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Abstract. We develop a method for precise asymptotic analysis of partition 
functions near first-order phase transitions. Working in a (v +I)-dimensional 
cylinder of volume L x · · · x L x t, we show that leading exponentials in t can be 
determined from a simple matrix calculation provided t � v log L. Through a careful 
surface analysis we relate the off-diagonal matrix elements of this matrix to the 
surface tension and L, while the diagonal matrix elements of this matrix are related 
to the metastable free energies of the model. For the off-diagonal matrix elements, 
which are related to the crossover length from hypercubic (L = t) to cylindrical 
(t = oo) scaling, this includes a determination of the pre-exponential power of L 
as a function of dimension. The results are applied to supersymmetric field theory 
and, in a forthcoming paper, to the finite-size scaling of the magnetization and 
inner energy at field and temperature driven first-order transitions in the crossover 
region from hypercubic to cylindrical scaling. 

1. Introduction 

Finite-size effects at first-order phase transitions exhibit a rich set of phenomena 
that have been brought to light by a number of authors [FB, P, PF]. Recent 
rigorous studies have clarified some of the issues involved with the rounding of 
the magnetization jump in a finite periodic hypercube with periodic boundary 
conditions [BK, BKM]. One may analyze the asymptotics of the partition function 
or the magnetization as the dimension, .ft', of the hypercube tends to infinity. For 
example, varying the magnetic field Jl. of the Isihg model in a neighborhood of 
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zero, the magnetization approximates a hyperbolic tangent with transition region 
of width L -d in dimension d > 1. The shape function is in fact universal for any 
two-phase system. This is due to the fact that the partition function is essentially 
a sum of contributions exp (JlM ± Ld) from the two phases, where M ± are the infinite 
volume magnetizations of the plus and the minus phase, respectively (for the Ising 
model, M _ = -M + ). The logarithmic derivative of the sum produces the 
characteristic tanh shape. 

In this paper we consider systems in cylindrical (v +I)-dimensional periodic 
boxes having dimensions L x · · · x L x t. A new set of phenomena will come to light 
as we investigate the joint asymptotics as L, t tend to infinity (under the limitation 
ve-1 ;£ 1). Such geometries are of interest when studying the lowest eigenvalues 
of a quantum mechanical Hamiltonian. (A v-dimensional quantum system can 
frequently be rewritten as (v + !)-dimensional classical statistical mechanics, with 
t = {3, the inverse temperature.) It is particularly interesting to see how the shape 
function crosses over from the hyperbolic tangent (found when L = t -+  oo) to the 
shape characteristic of one-dimensional systems (expected when t -+  oo before 
L-+ oo ). The latter shape may be found by computing the largest eigenvalue of 
the transfer matrix of the one-dimensional Ising model, 

(1 .1) 

and taking its logarithmic 11-derivative near J1 = 0. 
For systems describing the coexistence of two phases related by a symmetry, 

Privman and Fischer developed a heuristic theory of crossover finite-size scaling 
which predicts a crossover from hypercubic to cylindrical scaling when t diverges 
with L like �u where 

( 1 .2) 

is the inverse mass gap at the transition point, u is the surface tension between 
the two phases and w is a dimension dependent exponent. Privman and Fisher 
[PF] predicted w = 1/2 for v = 1 but gave no prediction for v > 1. Brezin and 
Zinn-Justin [BZ] predicted w = (2 - v)/2 (see also [BCJZ] ). 

The theory presented here starts from a detailed analysis of the microscopic 
configurations of the system. It turns out that the most important effects of the 
cylinder geometry are related to the spontaneous formation of interfaces, separating 
two different phases above and below the interface. Rewriting the periodic partition 
function as a weakly interacting gas of such interfaces, and using renormalization 
group ideas to control this interaction, we will be able to reduce the partition 
function to the partition function of an effective one dimensional spin system. As 
a result, we are able to calculate the partition function asymptotics of a system 
describing the coexistence of N phases (not necessarily related by a symmetry) in 
terms of a N x N symmetric matrix. 

Our results conform, in the Ising case, with th-e picture developed by Privman 
and Fisher [PF] for crossover finite-size scaling. Our aim is to put crossover 
scaling on a rigorous footing, to treat a wide class of N-phase systems, and to 
give concrete estimates on the deviations from ideal scaling behavior. In addition, 
we determine the exponent w = w(v) in the relation (1 .2). We will show that at low 
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temperature, 

w = 
{ 1 /2 if v + 1 = 2 

0 if v+ 1>2, 
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( 1 . 3) 

confirming thus the prediction of Privman and Fisher for v + 1 = 2, and correcting 
the prediction of Brezin and Zinn-Justin for v + 1 > 3. We also determine that the 
constant is 1 /2 at low temperature if v + 1 > 2; it is not universal in v + 1 = 2 
dimensions. 

Main Results. We now state two theorems, one relating the partition function 
with periodic boundary conditions to the partition function of an effective 
one-dimensional model, and one relating the off-diagonal matrix elements of the 
corresponding transfer matrix to the string tension of the original model and to 
L. We defer to Sect. 2 a description of the class of models to which the theorems 
apply. Essentially we need a contour or cluster representation with a Peierls 
condition, translation in variance, and in variance under reflection in the t-direction. 
Thus our results apply to perturbed Ising models at low temperature, to large q 
Potts models [LMMRS], to large N lattice Higgs models [BFW] and to continuous 
spin systems and quantum field models near first-order transitions [I, JW1 ]. The 
notation is as follows: Zr•r(V) is the periodic partition function in volume 
V, I V I = Dt, p. is an (N - 1 }-vector of parameters driving transitions amongst N 
states, p.* is the coexistence point, f(p.) is the free energy density, and r is the 
parameter in the Peierls condition ( r = p for the Ising model). It is assumed through
out that L, t are positive integers. 

Theorem A. There are C4 functions fq (p.) � f(p.), q = 1, . . .  , N, agreeing with f(p.) is 
and only if the corresponding phase is stable, such that the following statements are 
true provided r is sufficiently large and IP.- p.* IV �  1 .  

(i) There exists a n  N x N symmetric matrix M such that for all t � v log L and for 
O � k � 4, 

(ii) 

(iii) 

I_!_(Z (V) - Tr M1) 1 :$ e -t1VIe -0<•>t 
df.i per - ' 

l::k (L -vlog Mqq + fq (p.)) l � e - <•-O( l ) )L, 

�
d
�k Mpq (L) I � e-<t+•-O( l ))L' if P =1- q. 

( 1 .4) 

( 1 . 5) 

( 1 .6) 

This theorem reduces the determination of the asymptotics of Zper(V) to a 
calculation of the eigenvalues of an N x N matrix M .  For N = 2, this matrix 

resembles ( 1 . 1 ) with ±p. -+ (p. - p.*)E�� (p.* ± ) and e-fl replaced with something of 

the order exp ( - O(r)V). If the original model has a positive transfer matrix T, as 
many models of statistical mechanics do, 

00 

zper(V) = L A.:. i = l 
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where A1 � A2 � • • • are the eigenvalues of T. Theorem A then implies that the first 
N eigenvalues ofT are just the eigenvalues of M, and that A1 � e-O<•>A1 for the 
remaining ones. For these models, a bound of the form (1 .4) therefore remains 
valid for t < v log L as well. 

The next theorem relates the off-diagonal matrix elements M pq of M to the 
string tensions upq of the original model. We make several assumptions on the 
structure of interfaces, see Sect. 5. Essentially we need locality and suppression of 
defects relative to a flat interface. This makes the surface tensions u pq well defined 
and enables us to connect them with the off-diagonal matrix elements of M. 

Theorem B. Let -r be sufficiently large, p =I q, and let Assumptions 5.1 through 5.5 
of Sect. 5 be satisfied. Then there are constants 0 < b1 < 1 and Cpq > 0 such that 

M pq(L) = (1 + O(e-bt<L))e-apqL' e-f<lllL', v � 2, 

Mpq(L)=(1 +0(LT1))CpqL-112e-apqL'e-f<,.lL', V= 1 ,  L»1, 

provided IJ.t-J.t*l � e-•L/2• 

( 1 .7) 

We will see in a subsequent paper [BI2] that the crossover length �L for N = 2 is 
the inverse eigenvalue splitting at the point J.t*(L), where r _ _  = r + + . Calculating the 
eigenvalues of the 2 x 2 matrix M and using the fact that I J.t*(L) -J.t* I � e - <•-Oll))L 
due to Theorem A, the bounds (1 .4) through (1 .7) immediately imply that �L is 
given by (1 .2) and ( 1 .3). 

Using our methods, an analog to Theorem A could be proven for models with 
complex parameters or for models lacking reflection invariance. But then M would 
no longer be real and symmetric, and any subsequent analysis would necessarily 
diverge from the treatment given here. Some interesting new phenomena can arise 
(for example, Zper(V) may have zeros as J.l is varied) but we do not pursue such 
models here. 

Application to supersymmetric models. In [IJW, JW1]  it was shown that the weakly 
coupled two-dimensional two-component Wess-Zumino models admit a contour 
expansion of the type required for Theorem A. In fact if we consider antiperiodic 
instead of periodic boundary conditions in the t-direction, Theorem A remains 
valid with the same M and f. This provides an opportunity of proving a vanishing 
theorem. Let n+ (n_) be the number of bosonic (fermionic) zero-energy states for 
the quantum mechanical Hamiltonian at fixed t and finite L. The index theorem 
of [JL W] states that 

Zper(V) = n + - n_ = deg W- 1 ,  (1 .8) 

where W is the superpotential. We now prove that for these models 
n + + n_ = n + - n_, in other words n_ = O(vanishing theorem) and n + =deg W - 1 . 
(A direct proof is also possible [ JW2].) 

The argument proceeds as follows. It was shown already in [JW1]  that f = 0 
and that J.l = J.t* (i.e. each of the deg W- 1 minima of the bosonic potential leads 
to a distinct phase in the thermodynamic limit). Hence the condition 1 J.l - J.l* 1 V � 1 
holds for all L and we have N = deg W- 1 .  Applying Theorem A to the periodic 
partition function Zper(V) = N and letting t--+ oo we have that 

lim I N - Tr M'l = 0. (1 .9) 
t-+ oo 
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This is possible only if M is the identity matrix. The ordinary Feynman-Kac 
formula and H � 0 imply that 

n + + n_ = lim Tre-PH =lim ZAP(V), 
P-+oo t-+oo 

( 1 . 10) 

where ZAP( V) is the partition function with antiperiodic boundary conditions. 
Since Theorem A applies to ZAP( V) with the same M, we see that 

n+ + n_ =lim TrM'=N, ( 1 . 1 1) 
t-+ 00 

and the vanishing theorem is proven. 
Actually f = 0 and Jl = JL* follow from the asymptotics of this paper as well. 

One needs to use Theorem 2.2 below, which admits for the possibility that 
I JL- Jl * I > L- •. Then one gets estimates similar to ( 1 .4), only the matrix M may 
be of lower rank. Nevertheless ( 1 .8) is incompatible with any possibility except 
f =0, M =I, rankM = N =deg W -1. 

Outline. After definitions and precise statements of results in the next section, we 
develop the partition function asymptotics in Sects. 3 and 4. Section 5 is devoted 
to a detailed surface analysis relating M to the surface tension in a neighborhood 
of JL*. Section 2 also contains a brief summary of the ideas used in the proof of 
Theorem A and Theorem B. 

2. Definitions and Main Results 

We consider models defined in a ( v  + 1 )-dimensional cylinder V =A x T, where 
A is a v-dimensional torus with sides of length L in each direction, and T is a 
one-dimensional torus of length t. We assume that the model allows for an 
expansion into excitations Y of N different ground states q eQ = {1 , . . .  , N}, with 
real ground state energies eq and small activities p(Y)eJR for the excitations 
(henceforth called contours.) To make this precise we make the following 
definitions. 

A contour is a pair ( Y, q (  ·) ) where Y is a connected union of unit cubes c with 
centers in zv+t and ( q ( ·) )  is an assignment of labels q( F) eQ to the boundaries F 
of the components C of yc = V\ Y. Y is connected using shared v-dimensional 
faces as a criterion for connecting two cubes of Y. As a subset of V, Y is considered as 
an open set obtained by taking the closed union of cubes in Y, and deleting the 
boundary of the resulting set. To simplify formulae, we use the symbol Y to denote 
the pair ( Y, q (  ·)) as well as the region Y. To each contour Y we assign an activity 
p(Y) eJR which is translation-invariant and invariant under reflections with respect 
to the planes A x t0 and satisfies the following bound for some large r: 

lp(Y) I  � e-<<+eo>IYI (2. 1 )  

Here I Y I denotes the volume of Y and e0 i s  defined as the energy of the lowest 
ground state, 

(2.2) 
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An allowed configuration of our system is a collection, { Ya}, of non overlapping 
(i.e. sharing no common cubes) contours with compatible boundary labels. The 
compatibility is determined by the requirement that any connected component of 
V\ U Ya has constant boundary conditions. Given a collection of contours, we a 
finally attach energy densities to the regions occupied by each phase of the model. 
A connected component of V\ U Ya that has boundary condition m is considered a 
to be part of Rm, the region "in the m-th phase." Thus we have partitioned V\ U Ya a 
as U Rm. Note that the collection { Ya} uniquely determines the regions Rm, except 

m 
for the case where { Ya} is empty, which corresponds to the N different cases 
I Rm I = I VI c5mq' q = 1, . . .  , N. Associating the energy density em with the region Rm, 
we get the expression for the partition function: 

N 
zpe.(V) = L flp(Ya) n e-em!Rml. 

{f,) a m= 1  
(2.3) 

The connection between this partition function and the Peierls contour picture of 
spin systems is clear- we have just replaced sites with cubes and thickened contours 
to include neighboring cubes. 

