the number of derivatives not in Rz that are localized 
in l-lattice square Ll.  Given K3, p1 , there exist constants M 1 (degR2), K6 such that 

T(B) I] [<P1 N(Ll)Wfp, eK3N(LIJ 
LIULI 

n(Ll 1) '] 

� M  1 (degRz)eK6( IBI + If•D (I] M(A) !r . (6.27) 

Proof: Let m(Ll) = degRLI, m = degR2, and M = L M(Ll) = 21BI + 2Ift!. The number of 
Ll 

terms resulting from as many as M(Ll) + m(Ll) 4 differentiations in Ll is at most 

2(m(LIJ+4M(Lill(m(Ll) +  1 1) (m(Ll) +  15) . . . (m(Ll) +  7 + 4M(Ll) + m(Ll)) . (6.28) 

The first factor comes from expanding We in terms of 1p and the 1 1  comes from a 
possible 4 + 3 + 2 + 1 terms resulting from differentiating Q or V plus one term from 
differentiating X· We apply the inequalities 

to bound (6.28) by 

Therefore, 

(a + b) ! 
(a + b)a � aaeaeb 

(ab) ! � aab(b !)a 

2m(Al[(2m(Ll) + 10) + 4M{Ll)] !  1i424M(LI) 

� M 2(m(Ll))eM<Lil (4M(Ll)) ! 1;424M(LI) 

� M 2(m(Ll))e0< 1JM<LIJ M(Ll) ! . 

T(B)� eo< t)M f1 [M 2(m(Ll))M(Ll) !] 
LI :M(A) +m(LI) > O  

� M 3(m)e0<lJM f1 M(Ll) ! .  
Ll 

(6.29) 

(6.30) 

(6.31 )  
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Similarly, using N(Ll) � m(L1) +4(M(LI) + m(LI)) we have 

Finally, 

IT [(pl N(Ll)) ! 1/r , eK3N(.JJ] � IT [p�(.JJ N(LI) ! eK,N(.Jl] 
.J .J 

� M 4(m) eO(l JM' (I} M(LI) 't e<K3 + logr1JN(.J) 

� M 5(m)e0(l )M' (I} M(Ll) r . 
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(6.32) 

IT IT n(LI 1 ) ! �  IT (m(LI) + M(LI)) ! �M6(m) e0< 1 JM' IT M(Lt) ! .  (6.33) 
.J .J l j; .d .d Ll 

This establishes the lemma. 
Lemmas 6.3 and 6.4 yield the following bound on (6.1 8) : 

L li w ii LPM l(degRz} Ab(Rz)/2 eKldegRz e - cl lTsl e - d•-' - 1/2[J:[r 
{jy}yEft 

0 IT e-2cld(a) n e-cld(Jy, Y) eO(l )IZI (IT M(Ll) !)6 aeB YEfi Ll 
(6.34) 

with ..1:'<RzJ/Z replaced by ;_ - degRz/2 if 2: is not identically + or if (6.34) is to be 
uniform in degR2. The final lemma proves (6.3) from (6.34) and hence completes 
the proof of Lemma 5.2. 

Lemma 6.5. The foll owing boun d  hol ds independently of fz, B :  
L IT e - cld(a) IT e - cld(jy,Y) (IT M(LI) !)6 � eO( l J[ZI . 

{jy}yEfo aEB YEft .d 

Proof The sum over UY} is handled as follows : 

L IT e - cld(j,,y)/2 � IT l: e - cld(jy, Y)/2 
{jy}ye;' YEft YEft jy 

� IT 0(1) � e0(1 J IZI . 
YEft 

(6.35) 

(6.36) 

Fixing Ll = Ll h or Ll h' there are at most 0(1) ( a2 + 1) choices of y E fz with d (j Y' y) � a, 
or of j2, j1 ,  or o:, with d(o)� a. Altogether there are 0(1) ( a4 + 1) choices with both 
d(jY , y) and d(o) less than a. Hence there are less than M(LI)/2 choices of o, y such 
that 

d(o)+ d(jy, y) � (O(l)M(Ll)- 1)114 . (6.37) 

Thus there are M(Lt) /2 choices with a convergence factor e - � rl(O( l JM(LI) -l l '14 in 
(6.35). Since 

for large M(Ll), we have 

fl e - cld(uJ ITe - ctauy. yJ/2(DM(LI) !)6 � eO(l JIZi 
aeB yEfi Ll 

which establishes the lemma. 

(6.38) 

(6.39) 
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