Next we introduce additional real parameters {J.l;} on which the activities p 
and the energies eq may depend. There should be at least N - 1 such parameters, 
and we need a degeneracy-breaking condition. Namely, we suppose that the matrix 

E = ( �(eq - eN)) (2.4) OJ.l; q, i = 1, ... ,N-1 
is nonsingular. We further assume that p and eq are C4 functions of 
J1 = (/11, ... , J.lN _ d satisfying the bounds 

���:��ck, 

ldkp(Y)I < c -<r+eo>IYI and dJ-l = ke , 

II E-111 a")= max L I(E-1);q l � const < oo, i q 

(2.5) 

(2. 6) 

(2.7) 

where the constants are independent of rand k: { 1, . . .  , N - 1}--+ {0, 1, ... } is a multi
index of order lkl = 'f.k; between1 1 and 4. We also assume that 

and some J.lo E JR.n- 1. 
eq(/1 = J.lo) = eq(J.l = J.lo) for all q, ijEQ (2.8) 

Before stating the results proven in this paper we summarize the main facts 
which are known about the finite-size behavior in cubic or nearly cubic volumes V 

1 Following [BK] we take derivatives up to 4'h order. There it was used to evaluate the location 
of the maximum of the susceptibility, see [BK], Sect. 4 
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(see condition (2. 1 1)  below). We introduce the free energy 

f(/1) = - lim -
1 

log ZP.,( V, /1) 
v-z•+•l VI 

and the finite-volume order parameter 

. 1 d 
M�.,( V, Jl) = jVi d fl

/og Zper (V, Jl), 
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(2.9) 

(2. 10) 

where we changed our notation with respect to (2.3) to make the dependence of 
Z •• (V) on 11 explicit. The main result of [BK] can then be summarized by the 
following theorem (the construction of the functions fq mentioned in the theorem 
is sketched in Appendix A). 

Theorem 2.1. There exist four times d ifferentiable, real-valued functi ons fq(Jl), q = 
1, . . . , N and a c onstant b0 > 0, such that the foll owing statements are true when r 
is large en ough and 

IVIexp ( - b0r min {L, t } )  � 1 .  (2. 1 1 ) 

(i) f( /1) =min fq(Jl) .  q 

(ii) l:�k (fq( /1) - eq(Jl) ) , � O(e - tbo) if lkl � 4. 

(iii) lzp.,(v, /1) _ � e -I.<�t>IVI ' � e-I<�t>IVIe - botmin {L,t} . 

(iv) l:�k ( M per(V, !1)- � Pq( /1) Mq( J1) )I � e -botmin{L,t), 

where lkl � 3, Pq( /1) = e-I.<�t>IV{ �e-Im<�t>IVI) -1, and Mq(Jl) = - dfq( /1)/dfl. 

Remarks. 1 .  Due to Theorem 2.1 (ii), the matrix 

(2. 12) 

obeys a degeneracy removing condition of the form (2. 7) as well. As a conse
quence, there is exactly one point 11* such that fq(Jl) = f(/1) for 11 = fl*· Using 
Theorem 2. 1 (iv), we conclude that the infinite volume order parameter Mper( /1) = 

lim MP.,( V./1) is a convex combination of the order parameters Mq with equal 
V-+Zv+t 
weight for all of them if f1 = 11*. 

2. The explicit form of the finite-size scaling for the magnetization and other 
physically interesting quantities is obtained from Theorem 2. 1 by expanding fq(Jl) 
around the coexistence point 11*, 

(2. 1 3) 
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3. In many models, the activities p( Y) and the ground state energies em are in fact 
analytic functions of p.. While the "truncated free energies" fq (p.) can probably be 
chosen coo in this case, we do not expect that they can be made analytic, since 
these would be analytic continuations of f(p.) across the point p.*, which are expected 
(and sometimes known, see [I] ) not to exist. 

We now proceed to the main focus of this paper, namely long volumes where 
(2. 1 1 ) may not hold. In order to state the main results and to explain some of the 
ideas behind the proofs, we need the notion of a kink. We define: a contour 
Y c V = A x  T is called short, if there is an interval I c T of length III< t = I Tl , 
such that Y c A x I (we use I(Y) to denote the shortest interval I for which this is 
true). Considering a short contour Y as a subset of V oo =A x JR., its complement 
has either one component or two infinite components. If it has two infinite 
components, it describes a transition from a state m below Y and a state q above 
Y (we sometimes emphasize this fact by a superscript mq on Y) and is called a 
kink. Given a kink Y, we denote by V(Y) the union of Y with all finite components 
of V oo \ Y and by V + (V _ ) the part of (A x I(Y))\ V(Y) which lies above (below) Y. 

The main ideas used in this paper can now be summarized as follows: in a first 
step, we rewrite the periodic partition function as a sum over kinks, resumming all 
other contours on the right-hand side of (2.3). This resummation has three effects: 
a "renormalization" of the ground state energy em for the regions between kinks 
(we denote the new, effective ground state energy by f m(L) ), a "renormalization" 
of the kink activity p(Y), and an effective interaction between two subsequent 
kinks. Neglecting this interaction, Zper(V) becomes 

zper (Y) � L n K(Y;) n e-fm,(L)IV;I, (2. 14) 
Yt, ... ,Yn i i 

where the sum goes over ordered sequences of kinks Y; = Y�'- ,m,, V; is the region 
between Y; and T; + 1 , and K(Y;) is a modified kink activity (see Sect. 3 for the 
precise definitions of fm(L) and K). In order to reduce the right-hand side of (2. 14) 
to the partition function of a one-dimensional gas of kinks, we then associate an 
open interval C(Y) of length one to each kink Y (essentially, C(Y) is the interval 
containing the middle point of I(Y) ). Approximating the nonoverlap conditions 
on ¥ 1 , . . •  , Yn by the condition that C(Y;) and C(Y; + d do not overlap we obtain 

zper(V) � L n r(C;)e-/m,(L)L'.dt;
, (2. 1 5) 

Ct, ... ,Cn i 

where Lit; is the distance between the upper end ofC ;  and the lower end ofC ; + 1 , and 

r(C;) = L K( Y)e-/m,_,(L)(IV -1-L'II -l>e-fm,(L)(IV + 1-L'II + 1>. (2. 1 6) 
y 

Here I± is the upper (lower) part of I(Y)\C(Y), V ± are the volumes defined above, 
and the sum goes over kinks Y = ym.- ,m, such that C( Y) = C; .  

Due to the assumed translation invariance of our model, r(C ;) does not in fact 
depend on the location of C ;  in T, but it does depend on the superscripts m;_ 1 m; 
of C ; .  Introducing the matrices 

r�� = lim r( cmq ) (2. 1 7a) 
V--+V00=AxJR 
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and 

F = diag (e-IAIJ ... <L> ), 

the right-hand side of (2. 1 5) can be written as a trace 
N 

zper(V) � tr(T( l )  + F Y = L A. l 1 ) (LY, 
i= 1 
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(2. 17b) 

(2. 1 8) 

where A.�l )(L) � A.�1>(L) � . . .  A.�>(L) are the eigenvalues of r< l )  + F(r< l )  is symmetric 
due to the reflection invariance of the model). There are several corrections to the 
above picture. First, we have neglected contributions from contours Y to Z er 
which are not short; together with several other approximations made in the acttfal 
proof they contribute an error term 

(2. 1 9) 
Second, we neglected the interaction between kinks Y;, Y; + 1. After a sequence of 
expansions, we are able to recover the expression (2. 1 8), up to errors decaying 
rapidly with t as in (2. 1 9). However, the matrix r< l )  becomes r< l )  + r<2>, where 
T2 involves at least two kinks, and hence is a very small change of order 
e-<2r- o< 1nu. The eigenvalues A. 1 (L), ... , A.N(L) of r< l )  + r<2> + F are therefore close 
to A.�1>(L), ... , A.�>(L). And finally, the representation (2. 14) is only a valid approxi
mation if all phases are of "low energy" in the sense that Vaq � 7r:/8, say, where 
aq = fq- min fm · m 

In order to take this last effect into account, we artificially divide the states 
between low and high energy at a point where there is a gap. Certainly there is 
some a* with Va*E[3r:j4, 1 3r:j1 6] and such that no states q lie in the range 
aqVE[a*V, a*V + r/( 1 6N)] .  If m is the first state above the gap, then 
r:* = min { r:, Vam} defines a decay rate associated with the high energy states. We 
denote the states below the gap by Q.(L); for these Vaq � 7r/8 and (2. 14) is a good 
approximation. The high energy states are so heavily suppressed that two kinks 
bounding a region in one of these phases can be considered as bound into one 
new kink. Since Q.(L) depends on Jl and we need to control J,t-derivatives, we 
should relax these definitions slightly to allow for overlapping neighborhoods in 
which Q.(L) is independent of Jl. 

Repeating this process for all high energy volumes V;, one obtains a 
representation of the form (2. 14), where the high energy have disappeared, but 
some of the kinks Y; are actually molecules of several kinks. These terms are 
O(e- <2r- o< 1>>L') and so can be absorbed into r<> 1 ). Thus (2. 1 8) is valid with F< l )  + F 
replaced by the IQ.(L)I x IQ.(L)I matrix 

(r< 1> r<2> F ) pq 
+ 

pq + pq p,qeQ5(L)' (2.20) 

and the approximation there means neglecting terms of order ve- <r•-oo>>re- !lVI. 
We summarize our results in the following theorem, leaving its proof to Sect. 3 

(where we analyze the interactions between kinks) and Sect. 4 (where we reduce the 
partition function to an equivalent one-dimensional system and break it down 
into product form (2. 18)). 

Theorem 2.2. Let r: be su fficiently large. F or each L, there exists a r:*E[3r:j4, r:) and 
c orresp onding l ow energy phases Q.(L). For p, qEQ.(L), there are functi ons r pq(L) and 
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fq( L)forming a s ymmetric matrix r and a diagonal matrix F = diag { exp (- V fq( L) ) } .  
Letting .A.1(L) � · · · � .A.N(L J( L) denote the ( possibly repeated) eigenvalues ofF + r, the 

following statements hold provided I k I � 4 and 

(i) as ymptotics in t: 

1:;k[ zp.,W>- :�: ..tiLYJI �e -fiVIe - <r•-o<1>>t , 

(ii) com parison with L = oo: 

l::k (fq( L) -fq) l � e-(r-0( 1 )JL, 

(iii) one -kink estimates on r : 

1.!_ r ( L> I � e - (f +r-0(1))£ '. 
dJJ.k pq -

(2.21 )  

(iv) Let r(l>( L) be the one-kink matrix defined in ( 2. 17a). Then for p, qEQ .(L), 

l:;k [ Tpq( L) - T�i( L) ] I� e-fVe- (2r-0( 1 ) ) (V- 1/2J. 

(v) Let Ay>( L) � · · · � .A.�<�>( L) be the eigenvalues ofF + r <0. Relabeling if necessar y, 
suppose that Q.(L) = { 1 ,  . . .  , N(L) }  and f 1 ( L) � · · · � f N<L>( L). Then A11( L) satisfy 

I.A.a( L) _ _.t�1l( L) I � e -fL '- (2 r- 0(1J) (L '-1!2 J, 

I .A.,iL) - exp ( - fa{L) E) I � e - <J+ r-O(l))L'. 

Remarks. 1 .  Statements (v) follow from (iv) by perturbation arguments. Similar 
statements hold for JJ.-derivatives (with possible relabelings) but will contain small 
denominators if there are near-degeneracies in { .A.�1>(L) }  or {f11(L)} .  These statements 
show that a one-kink calculation is accurate up to two-kink effects. This of interest 
when combined with our asymptotics for T�i( L) in terms of surface tensions 
(derived in Sect. 5). 

2. Since .A.1( L) is close toe-f t <L>v , and since f1( L) = f + e - <r-O(lJJL we have that ( -fL') + 1 :
1( L) 

- � exp (e - <r-0( 1)JL) � 0 (1) .  (2.22) 

We conclude that the bounds of Theorem 2.2 remain valid if the factors e -!/VI or 
e-fv on the right-hand sides of (i) (iii), (iv) and (v) are replaced by .A.1( LY or .A.1(L), 
respectively. Another consequence of (v) is the positivity of .A.,iL) for all a. 

3. Theorem A follows from Theorem 2.2 since I jl- JJ.* I V �  1 implies that aqV � 
0 (1 ). Then by construction Q.(L) = { 1 , . . .  , N} .  Thus we may take M = F + r. 

Theorem 2.2 establishes a foundation for an analysis of scaling behavior of 
quantities such as magnetization. The following theorem describes what we know 
about the periodic magnetization M per(V, JJ.) defines in (2. 10). 
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Theorem 2.3. Under the same c onditi ons as in The orem 2. 2, let 

and 

Then for 0 � k � 3, 

. d 
M�(L,t-t) =L -v-logA. .. (L) 

dJl; 
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(2.3) 

(2.24) 

1:;k[ M�er(V,t-t)- � M�(L,t-t)P .. (V,t-t)J I �e-<<*-O(lllt. (2.25) 

This result is an immediate consequence of Theorem 2.2. The interpretation is 
that each eigenvalue contributes M� to the magnetization, but only as part of a 
convex combination determined by the P ... The largest eigenvalues receive the 
greatest weight, particularly for large t. In the cylindrical scaling regime, t � oo, 
the P .. trivialize to 0 or 1 while theM� scale. In the block regime L,., t �  oo, the 
M� are constants while the P .. scale. In the crossover regime both quantities scale 
nontrivially. 

The next set of results represent an attempt to relate the off-diagonal matrix 
elements r pq(L) to the surface tension u pq between phases p and q, and to exhibit 
the dependence on L. These results depend on some additional assumptions on 
the structure of kinks separating to phases. Essentially we need that the kink 
activities factorize into contributions from each local excitation of the surface 
separating the two phases (Assumption 5.1). Each such contribution should decay 
exponentially in the size of the excitation (Assumption 5.2) and should depend on 
t-t in a reasonable manner (Assumption 5.3). Furthermore, in dimension v + 1 = 2, 
we need positive activities of excitation activities (Assumption 5.5). All these 
assumptions are reasonable for finite-range models of statistical mechanics at low 
temperature. The remaining Assumption 5.4 is a strict form of a triangle inequality 
for the surface tensions. Needed only if N > 2, it allows us to neglect two-kink 
effects in comparison to one-kink effects. Thus it guarantees that r pq(L) � r ��(L) 
(Proposition 5.3). 

Theorem 2.4. Let r be su fficiently large and assume that Assumpti ons 5.1 thr ough 
5.5 are valid. Define a( t-t) = max { aq(t-t),ap(Jl) }. Then the foll owing statements are true 
for a suitable c onstant b 1 > 0, p =F q and L > 1. 

(i) If the phases c orresp onding t o  p and q are stable (i.e. a(t-t) = 0) 

r pq(L) = (1 + O(e-b,tL))e-apqL'e-/L', v � 2, 
rpq(L) =(1+0(L-1))CpqL-1'2e-apoL'e-fL', v =1, L»1, 

where C pq > 0 is a c onstant. 
(ii) F or 1 � k � 4 and a(Jl)V � 0(1), 

l dkrpq l < eO(l)Lr 
dJl k = pq• 

(2.26) 

(2.27) 
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(iii) For v � 2, 1 � k � 4 and a(JI.)V � 0(1) the bound (2.27) may be sharpened to 

ld:::q l � O(Vk) r pq · (2.28) 

(iv) For v = "t, k = 1 and a(JI.) L� 0(1) the bound (2.27) may be shar pened to 

�d�:q l � O(L) Tpq{ 1 + i fP � fq i ew<r"•'> }
· (2.29) 

This theorem is proven at the end of Sect. 5. 

Proof of Theorem B. The above bound (2.26) gives Theorem B for J1. = Jl.*. For 
I JI.- Jl. *iV � e - •L I2, a(JI.)V � 0(1) and we may use Theorem 2.4 (ii). Integrating the 
bound (2.27) from Jl. *  to Jl., we obtain the bound 

Tpq(JI.) = Tpq( JI.*)( 1  + e0 0llO( I JI.- Jl. *i } ) = Tpq(JI.*)(1 + O(e - <•12 - o <tllL) ). (2.30) 

Together with the bound (2.26) and the fact that i f (JI.) - f(JI.*) i  � O(e - •L12) this 
implies Theorem B. 

3. Kinks and Contours 

The goal of this section is to rewrite the periodic partition function as a sum over 
"kinks" (describing transitions between regions dominated by different ground 
states) and to study the interaction between these kinks. 

Before defining the notion of a kink, we divide the set of contours in V = A x T 
into long and short contours, where a short contour is a contour Y for which one 
may find an interval I c T of length I ll < t such that Y c A x  I (a short volume 
W c V is defined in the same way). Obviously, each short contour Y may be 
considered as a contour in the infinite cylinder V 00 = A x JR., and V 00 \ Y has either 
one or two infinite connected components. In the first case we call Y an ordinary 
contour, and in the second case we call it a kink. 

In order to continue we need some notation: Given a short contour (Y,q( ·)), 
we define its interior, Int Y, as the union of all finite components of V 00 \ Y, introduce 
V(Y) = Yu int Y, and let Intm Y denote the union of all components C of Int Y 
for which q( ·) takes the value m on oC. If Y is an ordinary contour, V oo \ Y has 
only one infinite component. We call its boundary the external boundary of Y 
and call Y a q-contour if q( ·) = q on the external boundary of Y. We sometimes 
emphasize the fact Y is a q-contour by a superscript q on Y. If Y is a kink, one 
of the infinite components of V 00 \ Y contains the set A x [t0, oo) for all large enough 
t0 � 0, while the other one contains the set A x  ( - oo, - t0 ] . We call the boundaries 
of these components the external boundaries of Y and use o + Y to denote the 
boundary of the infinite component which contains A x [t0, oo) and o _ Y for the 
boundary of the component which contains A x ( - oo, t0 ] .  If q( ·) is q on o _ Y and 
m ono+ Y we say that Y describes a transition from q to m and sometimes emphasize 
this by putting a superscript qm on Y. 

Finally, given a set of nonoverlapping ordinary contours { Y .. } we say that Y 
is an external contour of { Y .. } if it is not contained in Int Y .. for any at. 



Finite-Size Scaling and Surface Tension in lD Systems 247 

Given these definitions we now rewrite Zper(V) as 

Zper(V) = L' llp(Ya)ll Zm(Vm), 
{Y,) "' m 

(3.1) 

where the sum L:' goes over sets { Y"' } containing long contours and kinks, but no 
ordinary contour. As before any component of V\U"' Y"' has constant boundary 
conditions. V m denotes the union of those components which have boundary 
condition m, and (for any W c V), Zm(W) is defined by restricting the sum in (2.3) to 
a sum over collections { Y"' } of ordinary contours Y c W whose exterior contours 
are q-contours. If we = V\ W is not connected, we do not allow contours whose 
interior intersects we. 

Obviously, the interaction between different kinks (and between kinks and long 
contours) is given by Zm(Vm). We therefore have to study the behavior of Zq(W) 
for W c V, q = 1, . . .  , N. Fixing, for a moment, the external contours in the 
representation (2.3) for Zq{W) and resumming all the others we obtain a factor 

ll Zm(Intm Yq) for each external contour. This yields the expression 
m 

Zq(W) = L e
-eqJW\u,V(Y,)l n [p(Y! ) n Zm(Intm Y! )] , (3.2) 

{Y�}ext a m 

where the sum goes over sets {Y ! }ext of mutually external q- contours (that is V(Y J 
and V(Ya) have no common cubes for ot: i= a) . We divide each Zm by the 
corresponding Zq and multiply it back again. Iterating this procedure we get 

Zq(W) = e - eq J WI L n K(Y:), (3.3) 
{Y�) "' 

where the sum goes over sets { Y:} of q-contours in W with the only restriction 
that Y: and Y: have no common cubes for ot: i= a; and K(Yq) is defined by 

K( Yq) = p( Yq)eq I yq I n Zm(Intm Yq)
. (3.4) 

m Zq(lntm Yq) 

Note that (3.3) is purely formal at this moment since Zq(lntm Yq) might be zero 
for some contours Yq. The main content of the next lemma is that this does not 
happen if 

(3.5) 

He re n denotes the orthogonal projection from V = A x  T onto A, l n(Y) I is the 
v-dimensional volume of n( Y), and 

(3.6) 

where f = f(JJ.) is the free energy and fq = fq(Jl.) are the functions introduced in 
Theorem 2.1 (see also Appendix A). Since the proof of this lemma is essentially 
the same as that of Lemma A.2 proven in the appendix we omit it here. 

Lemma 3.1. There is a constant b0 > 0 such that the following statement s are true 
provided r is large enough: 
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(i) For all l k l  � 4, all q eQ and all short volumes W 

l:;kzm(W)I � const I Wlke-fiWI+ Iawl exp {I Wle -botL}. 

(ii) If yq fulfills the condition (3.5) and lkl � 4, 

1:�k K(Yq) l � e - <t-a9 1 �t(Y9JI- OOJJIY9I. 

(iii) If W c V is chosen in such a way that all q-contours in W fulfill the condition 
(3.5), then Zq(W) =F 0 for all W c W and 

Zq(W) = e-eqiWI L n K(Y:). 
{Y�) « 

Remark. The factor exp{ I W i e - bo<L} in Lemma 3. 1 ,  which is not present in the 
corresponding lemma in the appendix comes from the topologically nontrivial 
contours which are not present for the volumes considered in the appendix. Note 
I Wle-Lbo< can be bounded by loW I if W is a short volume with connected boundary 
(as it is always the case of W = Intm yq for some ordinary contour Yq), since 
IWI � loWIIn(W)I � loWI Lv. 

We are now able to analyze the interaction between kinks in (3. 1 ). In a first 
step we separate zP • .(V) as given by (3. 1 )  into a sum containing no long contour, 
henceforth denoted z ••• (V), and a sum containing at least one long contour, Zbig(V) 

Zper(V) = Zbig(V) + z ••• (V). (3.7) 

In the next step we prove a lemma bounding Zbig(V): 
Lemma 3.2. 

provided I k I � 4 and 

Ve - (t-0( 1) )t � 1 .  

Proof. We rewrite Zbig in the form 
00 00 1 1 

zbiiV)= L L '' L np(Yi) L Zm(Vm), n= 1 m=O n .  m .  r,, ... ,Yn+m ' M 

(3.8) 

where Y1, . . . , Yn are long contours and Yn+ 1 ,  . . . , Ym+n are kinks. Inserting 
Lemma 3 . 1  (i) and using the fact that I f - e0 1 � 0(1 )  to bound 

n lp(Yi)lfl e -fiVmi + IBVml = e - IIVI n lp(Yi)lefiYd+ IBYd 

we obtain that 

i m i 
� e -!lVI n e - (t - O(l) JIYd, 

i 



Finite-Size Scaling and Surface Tension in lD Systems 249 

Releasing the compatibility constraints on the contour sum and bounding ue -Lrbo 
by one we obtain 

IZhig(V) � const et-JIVI{exp( L e-<r- O(ll liYI) - 1 }exp( L e-<r - O(ll liYI) 
Y:IYI�t Y:IYI�L' 

� const e -!IV let { exp (tVe - <r- O(lJ >t) - 1 }  exp (tVe - <r- OO>lL'), 

which may be bounded by ve-fiVIe-<r- O<ll lt if the condition (3 .8) is true. The 
bounds on derivatives are similar and left to the reader. 0 

Next we consider z, •• (V). Obviously, z, •• (V) can be rewritten as 

z, •• (V) =.to � r,.�,Yn 
)J Zq(V;J(VJ ll [p( Y;) I] Z m(Int m Y;)] . ( 3 .9) 

where the sum goes over ordered sequences of nonoverlapping kinks Y1o . . .  , Y. 
such that for each iE{ 1 ,  . . .  , n} ,  o + Y;uo _ Yi +l is the boundary of a maximally 
connected component V; of V\U { Y;ulnt Y; } (we identify Yn +l with Y1 and also 

i 
require boundary condition compatibility on oY;, that is q(V;) = q and q(V;_ d = m 
if Y; = Y�q). The factor 1/n compensates for the fact Y1 , . . .  , Y. and Y; + 1, Y; + 2, . . .  , 
T;_1, Y; correspond to the same set of kinks in the original sum (3 . 1) and should 
be interpreted as 1 if n = 0 (in which case there are actually N terms Zq(V), 
q = 1 ,  . . .  ,N). 

Leaving the discussion of the general case to the end of this section, we will 
for the moment assume that all states qEQ lie below the gap introduced in Sect. 2. 
As a consequence, 

( 3 . 10) 

for all qEQ, (3 .5) is fulfilled for all ordinary contours in V, and Zq(W) can be 
analyzed by a convergent cluster expansion for all qEQ, all W c V and all 
V =Ax T, uniform in t =I T l . We conclude that the finite L free energy 

fq(L) =- lim -
1 

logZq(V) 
v�vx=AxiRIVI 

(3. 1 1) 

exists and obeys a bound 

I [q(L)- [q l � e - <r - aqL'-O(l) )L. ( 3 . 12) 

In addition, for each V; contributing to (3 .9) 

logZ q( V;) = - [q(L)I V; l + L kq(X), ( 3 . 1 3a) 
X 

where the sum goes over connected subsets X c V oo intersecting o V; = o + Y; u o _ Y; + 1 
and 

lkq(X)I � e-<r-aqL'-O(l) ) IXI. ( 3 . 1 3b) 

Setting g( o + Y;) and g( o; Y; _ d to the sum of all terms associated to the lower and 
upper boundary of V;, respectively, we may rewrite 

log Zq(V;) = -/q{L)I V; l  + gq(o + Y;) + gq(o _ Y; + 1 ) + gq(Y; , Y; + d. ( 3 . 14) 
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where the interaction term gq( Yi, Yi+ 1) can be written as a sum over connected 
sets X intersecting both o _ Yi+ 1 and o + Yi. As usual 

(3. 1 5) 

and 

lgq( Yi, yi+ 1)1 � min { I o + Yd, l o- yi+ll } e - <• - a•L'- 0(1) ) (dist(Y, , Y,+ • >+ 1>, (3 . 1 6) 

where we used (3. 1 3) and the fact that the number of connected sets X of size 
lX I = s which intersect a given set M can be bounded by I M i const". Combining 
(3.9) and (3. 14) we get 

where we used the abbreviations 

K(Ymq) = p(Ymq)ellm(il-Y•m)+gq(il+Ym•)LZ,;;(Int,;; ymq) (3. 1 8) 
rii 

and qi = q(Vi). 

Remarks . 1 .  The leading term in n in (3. 1 7) comes from the sum 

L Zq(V), 
qeQ 

and should therefore be written as 

L exp { -fq(L) I V I + 0(1 V l e - t<• - a•L'- 0<1> >) } . 
qeQ 

Assuming that a condition of the form 

ve- <•18 - 0(1) ) 1 � 1 (3.8') 

is true, I V l e - t<• - a•L'- 0<1> > � 1 and the sum LZq(V) differs from the corresponding 
q 

term Lexp { -fq(L) I  VI} by a number which may be bounded by 
q 

L e - J.<L> IVI I exp { 0(1 V l e-t<• - a.L'- 0(1l l) } - 1 1 � L e -J.<L> IVI O(I Vle - t<• - a.L'- 0(1) )) 
qeQ qeQ 

� ve- t(< - 0(1) ) L e<I.- Jq(L) ) IVI e - JIVI 
qeQ 

� Ve- t(<-0(1) )e - J IVI . 

We have left out this correction in (3. 1 7) and assume it has been absorbed into 
Zb;g{V). 

2. By Lemma 3. 1 

IZ,;;(Int,;; ymq) l  � exp ( - f l int,;; ymq l + 0(1) 1 ymq l )  

� exp (-f(L) I Int,;; ymq l + 0(1) 1 ymq l ), 
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where we used the bound (3. 12 ) and the fact that l int,;; ymq l �VI ymq l to replace f by 

f(L) = min fq(L) (3. 19 )  
q 

in the last step. Combining the above bound with the a priori bound on p ,  the 
bound (3. 1 5 ), and the fact that l eo-f(L) I 0 ( 1 )  one obtains that 

I K( Y) I � e-<•-O<l»IYie-f<L>IV<Yll. 
Generalizing this to derivatives we get 

i:;kK(Y) i � e - <•-O(l) ) IYie -/(L)IV(YJI (3.20) 

for all multi-indicates k of order l k l  � 4. 
We finally consider the case where some of the sets meQ lie above the gap. 

Since Zm(Vi )  can in general not be analyzed by a convergent expansion for such 
an m, we leave it as it is and replace (3. 1 7) by 

(3. 1 7' )  

where we used the superscript u ( = unstable) for the volumes Vi corresponding to 
states q which lie above the gap and s ( = stable) for all others. That is V� = Vi and 
v: = 0 if q(Vi )  is above the gap while V� = 0 and v: = Vi if q(Vi )  lies below the 
gap. Obviously, we also have to change the definition of K and the interaction 
term g( ·, ·) by defining 

if m lies above the gap. 
In order to state the next lemma, we introduce, for W c V, the number t(W) 

as the size of the maximal subset S c T such that A x S c W. 

Lemma 3.3. Assume that 

(3.8") 

and that l k l  � 4. Then 

1:;k Zm(W) I � 1 Wilkie -/I WI + O(l)liJWie - t(W) (min{<,amL'}- 0(1)) . (3.2 1 )  

Proof. The proof of Lemma 3.3 is essentially identical to the proof of Lemma 5.4 
in [Bi l] .  We define an ordinary m-contour to be small if am ln(Y) I � 7t/8 and use 
the relation (3.2) to rewrite Zm(W) in the following way. Write a set { Y�} of external 
m-contours in W as {X�} u { z:}, where { Z�} denote the small contours in { Y�} 
and {X�} the large contours in { Y�}. Note that for fixed x:·s, the sum over {z:} 
goes over all sets of mutually external small contours in Ext = W\ U V(XJ. Thus, 

" 
resumming the small contours and using (3.2) a second time, 

Zm(W) = L z�maii(Ext ) n [p (X�) n Zq(Intq X�)] . (3.22) 
{X:,"lcxt " q 
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where the sum goes over sets of mutually external large contours in W and 
Z:'811(Ext) is obtained from z�ma11(Ext) by dropping all large external m-contours. 

By Lemma 3.1 (ii ), log z�ma11(Ext) can be analyzed by a convergent cluster 
expansion. Comparing this expression to the expansion off m I Ext I one finds that 

lfmiExtl + logz�maii(Ext)l � 1a ExtiO(e -•bo) + IExtle - •bomin{L,tl + 1Extle-•2bo/am , 

where the first item is the usual boundary term, the second comes from the 
topologically nontrivial excitations in Ext and the third comes from the fact 
that the large contours which are truncated in z�man still contribute to fm (the 
factor r2/am arises because each large contour has a size I Yl � O(r/am) , and contours 
are suppressed like exp( -•0(1 Yl) ) .) Using the fact that 

1aextl = 1aw1 +I 1ax:1 � 1aw1 + 2diiX:I. 
IZ IZ 

we now bound 

IZ�maii(Ext)efiExtll � exp {laWIO(e-•bo) + � 2diX:I +I Wle - •bomin{L,tl} 
·exp {-(am-e-•2bo/a'")IExtl} 

� exp {laWIO(e-•bo) + � 2diX:I +I Wle - •bomin{L,t)} 

Inserting this bound, the bound (i) of Lemma 3.1, and the bound 

lp(X,.) I � e-<• + eoJIX91 � e-<• +/ - O(e - •o•JJIX.I 

into (3. 22) we obtain 

IZm(W) IefiWI � exp {laWIO(e-•bo) +I Wle•bomin{L,tl} 

{X:-} ext IZ 

Extracting a factor 

and bounding the remaining sum as in the proof of Theorem 3.1 (ii ) in [BI 1] we get 

IZm(W) IefiWI � exp {laW I+ I Wlemin{L,t) } maxe-a'"(l - O(t- 1l liExtl n e-<•-O(lJJIX:."I 
{X:,"} IZ 

� exp { laW I0(1) + t(W) 0(1) }max e -am(l-0(•-'»IExtl n e - <•-O(ll>IX;."I , 
{X;'l IZ 

where we used the assumption (3.8") and the fact that I W I� (I aWl+ t(W)) Lv in 
the last step. Now, each time slice in A x S either contributes a smaller factor 

e-am(1-0(t-1))L' � eO(l)-min{t,IZmL'} 

to e-a'"(l-O(•-'JJIExtl or contains at least one cube in U x: and therefore contributes 
IZ 
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a small factor � e-(r-O(ll l to the product fl e-(r-O(ll liXal. As a consequence, 
a 

e - am(l - O(t - 1l l1Extl TI e-(r-O(l) )IX:;'I � e(O(l)-min{t.amL'lliSI = e(O(l)-min{t.amL'}) t(W)_ 
a 
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This completes the proof of (3.2 1 )  for lkl = 0. The proof for the derivatives is similar 
and is left to the reader. D 

Remarks . 1 .  As before, the leading term in n in (3. 1 7' ) comes from the sum 

L Zq(V), 
qEQ 

but Z q (V) � e-fo(LJIVI is only true if q lies below the gap. But for q above the gap, 

Zq(V) � e - t(r* - O(llle-!lVI 

due to Lemma 3.3 (recall that r* = min min { r, aqLv} ). We have left out this term 
qf$Qs(L) 

in (3. 1 7' )  and assume it has been absorbed into Zbig(V). 
2. The free energies fq (L) may be defined even if aqL" > 7r/8. To this end one 
introduces truncated activities K'(Yq) as in Appendix A, see Eq. (A.8 ), defines 

and takes the limit 

Z�(V) = e - e. IVI fl fl K'(Y:) , 
{Y�} a 

jq (L) = - lim -
1 

log Z�(V). 
v�v.,IVI 

The resulting fq (L) is a C4 -continuation of the fq (L) defined in (3. 1 1 )  and 

\�(f (L) - e ) \ � O(e - (r/8-0(ll lL) .  d}i q q -

The logarithm of Z�(V;) can be analyzed by a convergent expansion for all 11: 

log Z�(V;) = -fq (L) !Vd + L k�(X), 
X 

(cf. Eq. (3. 1 3a) ) with 

Finally, 

4. A One-Dimensional System of Rods 

In this section we reduce the kink partition function (3. 17 )  to an equivalent 
one-dimensional system of hard-core rods, and then obtain the product form after 
a sequence of expansions. 
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In a preliminary step we make the definition of the low energy states Q, (L) a 
little bit more precise. Given L and jiERN-1 , we chose a*EL-v [3r/4 , 1 3r/16] in 
such a way that no states q lie in the range aq(ji )V E[a*V , a*V + r/(16N)] .  We 
denote the states below the gap by Q.(L) = Q.(L, ji ) and define 

where 

r*(L , J-t) = min {•• min L�am(L , J-t)} . 
m¢Q.(L,ill 

am(L , J-t) = fm(L ,JL )- min fq(L ,JL ) q 

= am(JL) + O(e -b"L) = am(fi ) + O(L -v )  

if I JL- ji I V < 1 .  Throughout this section, ji and Q.(L) = Q.(L, ji) are fixed, 
I ll- fiiV < 1 and r* and am denote r*(L , J-t) and' am(L , J-t), respectively. Note that 

r* � (� + _
1
_) ,- 0(1 ) � 

3r 
- 4 16N - 4 

due to the above bound on am(L , J-t)- am(fi ). 
After these preliminaries we expand 

eBo(Y;,Y<+ t) = 1 + g- ( Y· y ) q , , i+ 1 ' 
where by (3 .16 ), 

(4 . 1 ) 

Each g term is considered to connect Yi with Yi + 1 .  Also, Yi and Yi + 1 are considered 
connected if the lowest point of Yi+ 1 is below the highest point of Yi . Finally, Yi 
and Yi+ 1 are considered connected if V� =f:. 0. To any connected string Yi , .  . .  , Yi+l 
are associate an interval I c T which extends from the lowest point of Yi to the 
highest point of Yi+�- Thus, I is a union of the unit intervals of T. We form the 
following activity: 

(4.2 ) 

Here the sum is over compatible sequences of kinks, Y0 , • • •  , Y1 , whose spanning 
interval is I .  The phase at the bottom of Y0 is q _. the one at the top of Y1 is q + . 
The regions V_ (V+ ) are the portions of A x  I below Y0 (above Y1 ). The term g is 
selected if it is needed to connect Yi and Yi+ 1 > otherwise 1 + g is selected. 

These new kink activities allow us to write 

Zres(V) = Zres, 1 (V) + Zbig, 1  (V), 

zres, 1  (V) = L ! L n [r1 (Ii )e-fo,(L)L' IJd] , n�O n I,, . . . ,ln i= 1 
(4 . 3 )  

where the second sum in (4 . 3 )  goes over open intervals I 1 , . . . , In such that Ii and 
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Ij do not overlap for i #-j and Zbig,1 (V) is the sum of terms where the interval 
formed by the construction above is all ofT. Each interval in (4. 3 )  is really a triple 
(1, q +, q _ ), where q + (q _ ) is an assignment of a label in Q to the upper (lower) 
endpoint of I. The interval 1; is the one between I; and 1; + 1 ; both endpoints of 
1; have the same label q;. The length of J is denoted 11 1 .  Note that q±(l) no longer 
take values corresponding to the high energy phases. 

We give bounds on r(I) by writing 

r1(J) = r\ll(J) + r\2l(J), 
where rill is the one-kink term (l = 0 in (4.2)) and r\2) is the rest. First, using the bound 
(3.20) on K, we obtain 

1 r\1l(J) 1 � e -(t -0(1JHI11-1le - (t-0(1))L' e - f(LJL'I11 .  (4.4) 

Here we use the fact that the minimum size of a kink is Lv. When we apply 
.u-derivatives to /q.(L), we bring down factors IV± I �  II IV, which can be absorbed 
into the constants- above. Hence the same estimate holds for dkr<lljd.uk. Better 
estimates should hold for r\2) since there are at least two kinks. But we have to bound 

(4.5 )  

which is Lemma 3 .3 .  (Recall that r* = min { r ,  Vam}, where am i s  the lowest value 
amongst the high energy states. )  We estimate gq using (4. 1 ), only we settle for 
a decay exp [ -(r-aqV - O(l) )t(VDJ. Then each factor exp ( -r + aqV) from 
this bound combines with exp ( -fqV) from V� is to produce an overall 
exp [( -r -f(L)V)t(VD]. Differences I /q -/q(L)IVIII are 0(1 ) 1 1 1  and are harmless. 
The parts of I not covered by this argument get their decay from K, as in the 
one-kink estimate (4.4). This includes volumes where 1 is selected in place of g. 
Summing over ¥0, . . .  , Y1 yields only another harmless exp (O( l ) l l l )  factor. 
Summarizing, we obtain 

I r\2l(J)I � e-<t* -0(1JHI11-2)e-2(t-0(1))L' e-J<LJL'I11 . (4.6) 

Derivatives of ri2l again produce volume factors from differentiating Zq(Vu) or 
fq(L), but as in the one-kink estimate they can be absorbed into the constants in 
(4.6). 

In a similar fashion we bound 
lz (V)I < - (t* -0(1)Jt �(t -0(1))L' - JIVI big,1 = e e e . (4.7) 

Since Zbig' Zbig,1 decay so rapidly in t, we may focus attention on Zres,1 which 
COl}tains the main asymptotics. 

The only obstruction to expressing Zres,1 in product form is the presence of 
rods with I l l > 1 .  In order to effectively shrink intervals to unit length, we make 
use of shrunken intervals C. We say C is a core of I if C is a unit interval closest 
to the center of I (two choices if I I I is even; all intervals are built of unit intervals 
with integer centers). Our rod activities will be functions of a pair (C, I) such that 
C is a core of I. Define 
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Here r is the part of I above C and r is the part below C. The factor 2 III 0 3 + ( - 1 )  
i s  inserted, since if I I I i s  even, two C's are possible. This activity obeys the following 
estimate: 

lr1 (C, /) I � e-<t*-aq+L'-0(1))W le-<<•-a._L'-0(1))If+ le-(t-O(l))L' e-J<L>L'. (4.9) 

Here we take a bound covering both cases (4.4), (4.6). Multiplying the energy 
densities.[q± (L) cancels most of the decay but due to the gap between the low and 
high energy phases, a decay Lir in III remains. Thus we take 

L1 = (r*- max aq(L, J.t)v)-r - 1 � -
1
- �0(1/-r). (4. 10) 

qeQ.(L) 16N 

Now we sum over the collections of pairs (C, J) in Zres, 1 :  
1 n 

zres, 1 (V) = � - L n [r1(C;,I;)e-J•,(L)L'IKd]. (4. 1 1 ) 
nii:;O n (Ct,It), ... ,(Cn,In) i= 1 

Here K; is the interval between C ;  and C;+1 . 
The next step is to expand part of the hard-core interactions between intervals, 

reducing each interval I; to its core C ; .  To this end we extend the sum over 
(C1 ,/1 ), . . .  , (Cn, Jn) to include overlapping intervals. We even permit I; to wrap 
around T; in this case the activity is obtained from the t-+ oo limit, with I; any 
interval of JR. However, we maintain the following conditions : 

(i) C ;  n C i = 0 (as open intervals) 
(ii) C 1, ... , Cn are arranged cyclically around T in order 
(iii) q+(C;) = q_(C;+d· 
In the third condition, the phase q ± (C;) are inherited from I;. In order to recover n 
Zres, 1 (V), we insert a factor 0 U(lt ,1;-+ 1), where 

i= 1 

( + 1_ )-{0 if (ltuC;)n(l;-+1uC;)#0 U I; , ;+1 - . . 
1 otherwtse 

(4.12) 

It is only necessary to enforce nonoverlapping conditions between neighboring 
intervals; the other conditions follow. 

We now expand U = 1 +A to obtain 
n 

n uut.Ii-+1>= InA. (4. 1 3) 
i=1 

For each A(It, I;� 1) present, we draw the open interval It u I;-+ 1. We also draw 
the open intervals C ; .  The union of all lines drawn breaks into connected 
components, and these components form a new system of rods. 

The activity r2(J) associated with one of these components is 
n - 1 

r2(J)= L L n [r1(C;,l;)e-J•,(L)L'IK•I]r1(Cn,Jn)L n A(.P), (4. 14) 
nii:; 1 (Ct,lt), ... ,(Cn,In) i= 1 G !£eG 

where G is a graph of lines .P =(It, I;-+ 1) compatible with J in the sense that the 
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union of intervals obtained by the above construction is J. (By (i )-(iii) above, only 
the G with every line Ut , Ji--rt ) contributes. Hence Ifl A = ( - l)n + 1 .) If I I I =  1 ,  
then n = 1 in  (4. 14), in  which case we get 

r2 (J) = I r1 (J, I). (4. 1 5) 
I:C(I) = J 

In both cases we assume q _ (/ 1 ) = q _ (J) and q + (Jn ) = q + (J). In terms of these 
activities we have 

Zres, 1 (V) = Zres, z (V) + zbig, z ( V), 
1 n 

zres, z ( V) = I - I n [rz (J;)e - /q,(L)L' I K; J ] .  (4. 1 6) 
n "?, O n J , ,  . . .  , Jn i = 1 

Here K; are intervals between components, with boundary condition 
q; = q + (J;) = q _ (I; + 1 ). As usual, Zbig, 2 ( V) is defined as the sum of terms where a 
single component encircles T. 

Evidently we have recovered our original form (4.3) for the partition function. 
The gain here is that any r2 (I) with I I I > 1 is necessarily a two-kink effect. 
More generally, we can construct rk + 1 from rk just as r2 was constructed from 
r 1. As we shall see, rk(l) with I I I > 1 is at least a k-kink effect, decreasing as 
exp ( - k(r - 0(1 ) )V) as k -+  oo, only the term with I I I = 1 is nonzero, and we have 
the desired product structure. 

Proposition 4.1. Suppose that rk satisfies the following bounds: 

" (-
1
-) l l l l!__

r (J) I ef(L)L' ::::;; e I I I = 1 (4. 1 7) 
L- L• I J I  a 1 k 

-
1 ' ' 

I l l  � 4 ll 

I I e(r* - coHII I - l lef(L)L' I I I (�) I I I I_; rk(/) 1 � e2,  (4. 1 8) 
/30, 1 1 1 > 1 � � � � 4  L I I I all 

for some c0 = 0(1 )  (independent of k). If e2 � e 1 � e - (r* - col, then rk + 1 satisfies the 
same bounds, but with e 1 -+ e 1 + 0(1 )e2e- (Ar - col, e2 -+ 0(1 )e2e 1 er* - Ar. 

Remark. By (4.4) and (4.6) r 1 satisfies the assumptions of the proposition with 
e1 = e2 = exp ( - (r - 0(1) )V). 

Proof. In the course of the proof, we will encounter derivatives of products of 
activities and volume factors at several places. All these derivatives will be bounded 
using the estimate 

(4. 1 9) 

which is easily proven using Leibniz's rule. 
As a first application we translate our assumption into a bound on rk( C, I). As 

in (4.9) we obtain 

I I  rk I I  = I I e(r* - a. + L" - co) I J +  l e(r* - aq _ L' - co) I I - I ef(L)L'(�) I l l l_;rk(C, /) I , 
(C.I) : � � � � 4  L 1 1 1 all /30 , 1 1 1  > 1 

� e2 0(1 ), (4.20) 
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where we used the fact that the volume factors produced by derivatives are cancelled 
by the corresponding part of (V I I I ) - 1 1 1 .  The unit interval estimate is unchanged 
since rk(C, C)= rk(C). 

All that remains is to bound the expansion ( 4. 1 4), remembering that I L n A I = 1 .  
The case I J I = 1 is simple, since then (4.5) applies and we have 

" (-1 -) 1 1 1 1!_ , (J) , ef1LJL' � 6  + e - (..:lt-co - 0( 1 ) ) 1 1 r I I  L... LV I J I  a I k + 1 - 1 k 
1 1 1 � 4  f.l 

� 6 1 + e - (Lit - co - 0( 1 ) ) 62 . (4.2 1 )  

We used the fact that (V I J I ) - 1 1 1  = (V) - 1 1 1  � (V I I I ) - 1 1 1 e i 1 1°1 1 J together with the fact 
that I I I � 2 in (4.20). 

The case I J I > 1 needs some care. We use the fact that there may not be two 
rk(C,C)'s in a row in (4. 14); every pair (Ci, J;), (Ci + 1 , Ji + d must interact. There 
must be at least one I I i  I > 1 and at least two I /s overall. In order to estimate 
derivatives, we bound the factor (V I J I ) - 1 1 1  appearing together with the lth 
derivative on the left-hand side of (4. 1 8) by 

( I Y +·) - I •{ 1�;· 1)"' � ( ly+·) _ , , ( 1 + I Y J, I - I J I )"' 
� ( iY ii iv) - Il l 

exp {4( iY ii i - I J I ) } 
and apply (4. 1 9). Derivatives of the term n e- f.,(L)L' I Kd produce volume factors ( I ) - I l l  
0(1 )(Vl: I Ki l ) l 1 1  which are cancelled by the corresponding factor y I dV , 

while derivatives of activities will be bounded using the inductive assumption (4.20). 
Let us categorize the remaining factors that result from evaluating a term in 

(4. 1 8) after inserting the expansion (4. 14) and the above bounds. Such a term is 
0(1)  times 

el<* - coH I J I - 1 lefiLJL' I J i exp{ 4( 1 y Ii i - I J I )} 
. n [L (V I I i l) - l l l � a� rk(C{,Ii) i ])Y e - I.iLJL' I K' I , 
1 = 1 1 af.l 1 = 1 

I 1 - 1 1 1  
where we have bounded l) Ii by  1 Ii r l 1 1. We associate factors with intervals 
as follows: ' 

intervals Ci :  efiLJL' 

additionally :  e(t* - co) (n - 1 >. 
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Now let us fix I11 ' . . .  , /�, the long rods with III > 1 , and sum over the short ones. 
Then by (4. 1 7) there results a factor 

1 + E 1 e - (r* - aL' - co)e(r* - co) I H I � 1 + E 1 eaL' I H I � eiH I  � e(<ir - co)H e - (<ir - co - 1 ), 
for each overlap interval H of the form I�+ n I�� 1 . (The two factors multiplying 
e 1 result from increasing IKI by 1 and decreasing n by 1 .) On the initial and final 
sections I11- , I�+, of length R, say, we have a factor 

4R( 1 + 
R�

1 
(r* - aL' - co)h - 4(h + 1 ) r* - co) < 4R( 1  + 2 (r* - aL' - co - 4) (R - 1 ) r* - co - 4) e L... e 1 e e e = e e1 e e 

h = O  
� e(t* - aL' - co)R( 1  + 2e1 eaL'). (4.22) 

Here a = a 1 , or a 1 , and the first exponential in h comes from dropping K 1 q - (1 , )  q + (lm) 
or K., while the second exponential in h comes from increasing Il l by h + 1 .  All 
these factors from summing over short rods can be bounded by the product 
fl exp [(r* - aq + C - c0) / J�+ /  + (r* - qq _ C - c0) / l�- / ] . Each one of these factors 
j 

is as in the definition of II rk I I  in (4.20). 
To help in performing the sums over ( C, I1), let 

with the inequality holding for any qEQ5(L). By assumption, J � e - <<ir - co). We 
choose one long interval containing 0 (with factor m) and sum on either side the 
pairs (C, I1) such that I1 contains an endpoint of the previous interval. For m ;;:;  2 
we get a bound 

m( 1 + 2())2 (0( 1 )e2)me<r* - coHm - 1 le - <<1r - co - 1 ) (m - 1 ) � O(l )me;e<r* - <itl (O(l )()t - 2 . 
When m = 1 we must have at least one factor e 1 from the two tail sums (4.22), so 
we get a bound O(l)e2(4J + 4J2) � O(l )e2e 1 er* - <ir. Summing on m, we get the desired 
bound O(l )e2e 1 e'* - <1r. D 

Starting at e 1 = e2 = exp ( -(r - O(l ) )C), the mapping e 1 --H1 + O(l )e2e - (<1r - col, 
e2 --+ O(l )e2e 1 er* - <ir converges geometrically, and eikl is always exp ( -(r- O(l) )C), 
while 

e�l � e - k(r - O( l ) JL'(O(l )e'* - <ir)k - 1 . (4.23) 
As a corollary of the proof, we obtain the following estimate on Zbig,k( V), which 
has an expansion similar to (4. 14) : 

l z . (V) I < e - <r* - co + f(L)L'Jt�(kl b!g,k = "2 . 
The same estimate holds for Jt-derivatives. 

As we discard Zbig,k( V), we are finally only interested in 

Tpq(L) = lim rk(CPq), k--> 00 

(4.24) 

(4.25) 

where I C J  = 1 .  Here the limit is approached exponentially fast. The partition 
functions Zres k( V) have an expansion as in (4. 1 6), but since rk(l) --+ 0  as k --+  oo for 
Il l > 1 , the limit has the simpler expression 

zres , oo  = lim zres,k = Tr(F + T)'. k--> oo  (4.26) 
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Here F = diag {exp ( -fq(L)D)}qeQ.!L J" By Proposition 4. 1 we have that 1::k Tpq(L) ' � 

e - <J + r- O(lJJL' , which completes the proof of (i)-(iii) of Theorem 2.2. 
To obtain (iv) and (v) we need to compare r with the one-kink matrix T( 1 )  

defined in (2. 1 7a). The difference (riCP
q
)- rpq)ef(L)L ' i s  of order e�2)e - (r* - co) � 

e - <2r-O(lJJL'e - .1r. Recall that r2(C) can be expressed in terms of r1 using (4. 1 5), 

(4.8). If we then replace r1 with rilJ, the one-kink term, we obtain (2. 1 6). Thus 

(r2(CP
q
)-r<lJ)ef<LJL' involves the two-kink term r:t only. Summing (4.6) with the 

appropriateP�nergy factors gives a bound e - <Zr- (lJ)L'er* - .1< , which thus governs 

I r -r<1J I and its derivatives. This proves the remaining statements in Theorem 2.2. pq pq 

5. Surface Tension and Kink-Matrix 

In this section we show that the matrix r in Theorem 2.2 can be chosen in such 
a way that 

rpq = (1 + O(e -b, rL) )e - apqL' e -fL' , 

if J1. = Jl.*, p =F q and v + 1 � 3, while 

r = O(L - lf2)e - apqL' e -fL' pq ' 

if J1. = Jl.*, p =F q and v + 1 = 2. Here a pq is the surface tension between p and q. 
We will prove these results using the surface expansions introduced by Dobrushin 

[D] (see also [G, BF and HKZ] ) to prove these results for the 1 -kink matrix r�� l, 
and a stronger version of Theorem 2.2 (iv), see Proposition 5.3 below, to estimate 
the difference between rpq and T�lJ. In order to take into account of the special 
features of our problem - periodic boundary conditions and the need for bounds 
on logarithmic derivatives of r�q l' see Proposition 5. 1 below - we will need some 
significant extensions of the above-mentioned surface expansions. We will need 
certain additional assumptions and we have to slightly change the definition of 
r�� , see Eq. (5. 1 )  below. 

In order to formulate the assumptions needed to prove the results of this section, 
we need some notation. We recall that n denotes the orthogonal projection from 
V co = A x JR. onto A and introduce the notion of the height of a point in V co by 
defining the height of (x, t)EA x JR. as t. 

Fixing a kink Y = pq 
c V co we define: a cube c in Y is called simple iff it is 

the only cube in Y which has the projection n(c). A cube c in Y is called excited 
iff there is a cube c' =F c in Y with dist (n(c), n(c') ) < 1 which isn't simple. A connected 
component C of the set Y* of excited cubes in Y is called small if l n(c) l < L and 
v = 1, or if l n(c) l < L/2 and v � 2. We denote the union of all large components of 
Y* by W0 and the small components of Y* by W1, . . •  , Wn. W0 will be called the 
large wall of Y and W� > . . .  , Wn are called the small walls of Y. Finally, S c Y is 
called a fiat piece of Y if it is a connected component of Y\ Y*. A cube c in a wall 
W (a flat piece S) is called a boundary cube of W (of S), if n(c) is connected to 
on(w) (to on(s)). The height of a cube is the height of its center. If v = 1, the height 
of a small wall is defined as the height of its right boundary cube minus the height 
of its left boundary cube, see Fig. 5. 1 .  
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h = 1 h = -1 h = 3  h = 0  

Fig. 5.1 .  Different walls in v + 1 = 2 and their height h 

Remarks. i) If W c V 00 is a union of cubes, it is called a wall if there is a kink Y 
such that W is a wall of Y. 

ii) We have defined the notion of a kink Y in such a way that each simple cube 
c in Y has exactly 2v neighboring cubes (in the sense of sharing a common face) 
in Y. As a consequence, two boundary cubes cw and c8 of a wall W and flat piece 
S have the same height if n(cw) and n(c5) are connected. 

iii) If v = 1, the large wall W0 of a kink Y is either empty or W0 = Y. 
In order to redefine r0> in such a way that the above-mentioned surface 

expansions can be applied we now introduce, for v � 2 and an arbitrary kink Y, 
the reduced kink Y0 by subtracting all small walls from Y and filling the created 
holes by flat pieces. Note that there is only one way to do this in such that 
Y0 is again a kink due to the above remark ii). We introduce C(Y) as the unit 
interval C(Y0) obtained from Y0, l+ (Y) as the part of /(Y) which lies above C(Y) 
and L (Y) as the part of /(Y) which lies below /(Y). Our new definition of r�� 
is then 

r<;,J = L K( Y)e -1 p(L){ IV - (Y)I - L'IL (Y)Ile -/q(L){ IV + (Y)I-L'Ii + (Ylll, (5. 1 )  
y 

where the sum goes over all kinks Y = ypq such that C(Y) is a fixed interval in 
R, say the interval (- !, !>· V ± ( Y) are as before defined as the upper (lower) part 
of (A x /(Y))\ V(Y), cf. Sect. 2. Note that the contributions of the different walls 
of Y to I V± (Y) I - C i l± (Y) I are additive: if one defines Y(W) as the kink having 
W as its only wall and V± (W) =  V± (Y(W)), l± (W) = l± (Y(W)) one easily shows 
that 

i = O  

if Y is a kink with walls W0, • • •  , Wn (if n = 0, (5.2a) is obvious; for the induction 
step n -+  n + 1 it requires a minute of inspection, the essential fact which is used 
is the fact that C(Y) is not changed if one adds a small wall Wn + 1 to Y). 

If v = 1, it is not possible to define C(Y) in such a way that (5.2a) remains valid: 
while 

I(Y) = Cl l+ (Y) I  + C l l_ (Y) I - 1 V + ( Y) I - 1 V_(Y) I  

= I  Y l - l n(Y) I  + l int Y l = L ( l Wi l - l n(Wi) l + l int Wd ), (5 .2b) 

for all v including v = 1 ,  

L1(Y) = ( I V + (Y) I - C l l + (Y) I )- ( I V _ (Y) I - C l l_ (Y) I ), (5.3) 
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cannot be written as a sum of local terms if v = 1 .  In order to keep these non-local 
effects minimal, we define C(Y) in such a way that I Li(Y) I  is minimal. Since 
I I  V + (Y) I - 1  V _ (Y) I I  � V( I J(Y) I - 1 ), and 

Li ( Y) = I V  + (Y) I - 1 V_ (Y) I - mV, 

where m = I I(Y) I - 1 ,  I / (Y) I - 3, . . . , 1 - I J(Y) I ,  depending on the choice of C(Y), 
we can arrange that I Li(Y) I  � L if v = 1 by choosing C(Y) in such a way that I Li(Y) I  
i s  minimal. 

We now state the assumptions used in this section. 

Assumption 5.1 (Factorization). There are functions aab(/-1) and wall-activities p(W) 
such that 
(i) p(Y"b) = e - <6·• + <e. + e•)/Z)L' 0 p(E ;) for a =l= b  and each kink yab with walls 
Wo, · · · • Wn - i 

(ii) p(W) is translation-invariant. 

Assumption 5.2 (Suppression of Excitations). For an arbitrary wall W, 
lp(W) I � e - <r+ eoH I W I - I x<W>I >. 

Assumption 5.3 (Bounds on Derivatives). There are constants Cb 1 � l k l � 4, not 
depending on r and L, such that 

and 

1::k p(W) ' � Cke - <r+ eoH I W I - I x(W) J ) . 

Assumption 5.4 (Suppression of 2-Kink Terms Relative to 1-Kink Terms). Let a, b, c 
be distinct elements of Q. Then, 

aac + acb � aab +! - 0(1). 

Assumption 5.5 (Additional Assumptions for v = 1 ). 
(i) The wall activities p(W) and the activities p(Y) of all ordinary contours Y are 
invariant under reflections with respect to the vertical lattice planes x0 x JR., x0EA. 
(ii) p(W) � 0 for all small walls W. 
(iii) There exists at least one small wall W with height h =1= 0 such that p(W) > 0. 

Before stating the theorems proven in this section we want to comment on 
the above assumptions. Assumptions 5. 1 requires that the kink activity p is the 
product of the flat kink activity exp ( - (aab + (ea + eb)/2)V) and certain translation 
invariant activities p(W;) for the pieces describing the deviations from the flat kink. 
It is typical of models with finite-range interactions. Note that Assumption 5. 1 is 
only compatible with assumption (2. 1 )  of Sect. 2 if aab � r. 

In contrast to Assumption 5 . 1 ,  Assumptions 5.2 through 5.4 significantly restrict 
the class of models for which the methods of this section apply if there are more 
than two states, N > 2. Assumption 5.4 fails if it is more favorable to pass from 
phase a to b via phase c than directly from a to b. For example, in a model with 
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spins sx = 0, ± 1 and nearest neighbor interaction J l sx - sY I ' we have iio + = ii0 _ = J 
and a + _ = 2J. Since a wall W may be a splitting of the kink yab into two surfaces 
involving energies iiac and iicb• Assumptions 5.2 and 5.3 will, in general, also fail 
if 5.4 fails for these models. Note that the methods of this section can still be 
applied to a certain subclass of kinks, for example if a and b are such that 
iiab � min iicd + 0(1). We do not investigate this case any further here. c,d 

On the other hand, Assumptions 5.2 and 5.3 should, in general, be valid if the 
interaction range is finite and Assumption 5.4 is fulfilled. 

Proposition 5.1. Assume that Assumptions 5 .1 through 5.3 are valid, that v + 1 � 3 
and that p =F q. Then there is a constant b2 > 0 and a C4-function u pq(Jl.) such that 
(i) u pq(Jl,) is the surface tension between p and q if p and q are stable, i.e., if 
fp(Jl.) = fq(JJ.) = f(JJ.). 
(ii) For l k l � 4, 

(iii) If aqV and apL• are smaller than 7r:j8, and if I k I � 4, 

l�[rU J _ e- <ap0 +(J 0 +  fp)/ 2J L'] I � e- <ap0 +(J 0 +  /p)/2lL'e- b> < L. 
djJ.k pq -

Proposition 5.2. Assume that v + 1 = 2, and that Assumptions 5 . 1 ,  5.2, 5.3 and 5.5 
are valid. Let p =F q, and define A.f = (fq -fp)/2 and a(JJ.) = max { ap(JJ.), aq(Jl.) }. Then 
the following statements are true: 
(i) If p and q are stable (i.e., fp(Jl.) = fq(JJ.) = f(JJ.) }, the limit 

exists and 

(ii) If a(JJ.)L � 0(1), 

u pq = f(JJ.) - lim _!_ log r��(L, JJ.) 
L-+ oo  L 

I - I < O( - h•) Upq - Upq = e . 

e- < 1 4! 1 -0 <r •z')J L  � T��(L, JJ.)e<f<lll + iipo(llll L  � e< I-"J I +O <r •z'J J L . 
(iii) If a(JJ.)L � 0(1), 

l
d:i 

r��(L, JJ.) I � O(L)T��(L, JJ.) { 1+ 1L1f l rL0 <r • • ' l } .  

(iv) There is a constant Cpq > 0 such that 

T<;j(L, JJ.) = CpqL - 1 12e - <f + apq) L( 1 + O(L - 1 ) ), 

provided p and q are stable (i.e., a(JJ.) = 0) and L is large enough. 

(5.4) 

(5.5) 

Assumption 5.5 (iii) is not needed to prove (i) through (iii), and Assumption 5.5 (ii) is 
not needed to prove (i). 



264 C. Borgs and J. Z. Imbrie 

Remark . . If v = 1 and Assumption 5 .5(iii) is not valid, i.e, p(W) = 0 for all walls with 
height h =F 0, 

r��(JI.) = e-(f+ap q)L( 1 + O (e - 'b2L) ), 
provided p and q are stable (i.e., a(JJ.) = 0). 

Proposition 5.3. Assume that Assumptions 5.1 through 5.4 are valid for all a =F b. 
Then the bounds (iii) and (iv) of Theorem 2.2 can be sharpened to 

and 

(5.6a) 

l::k(rab(L) - r��>(L)) I � e - <J+a •• - o< l »L'e - •<L' - 1 >, (5.6b) 

provided a, bEQ.(L) and a =F b. Assumption 5.3 is not needed to prove (5.6) for k = 0, 
and Assumption 5.4 is not needed if N � 2. 

Proof of Proposition 5.3. By the Assumption 5. 1 through 5.3, 

I_!_ (Yab) l eo i Y•• i < - (0: •• -0(l))L' -(< -O(l))( IY•• i - L') 
dJI.k p  e = e e , 

from which we conclude that 

l::kK(Yab) l � e - <.r •• -O ( l ))L'e - <• -O ( l ))( I Y•• i - L')e - J(LJ I V(YJ I
, (3.20') 

where K( · ) is the activity introduced in Sect. 3 . In order to treat the case where 
a = b at the same time as the case a =F b we set ii aa = • for the purpose of this proof 
(note that (3.20') is just (3.20) if a = b with the notation). As a consequence of (3.20') 
we may improve the 1 -kink bound (4.4) of Sect. 4 to 

1::kr�l )(/) l � e -(< -0(1 ))(1 1 ( - l)e-(.70 +•- -O(l))L' e -J(L)L' I I I . (4.4,) 

In order to improve the bound (4.6) or r�2>(J), we use (3.20') together with 
Assumption 5.4. We obtain 

1::k r�2)(1) 1 � e-(t* -O(l))( II I- 2le-(a0 + 0 - + t -O(l))L'e- J(L)L' II I . (4.6,) 

Using (4.4') and (4.6'), the proof of (5.6) is the same as that of the bounds (iii) and · 
(iv) of Theorem 2.2. The fact that Assumption 5.3 is not needed to prove (5.6) for 
k = 0 is obvious. D 

In order to prove Propositions 5. 1 and 5.2 we need some facts about the 
geometry of a general kink Y. We denote by cp. the translation cp. : (x, t)t---. (x, t + s) 
and call a general translation cp = cp., sEZ a vertical translation. For a set C of 
cubes in V,, we use [C] to denote the equivalence class 

[C] = {C' I C' = cp.(C), SEZ}, 
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------ - -.. 
- .. _ _  - -

-
-.. , -- - -- - - - -

(a) (b) 

Fig. 5.2 a, b. A set of mutually compatible walls not corresponding to a kink (a) and a set of 
mutually compatible walls corresponding to a kink in v + 1 = 2 dimensions 

under vertical translations. If Y is a kink with walls W0, . . •  , Wm we call 
[W0], . . .  , [W,] the "floating" walls of Y. 

Given two walls W, W', we say that [W] and [W'] are compatible, if n(W) 
and n(W') do not share a (v - i )-dimensional cube. With this definition, the floating 
walls [W0], • • •  , [W,] of any given kink Y are mutually compatible. 

Lemma 5.4. Let v � 2 and { [W0], • • •  , [ W,] } be a set of mutually compatible floating 
walls, where W0 is large and W1 , . . .  , W, are small. Then there is exactly one kink 
Y with C ( Y) = ( - }, ·H which has [W0], • • •  , [W,] as its floating walls. 

Lemma 5.5. Let v = 1 and let { [W1 ], • • .  , [W,] } be a set of mutually compatible, 
small floating walls whose heights add up to zero. Then there is exactly one kink Y 
with C(Y) = (- }, }) which has [W0], . . .  , [W,] as its floating walls. 

Proof of Lemmas 5.4 and 5.5. These lemmas are an immediate consequence of 
Remark (ii) before Assumption 5. 1 ;  the corresponding geometric conditions have 
been discussed at length in [D], and are not repeated here. Note that the conditions 
C(Y) = ( - }, }) and C(Y) = (- }, }) fix the global horizontal translation which is 
fixed in [D] by fixing the boundary of the interface studied there. See Fig. 5.2 for 
an illustration of Lemma 5.5. 0 

Proof of Proposition 5.1 . We will prove this proposition by rewriting (5. 1 )  as the 
partition function of a polymer gas in A. Neglecting, for a moment, the factor 

in the activity K(Y) = K(Pq), see Eq. (3. 1 8), we rewrite (5. 1 )  as 

r�� :::::: L P(Y) n Zm(Intm Y)e -/p(L){ IV - 1 - L'I i- l}e- f q(L){ I V + 1 - L• Ii + I I 
y m 

II 
= e - <aab + ( l /2) (ea + eb))L' L n K(W;), 

Y i = O  

(5.7) 

(5.8) 

where W0, • • •  , W, are the walls of Y. We used (5.2a) and Assumption 5.1 and defined 
K(W) = p(W) n Zm(Intm W)e-/p(L){ IV -(W)I - L'IL(Wl l le- fo(L){ I V +(W)I - L'Ii +(Wl l l . (5.9) 

m 
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In order to define aab(Jl} we will also need certain truncated activities, 

K'(W) = p(W) fl Zm(Intm W)e -/pi IV -(WJ I- L' Ii -<W> Ile- f q{ IV +<WJ I- L' Ii +(WJ II 
m 

· xC8• - ap i S(W) I )xC8• - aq i S(W} I} (5. 10) 

where S(W) is the union of n(W) and its interior, while x is a smoothed characteristic 
function xeC4, with 0 � x � 1, x(x) = 0 if x � - 1, x(x) = 1 if x � 0 and 
l dkxfdxk l � 0(1)  for 1 � k � 4. We will need the following lemma which will be 
proven below. 

Lemma 5.6. Let p "I= q and I k I � 4. Then, 

(i) 1::kK'(W) I � e-<tt8 - o<l>H IWI - I"<w>ll, 

for all small walls W. 

(ii) 1::kK(W) I � e-<t/8 -0(l))<IWI - I ,<W>I l, 

for all walls W, provided 

(iii) 1::k [K(W) _ K'(W)] I � e-<t/8 -0(lJH IW I - I "<Wl llO(e- b , tL), 

provided W is a small wall and the condition (5.11 )  is fulfllled. 

(5 . 1 1) 

Up to the interactions between different walls coming from the neglected term 
(5.7), we have rewritten r�� as a dilute polymer gas with hard-core interaction. 
We follow [BF], see also [HKZ], to take into account the additional interaction 
coming from (5.7). In a first step we express g"'(a ± Y) as a sum over sets X inter
secting a ± Y, 

gm(a ± Y) = L km(X), (5. 1 2) 
X 

where km(X) obeys a bound 

l::k km(X) ' � e-(t/8 -O(lJJ IX I, (5. 1 3) 

if the CEndition (5. 1 1 ) is fulfilled (cf. Sect. 3). Expanding exp (km(X)) as 1 + km(X), 
where km(X) obeys again a bound of the form (5. 1 3), we may rewrite r<1l as a sum 
of terms of the form 

pq 
11 n'  e-(aab+(ea+e•)/2)L' f1 K(W;) f1 kmiXj), i=O j=l 

(5. 14) 

where mi = p or q. Considering the union of Y with X 1, . • .  , X,. as a new kink and 
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decomposing this new kink again into walls and flat pieces, one finally obtains 
that r�� may be written as 

n r�� = e -(ap q +(ep + e q)/ 2)L'I n K(W;), 
Y i = O  

where K(W) obeys again a bound of the form (ii) (see Lemma 5.6 above). I f  we 
define K'(W) by substituting K' (W;) and k�,(X;) into (5. 14), where k�(X;) is obtained 
from the activity k�(X) introduced at the end of Sect. 3 by expanding 

ek;,<x> = 1 + k�(X), 

the other statements of Lemma 5.6 remain true as well. We summarize these facts 
in the following: 

Lemma 5.7. There are wall activities K(W) and K'(W) such that (i) the statements 
of Lemma 5.6 remain true for K and K' and (ii) 

provided 

r�� = e -<ap q +(ep + e.J/ 2J L'L n K(W;), 
y i 

(5. 1 5) 

At this point the proof of Proposition 5. 1 is straightforward. We introduce 
"partition functions" 

and 

z(A) = I n K(W;), 
{ [Wo] ,  ... , [Wnl l  i 

z.mau(A) = L n K(W;), 
{ [W l ] ,  ... , [Wnl l  i 

z'<A> = I n K'(W;), 
{ [Wt] ,  ... , [Wnl l  i 

where the sums go over sets of mutually compatible floating walls, [W0] (if present) 
is large, and [W1] ,  • • •  , [WnJ are small. Due to Lemmas 5.6 and 5.7, Z'(A) can be 
analyzed by a convergent cluster expansion. We conclude that the limit 

hpq(Jl) = - lim -
1 

log Z'(A), 
A-+R• I A I 

exists, that it obeys the bounds 

and that 

i_!__ h (") I :::;; e - <•18 - 0( 1 )) 
dJlk pq 

I"' -
' (5. 1 6a) 

(5. 1 6b) 

where we used the fact that the corrections to the infinite volume behavior are 



268 C. Borgs and J. Z. Imbrie 

exponentially small for periodic partition functions. Putting 

a pq(J.l) = if pq(J.l) + t[ep(J.l) + eq(/-l) - fp(J.l) - fq(J.l}] + hpq(J.l), (5. 17) 

we have defined a C4-function which obeys Proposition 5. 1 (ii). 
To see that apq is the surface tension if aP = aq = 0, we note that 

l l+ ( W) I U + I L (W) I U  - I V+ (W) I - I V- (W) I  = I W I + l int Wl - l n(W) I, (5. 1 8) 

from which we conclude that 
K'(W) = p(W)ef<IWI - In(W) IJ n [Zm(Intm W)ef l lntm WI], 

m 

if aP = aq = 0. But this is just the weight of a wall in the usual surface expansion 
for the surface tension. 

We are left with the proof of the bound (iii). By Lemma 5.6(iii) and the fact 
that both Z'(A) and Zsman(A) may be analyzed by a convergent cluster expansion, 

� d�k [log Z'(A) - log Zsman(A)] I � I A IO(e - b , tL). 

Combined with the bound (5. 1 6b) this implies that 

I!!_ [Z (A) - e -L'hp•] I ::;; - e-L'hp•O(Lv e- b , tL) dJ.lk small - ' 

which leaves us with the analysis of the difference 

Zb;8(A) = Z(A) - Zsmau(A) = I,' n K(W;), 
{[Wo], . . . ,[WnlJ i 

where the sum goes over sets { [W0], . . .  , [ Wn] } , where [ W0] is not empty. Resum
ming the small walls [W1 ], . • .  , [Wn] and using the fact that this resummation can 
be controlled by a convergent cluster expansion we bound 

(Zb;g(A) ( � I,' K(Wo)e - IA\n(WoJihpq + l ilWol 
[Wo] 

� e - IA )hpq L,' e - (t/8 - 0( l ))[ )Wol.- )n(Wol l l , 
[Wo] 

where we have used the fact that l n(W0) 1 � 0(1) [ 1 W0 1 - l n(W0) 1 ]. Using the fact 
that each component of [W0] is larger than L/2, we immediately obtain the bound 

I Zb;g{A) I � e - IAihp•O(e - b>tL), 

where b2 > 0 is a constant. The bounds on derivatives are similar. This completes 
the Proof of Proposition 5. 1 .  0 
Proof of Lemma 5.6. We start with the proof of (i). We assume without loss of 
generality that 

aP I S(W) I  � ir + 1 and aq i S(W) I  � ir + 1 ,  

because i'(W) i s  zero otherwise. Using Lemma A.2(i) to bound Zm(Intm W), the 
fact that l e0 - fl � 0(1 )  to replace e0 in the bound on p(W) by f - 0(1 ), and 
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Eq. (5. 1 8) and the bounds 

[C i l± (W) I - 1 V± (W) I J � l l± (W) I I S(W) I, 
( I L (W) I + I I + (W) I ) I S(W) Imax {ap, aq} � (ir + 1 ) ( 1  W l - l n(W) I ) 

to estimate the volume factors in K'(W) we obtain the bound 

I K'(W) I  � e-<< !8 -0(lJH IWH"<W>I>eO<lJ i ilW I � e-<< JS -O<OHIW I- I"<W>I>. 

Derivatives produce harmless factors 0(1 ) 1 1  V± (W) I - C IL (W) I I , 0(1 ) 1 Int WI and 
0(1) I S(W) I which may be absorbed into a term e0 0 J IW I � e0<1><1W I- I"<W> I>. 

The proof of (ii) is essentially the same as the proof of (i) (fm(L) - fm is O(e- b , < L) 
and therefore harmless). To prove (iii) we note that the condition (5. 1 1 )  implies 
that the characteristic functions in (5. 10) are 1 .  Bounding 

1 e- J.,<LH IV ±<WJ I- L' Il ±<WJi l _ e- J.,{ lv ±<W> I- L'll ±<WJ i l l 
by 

e- J .,{ IV ±(WJ I- L•ll ±(WJIJ I eiS(WJI< IWI - I"(W) i )O(e - '• •LJ _ 1 1 , 

and estimating 

I eiS<WJI<IWI - I"(WJI>O(e - '"•LJ _ 1 1  � eL'(IWI - IS(WJIJO(e - '" •LJ _ 1 
� e<IWI - I1t(WJI>0 0 lO(C e - < b ' L), 

we may prove (iii) in the same way as (i) and (ii). 0 

Proof of Proposition 5.2. In a first step we approximate T�i by 

f'�i = I'p( Y) n Zm(Intm Y)egp(O - Y)+g q(O+ Y)e- J p{IV - I- L' II - lle- J q{ IV + 1 - L'II + ll, (5. 19) 
y m 

where the sum I' goes over kinks Y having only small walls. The resulting error 
may easily be bounded; using the fact that I W0 1 - l n(W0 ) 1  � O(L) for a large wall 
W, together with the bound l dk(fm(L) - f)/dJi l � O(e- b , < L), one finds that 

provided l k l  � 4 and 

Introducing 

f- =
fq +  fP and L1f = fq - fP 

2 2 ' 

and using the relation (5.2b) we then rewrite 

f'��) = I'p( Y) n Zm(Intm Y)e{ IV(YJ I - Llfegp(O - Y)+g q(O+ Y)e-(LIJ) LI(Y) 
y m 

(5.20) 

(5.2 1 )  

(5.22) 

(5.23) 
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where L1(Y) is the quantity introduced in (5.3) (recall that I L1(Y) I  � L} and 
Z(L} = L'egp(B - Y) + g.<a + r)e - < .1fl .1(Y) n K(W;). (5.24a) 

y i 

Here 
K (W) = p(W)eiiiWH x<Wl l l fl eiiintm W izm(Intm W). 

m 
Defining 

we may proceed as in the proof of Proposition 5. 1 to construct activities K(W), 
K'(W) such that 

Z(L) = r'e - ( .1/) <l (Y) n K(W;), 
y i 

(5.24b) 

K and K' obey the bounds of Lemma 5.6(i) and (ii) and K(W) = K'(W) if (5.21 )  is 
true. 

Next we introduce 

z(L} = r' n K(W;) = r n K(W;). 
Y i {[Wo], ... , [Wnllo i 

z'(L} = r' n K'(W;) = r n K'(W;). 
Y i {[Wo], . . .  , [Wnllo i 

where the last sum in both equations goes over sets of walls satisfying the constraint 
that their heights add up to zero. The error between Z(L) and Z(L} may then be 
bounded by 

Z(L}e - LI.1/I � Z(L} � Z(L}eLI.1f l , 

I_!!___ (Z(L} - Z(L) ) I � O(L)Z(L} + L I L1f l eL!I.1/ I + O(e - •• •n 
dJ1.; 

provided (5.2 1 )  is valid. 

(5.25a) 

(5.25b) 

While (5.25a) is an immediate consequence of the bound I L1(Y) I  � L and the 
fact that the activities K in (5.24a) are positive, the bound (5.25b) requires some 
comments. Obviously 

where 

and 

iil = r'L1(Y)e - < .1fl .1(Y) n K(Wk) 
y k 

= L'A(Y)egp(a - Y) + g.<a + r)e - < .1fl .1(Y) n K (W;) 
y i 
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Using again the bound J L1(Y) I  � L and the fact that the activities K are positive, 
we estimate 

On the other hand 

I B2 -_!!___z(L) I � J e£1411 - 1 1 I' l_!!___ (n K(Wk>) l  
dpi y df.l.i k 

� L I L1f l eLI 4fl L' Il e - <Wk - n(Wkll(t/8 - 0( l )) 
y k 

� L J L1f J eL< I 4fl + O(e - •18)) , 

where we used the fact that K obeys the bounds of Lemma 5.6. This completes 
the proof of (5.25b). 

Following [BF] we now implement the constraint on the heights h 1 ,  • • •  , hn of 
wl , . . .  , wn by a Fourier transformation of b(L hi) :  

1 " 
Z(L) = - J Z(L, p)dp, (5.26a) 

2n - n 

Z(L, p) = L Il K(Wi)e
ihJP, 

{[W t ] , . . . , [W nll j 
and similarly for Z'(L, p). If (5.2 1 )  is true, Z(L, p) = Z'(L, p) and 

1 
h(L, p) = - - log Z(L, p) 

L 

can be analyzed by a convergent cluster expansion. We conclude that 

l::k h(L, p) l � O(e - b"), 

l::k (h(L, p) - h(p)) l � O(e - b t <L), 

where 

h(p) = - lim !__ log Z'(L, p). 
L-+ oo  L 

h(L, p) and h(p) may be rewritten as 
00 

h(L, p) = L an(L)einp, 
n = - oo 

and 
00 

n = - oo 

(5.26b) 

(5.27a) 

(5.28a) 

(5.28b) 

(5.27b) 

where an(L) and an are linear combinations of terms of the form Il K(Wi) with 
i 
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L hi = h. Each an is real, obeys a bound 

I an i �  e- <b , ln l , (5.29) 

and (by the reflection symmetry Assumption 5 .5(i)), satisfies the relation an =  a - n · 
We conclude that h(L, p) is real, which implies that 

and that 

Let now 

Z(L, p) � O, 

h(p) = L an cos np. 
n = - oo 

h(�t) = inf h(p). 
p 

Since h(p) is real analytic, either h(p) does not depend on p and 

Z(L) = e-Lh<ll>(t + O(e - b"L) ), 
or 

h(p) > inf h(p) = h(f,L), 

(5.30) 

(5. 3 1 )  

(5.32a) 

except for a finite number of points p1 , • • •  , pk . We can estimate the contributions 
of these minima to the integral (5.26a) by a saddle point analysis. It follows that 
there are constants Ck > 0 not depending on L such that 

k 
Z(L) = e -Lh<l'> L (CiL- l fk; + O(L- 3fk;) ), (5.32b) 

i = l . 
as L -+  oo .  Here ki is the order of the first nonzero derivative of h(p) at p = Pi · 
Note that h<kil(pi) > 0 since Pi is a minimum; therefore, the leading saddle point 
approximation 

1 00 { h(k;) } - J exp - L- (p - Pi)k; dp = CiL1 ik; 
2n - oo ki ! 

is finite. Combining (5.32) with (5.23) and the estimates (5.20), (5.25a), and 

l h(Jt) l � O(e - b"), 

we obtain Proposition 5.2(i) with 

u pq = [h + a pq + t<eP + eq - fP - fq)] . (5.33) 

To prove (ii) we note that the bounds (5.28a) and (5.30) imply that 

e -LO(e - ••• > � Z(L) � eLO<e - •• • > , (5.34) 

provided a(�t)L � 7-r:/8. Combined with (5.20) and (5.25a) we obtain Proposition 
5.2(ii). 

To prove (iii) we combine (5.28a), (5.30) and (5.25a) to bound 

l
a�i

Z(L) I � LO(e - b • <)Z(L) � LO(e - b ' ')Z(L), 



Finite-Size Scaling and Surface Tension in l D  Systems 273 

where we used the fact that L I Llf l � La(Jl) � 0(1 ). Using (5.25b) together with 
(5.34) and (5.25a) we conclude that 

I!!___Z(L) I � O(L)Z(L) { 1 + I Llf l eLO<r • • 'l } . (5.35) 
dJl; 

Combined with the bound (5.20) this completes the proof of (iii). 
We are left with the proof of (iv). We want to prove that the second derivative, 

h<2>(p) > 0 whenever 

h(p) = min h(p), 
p 

because this statement, together with the bound (5.32b), implies the bound (5.5). 
We proceed by contradiction and assume that h<2>(p) = 0. As a consequence 

h(L, p) � min h(L, p) + e - b , •L, 
p 

l h< 1 l(L, p) l � e - b , •L, and 

l h(2l(L, p) l � e - b"L, 

for some b1 > 0 and hence 

while 

Z(L, p) � max Z(L, p)( 1 - e - <b • • - O< t JJL) 
p 

� max Z(L, p) - e - <b , . - O< t JJL, 
p 

I Z<2l(L, p) l � Z(L, p)e - <b , . - O< t JJL 

� e - (b � t - O( l ))L . 

(5. 36) 

(5.37) 

We want to show that (5.36) and (5.37) are in contradiction with Assumption 
5.5. To this end we rewrite 

Z(L) = I eg<Y>flp(Jti), 
{[W 1 ] ,  . . .  ,[W nllo i 

(5.38) 

where Y is a kink corresponding to [W1], . . .  , [Wn] and g(Y) is a shorthand for 

g( Y) = gp(o _ Y) + gq(o + Y). 

We recall that the sum goes over walls W1 , • • .  , Wn such that their heights add up to 
zero and that g( Y) may be written in the form 

g( Y) = I k(X) = I I k(X), 
XnY * 0  l e A XnY * 0  n(X) = I  

(5 .39) 

where k(X) depends only on that part of Y which projects onto I = n(X), is zero 
if X is not connected and obeys a bound 

if a(Jl) � 0(1 ). 
l k(X) I � e - <• - O( t JJ I X I (5.40) 
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We then approximate Z(L) by 
res 

Zres(L) = L e9re•(Y) 0 /i(W;), 
{[W l ] ,  . . .  , [W nllo i 

where the sums in (5.38) and (5.39) are restricted to walls W and connected sets 
X satisfying the bounds 

This introduces an error 

where b > 0 is a constant. 

ln(W) I < L/3, l n(X) I < L/3. 

I Z(L) - Zres(L) I � e - b•L, 

In the next step we introduce a partition function 
res 

Zh(L) = L e9r••(W t ,  . . .  ,Wn> n p(Wi), {[Wl ] ,  . . .  , [Wnllh i 

where the heights of w1 , . . .  , wn add up to h ell. gres is defined as 

gres(Wl >  . .  · , Wn) = gres(f) = L L k(X), 
l e A  XnY* 0  

II I < L/3 lt(X) = I  

(5.41 ) 

(5 .42) 

where the "open contour" y corresponding to w1 , . . .  , wn is defined as follows: 
Let l be the connected component of / u n(Wd u . . .  u n(Wn) which contains /. 
Since l < L by the restrictions on W1 , • • •  , Wn and /, it has a left and a right endpoint. 
Relabel W1 , . . .  , Wn in such a way that n(Wi) c l for i = 1, . . . , m (m � n) and that 
n(W;) is to the left of n(W; + d· Translate W1 , . . .  , Wm in the vertical direction so 
that the left boundary cube of W; has the same height as the right boundary cube 
of W; + 1 , i = 2, . . .  , m. Y is then defined as the contour Y with n( Y) which is obtained 
by filling the holes to the left of w1 , to the right of wm, and between W; and W; + 1 , 
i = 1 ,  . . .  , m - 1 by flat pieces. With this definition 

Zo(L) = Zres(L) = Z(L) + O(e- b•L), 

and 
00 

n = - oo 
00 

= L ZiL)cos np + O(e - b•L), (5.43a) 
n = - co 

where we used the reflection symmetry of the model in the last step. 
As a consequence of (5.43a) 

max Z(L, p) = Z(L, O) + O(e- b•L); 
p 

combined with the bound (5.36) we conclude that 
00 
L Zn(L)(l - cos np) � O(e - b•L). (5.44) 

n = - oo  
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We BOW claim that 

Zn(L) = 0 if cos np =F 1 .  (5.45) 

Assume that Zn(L) =1: 0. Then there are walls W1 , • • •  , Wm, such that their height 
adds up to n; and such that p(Wd =F 0, . . .  , p(Wm) =F 0. Since Zn(L) is a sum of positive 
terms 

m 
(5.46) 

i= 1 

But the right-hand side of (5.46) is independent of L and positive, which is a contra
diction with the fact that 

This proves (5.45). 
Combining (5.37), (5.45) and the bound 

we finally bound 

00 
z<2>(L, p) = L Zn(L)n2 cos np + O(e - 6'L), 

n =  - oo  

00 00 
L n2Zn(L) = L n2Zn(L) cos np 

n = - oo  n = - oo  

from which we conclude that 

for all n =F 0. As a consequence 

(5.44') 

(5 .43b) 

p(W)eBres(W) � O(e - b<L), (5.47) 

for all small walls W with height h =F 0 (use that fact that (5.42) is a sum of positive 
terms). The left-hand side of (5.47) is independent of L. Therefore, p(W) = 0 for 
all small walls with height h =F 0, which is in contradiction with Assumption 
5.5(iii). 0 
Remark. The above proof shows that Assumption 5.5(iii) is a necessary and 
sufficient condition for the bound (5.5): Either p(W) =F 0 for at least one wall of 
height h =F 0 and (5.5) is valid, or p(W) = 0 for all small walls of height h =F 0, and 

Z(L) = Z(L, p = 0) = e - hL(1 + O(e - b<L)), 

from which we conclude that 

r�� = e- <J + apq)L (1 + O(e - btL)). 

We finally prove Theorem 2.4, using Propositions 5. 1 through 5.3 . 

Proof of Theorem 2.4. By Propositions 5. 1 and 5.2, 
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provided a(f.l)D � 0(1 ). As a consequence of this bound and (5.6b), 

r��(L) � rpq(L) ( 1  + e0( 1 )L' e - <(L' - 1 l). (5.49) 

Combining these bounds with (5.6a), we get the two bounds of Theorem 2.4 (i); 
combining them with (5.6b), we get the bound (2.27) for v = 1 .  For v � 2, 

I_!__ r< l l(L> I � r<1 l(L)o(£Vk> dflk pq - pq (5.50) 

by Proposition 5. 1 and the fact that derivatives of apq + !P + fq are bounded by 
2 

0(1 ). Combined with (5.6b), (5.48) and (5.49) we get Theorem 2.4 (iii), while (5.4), 
(5.48) and (5 .49) imply Theorem 2.4 (iv) for v = 1. For v � 2 the bound (2.27) follows 
from (2.28). 

Appendix A 

In this appendix we summarize the main ideas of the construction of the truncated 
free energies /q as introduced in Sect. 2 of [BK] . This construction uses volumes 
W which are part of 1R • + 1 rather than A x T, so we will only consider contours 
Y which may be considered as contours Y in JR• + 1  in this appendix. 

For a contour ( Y, q( · ) )  in 1R • + 1 , we define Ext Y as the finite component of 
yc = 1R d + 1 \ Y, Int m Y as the union of all finite components C of yc for which 
q( · ) = m on oC, Int Y as the union U Intm Y and V( Y) as U u Int Y. We say that 

m 
(Y,  q( · ) ) is a q-contour if q( · ) = q on a Ext Y, and say that Y,. is an exterior countour 
of a collection { Y,.} of nonoverlapping contours if Y,. n Int Y,. = 0 for all oc =F eX. 
Finally, a contour Y is called a contour in W c 1R • + 1 , if V( Y) c W. 

Given these notions we introduce the partition function Zq(W) with boundary 
condition q as 

{ Y.} ,. m 
(A. l )  

where the sum goes again (cf. (2.3) in Sect. 2 )  over collections of nonoverlapping 
contours with compatible boundary labels, with the additional restrictions that 
the external contours of { Ya} are q-contours, and that all contours in { Ya} are 
contours in W. As before, Rm is the union of all connected components of W\ U Y,. 
which have boundary condition m. " 

For many purposes we need a different expression for Zq(W) which eliminates 
the compatibility of boundary conditions on contours. Fixing the external contours 
in the representation (A. l )  for Zq(W) and resumming all others we obtain a factor 
TI Zm(Intm Yq), for each external contour. This yields the expression 
m 

where the sum goes over the sets { Y:} of mutually external q-contours (i.e., 
V( YIZ) = Ytz u Int YIZ and V( Y,.) = Y,. u Int Y,. have no common cubes for oc =F eX). We 
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divide each Zm by the corresponding Zq and multiply it back again. Iterating this 
procedure we get 

Zq(W) = e - e. I W I  L Il K(Y:), 
{Y�) a 

(A.3) 

where the sum goes over sets { Y:} of q-contours such that Y: and Y� have no 
common cubes for IX #  ti., and K (Yq) is defined by 

K( Yq) = p(Yq)ee. I Y• I Il Zm(lntm Yq)
. 

m Zq(Intm Yq) 
(A.4) 

Note that (A.3) is purely formal at this point since Zq{Intm Yq) might be zero for 
some contours yq (we have introduced the superscript q to emphasize the fact 
that Y is a q-contour). 

The truncated free energy fq is then introduced as the free energy of a modified 
model 

where 

fq = - lim -
1
- log Z�(W), 

w - z· + ' I W I 

Z�(W) = ee. I W I L TI K'(Y:), 
{ Y�) "' 

(A. S) 

(A.6) 

and K'( Y) is defined inductively as follows. 
Assume that K'( Y) has already been defined for all contours Y with diam Y < n, 

neN, and that it obeys a bound 

I K'( Y) I  � e1 Y I , (A.7) 

for some small e. Then Z�(W) is defined for all q and all volumes W with diam W < n. 
Its logarithm can be controlled by a convergent cluster expansion and Z�(W) # 0. 
For q-contours of diameter n, K'(P) is then defined by 

K'(Yq) = [p(Yq)ee• l Y• l Il Z�
(lntm Y:)]x'( Yq), (A.8a) 

m Zq(lntm Y )  

x'( Yq) = Il x(log I Z�(V(P) ) I - log I Z�(V(Yq) ) l  + lX I  Yq l ), (A.8b) 
m 

where IX may be chosen arbitrarily in a range 0(1 )  � IX �  r - 0(1 ), and 0 � x � 1 is 
a smoothed characteristic function obeying the conditions x(x) = 0 if x � - 1 , 
x(x) = 1 if x � 1 ,  and l dkx(x)jdxk l � 0( 1 )  for 1 � k � 4. As the final step of the 
construction one then has to establish the bound (A.7) for the contours of diameter 
n. Since all other partition functions in (A.8) can be controlled by convergent 
expansion due to the inductive assumption, the only nontrivial bound is an upper 
bound on Zm(Intm Yq). This is done by a technique first introduced by Zahradnik 
in [Z] and carried out in detail in the appendix of [BK] . As a corollary of this 
proof, one obtains the following: 

Lemma A.l [BK] . Assume that l p(Y) I  � e - <t + eoJ I Y I for all contours Y. Then the 
following statements are true provided r is large enough and 3 � IX �  r - 0(1 ). 
(i) K'(Y) is well defined for all Y and obeys a bound I K'( Y) I  � e - << - a - O( l ) ) I Y . 
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(ii) If aq diam W � ex - 2, then Zq(
W) =F 0 for all W c W and K'(Yq) = K(Yq) for 

all q-contours yq in W. 
(iii) I Zq(W) I  � e -fiWI+ IaWI for all finite volumes W c Rv+ 1• 
Here f = min f m and aq = fq -f. 

m 

Remark. A close inspection of the proof of Lemma A. l as given in [BK] shows 
that the condition aq diam W � ex - 2 in statement (ii) can be replaced by 
aq l n(W) I � ex - 2, where n( " )  is the projection on a v-dimensional hypersurface S in 
Rv+ 1 orthogonal to one of the coordinate directions and l n(W) I denotes the 
v-dimensional volume of n(W). To prove this statement, the following changes 
should be made in Sect. 2 and in the appendix of [BK] : 

(ex) The conditions aq diam yq � ex - 2 and aq diam V � ex - 2 in Lemma 2. 1 should 
be replaced by aq l n(Yq) l  � ex - 2 and aq l n(V) I � ex - 2, respectively. Similarly, in 
Lemma A. l and Lemma A.2. 

(�) The bound I V(Yq) l  � I Yq l diam yq which was used in the proof of Lemma A. l 
should be replaced by 

I V(Yq) l  � l.L (Yq) l n( Yq) l  � I Yq l l n(Yq) l ,  

where l.L ( Yq) is the minimal distance between two surfaces S 1 , S 2 parallel to S such 
that yq lies between s1 and s2 . 
(y) The definition of a small contour given in the proof of Lemma A.3 should be 
replaced by "Yq is small if aq l n(Yq) l  � ex - 2." Note the fact that I Yq l � (ex - 2)/aq for all larger contours, which is implicitly used in the proof of Lemma A.3, is still 
true with this definition. 

(B) Even though not necessary, it is convenient to replace the induction on the 
diameter Yby an induction on I V(Y) I . 

Remark. The bounds of Lemma A. l can be generalized to derivatives (see [BK] ). 
One obtains (for l k l  � 4) 

(A.9) 

and 

(A. lO) 

Using these bounds and the fact that K'(Yq) = K(Yq) if aq l n(Yq) l  � ex - 2, we will 
now show that 

1::kK(Yq) l � e"4 1 Int Y4 1-<•-0(l))IY4 1 

� e - (< - aql1t(Y4JI -0(1))IY4 1 , (A. H) 
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Proof. Due to the bound (A.9) and the fact that l int Yl l k l � e0 11l i Y I, we have 

l_!_nz (lnt Yq) , ::::;; e - f l lnt r" I +O ( l J IY" I 
d1l m 

m m - ' 
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for each q-contour Yq. If l :n:( Yq) l aq � IX - 2, log Zq(lntm Yq) = log Z�(Intm Yq) can be 
analyzed by a convergent cluster expansion and 

I_!_ n z- l(lnt Yq) l ::::;; ef. l lnt Y" I +O (l)I Y" I 
dp.k m q m - ' 

due to the bound (A. lO). Combined with the a priori bounds on p and the fact 
that l int Yq l � I  Yq l l :n:( Yq) l ,  we obtain (A. l l). 0 

Up to now, we have not specified a choice of IX. Since both the bound (A.9) as 
well as the bound (A. l l ) do not involve IX explicitly, while (A. l l) has a wider range 
of validity if IX is chosen larger, it is favorable to choose IX large (but one has to 
respect the restriction IX �  t - 0(1)). We chose IX as 

IX = 2 + it. (A. l2) 

With this choice of IX, we summarize the main results of this section in the following: 

Lemma A.2. The following statements hold provided t is chosen large enough: 
(i) For all q, all volumes W c Rv + l and all l k l  � 4, 

�d�k Zq(W) I � const l W l lk le- I IW I + Iilw l . 

(ii) Assume that I k I � 4 and that aq I :n:( Yq) I � it. Then, 

1:;k K(Yq) l � e"•IInt Y0 1 - ( < -0 ( 1 J J IY" I 

� e- [ < -ao i "(Y0J I-O ( lJI IYo l . 
(iii) If aq l :n:(W) I  � i t, then Zq(" W) #= 0 for all W c W and 

Zq(W) = e- e. IW I L n K(Y!). 
{Y:} « 

Remark. The condition 

is more convenient for the applications in Sect. 3 than the original condition 

l diam Y l aq � it, 

because the bound I V( Y) I � I :n:( Y) I I  Y I remains true for certain topologically 
nontrivial contours (called ordinary contours in Sect. 3), while the bound 
I V( Y) I � l :n:( Y) I diam Y becomes false in this context. This is the reason why we 
state the generalization of Lemma A.2 in Sect. 3 using the condition I :n:( Y) 1 aq � 7t/8. 
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