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We study a T step weakly self-avoiding random walk in d> 4 dimensions by treating it as 
a one-dimensional statistical mechanical system. We use the polymer expansion along with the 
lace expansion to arrive at an expression for the Fourier-transformed propagator of the 
self-avoiding walk, valid in some neighborhood of the origin, that up to small edge effects is 
equal to that of some simple random walk. This yields simple proofs that, as T-+ oo, 
the variance of the endpoint is asymptotically linear in T and the scaling limit of the endpoint 
is gaussian. © 1992 Academic Press, Inc. 

1. INTRODUCTION AND RESULTS 

We study a model for weakly self-avoiding random walks on a d-dimensional 
hypercubic lattice. The model is defined by the two-point function 

C(x, T) (;dr L: n 
w: 0- X 0 � s < t � T 
lwl T 

( 1  ( 1 . 1 )  

which is proportional to  the probability of travelling from 0 to  x in T steps. Here 
d is the dimension of the lattice, w: [0, T]-. Zd any path on the lattice beginning 
at the origin with nearest neighbor steps, and ). the strength of the self-interaction. 
We also define the Fourier-transformed propagator by 

( 1 .2) 
X 
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SELF-A VOIDING RANDOM WALKS 143 

with k E [ n, n] d and, here and throughout, the arguments will serve to 
dis.tinguish functions from their Fourier transforms. 

The above model, when A = 0, reduces to the simple random walk with nearest 
neighbor steps; i.e ., the probability distribution p(x, y) governing a single step is 
proportional to the nearest neighbor coupling matrix J xy = 11x _ Yl 1• In general, the 
distribution of the endpoint of a simple random walk after T steps (which is a sum 
of displacements of single steps) is equal to the convolution p* T(O, x ), which 
in Fourier space is just p(k)T. So in the nearest neighbor case, we have 
C;.=o(k, T)=D(k)T, where 

1 d 
D(k)=d L cos(k�<). 

�<=I 
(1. 3) 

We will exhibit an exact expression for C(k, T) in some open neighborhood of 
the origin. Specifically, for any T', we will define a function r r·(k) such that 
for T �  T', 

C(k, T )  = (D(k )erdklf · (edge effects), (1.4) 

We will sho w that for k in some neighborhood of the origin (which depends on T') 
r r·(k) and its first t wo derivatives are 0(,1,) when d� 5 and that the edge effects are 
negligible (these statements will be made more precise belo w ), This is a particularly 
revealing form since, for k small, it mimics the form of the propagator for some 
simple random walk (up to edge effects) and hence makes explicit the fact that self
avoiding random walks behave like simple random walks above four dimensions. It 
also allo ws us to easily compute quantities of interest; for example, we find the 
mean square end-to-end distance: 

(ru(Tf) 
f 0� C(k, T) I i<= 1 C(k, T) k=O 

(1.5) 

� T(l + 0(,1,)); ( 1.6) 

i.e., the effect of self-avoidance is to add a small correction to the diffusion constant 
of the free walk. 

This model has previously been studied by Brydges and Spencer in [ 1 ], who 
introduced the lace expansion and used it to prove diffusive behavior of the 
endpoint of a T-step walk and the Gaussian nature of the scaling limit. They 
studied the Laplace-transformed t wo-point function C(k, z) (the generating function 
of C(k, T)), and used Cauchy's theorem to extract fixed-T information . Their 
results were extended to, and other results proven about, the case of the standard 
self-avoiding walk above some high dimension d0 in [9-11, 7], and in five or more 
dimensions in [ 6]. These works also used the lace expansion and generating 
functions, but in different ways. Related works [3-5, 8] used similar methods to 
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144 GOLOWICH AND IMBRIE 

prove results on percolation and lattice trees and animals. In this paper we also use 
the lace expansion, but with a view towards other models (e.g., branched polymers) 
we dispense with generating functions and work directly with the propagator in 
(k, T)-space using techniques drawn from statistical mechanics. 

The principal technique we use is the polymer expansion. To see how such an 
expansion can arise, we rewrite the two-point function in a more suggestive form. 
We expand the product fl (1 A.b.,"") into a sum of graphs on the interval [0, T]. 
These graphs split into connected components, where a graph that spans an inter
val I is considered connected if every point in the interior of I is spanned by some 
bond in the graph. For an interval I we define the activity 

/l(k, /) = (2
1
dy

/l 
� eik·x 

w:Ex � (s.�G' A.bw,w), (1.7) 
lwl Ill 

where Gc are connected graphs consisting of bonds (s, t) on [0, T]. Then it is easy 
to see that 

C(k, T) 
D(kf 

" " fln Il(k, /1) 
L... � . D(k)II;I • 

" 0 {l,J.�l �� 1 
( 1.8) 

where the {!;} are nonoverlapping intervals in [0, T]. This is a form amenable to 
polymer expansion, but we cannot prove its convergence in this form. Instead, 
following [ 1]  and using the idea of the renormalization group, we first consider 
walks that self-avoid only on short lengthscales and gradually work our way up to 
fully self-avoiding walks. Roughly, we define a sequence of times T1 indexed by a 
number /, and write as C1(k, T) the propagator for walks that self-avoid only on 
times shorter than T1• Then, defining I( T) by T1( TJ = T, we write 

(1.9) 

and find an expansion for CJC1_1 similar to (1 .8). For an appropriate choice of T1 
we can prove convergence of such an expansion. 

The structure of the rest of the paper is as follows. In Section 2 we will exhibit 
the expansion for C,(k, T), the convergence of which will be proven via an 
induction on timescales in Sections 3-6. In Section 7 we use the expansion to prove 
the main theorems, which we now state. 

THEOREM 1 .1 .  For any T' � 2 there exist real-valued functions r r·(k), 
r�.ge(k, T) and T'-independent constants A.0 > 0, f > 0, e' > 0, and l(l > 0 such that for 
any T� T', with 0<A.<A.0 and k such that ID(k)l � T'-f!T' 

(1.10) 
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and 

where u is a multi-index for k-derivatives, and lui� 2. 
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(1.1 1) 

(1.1 2) 

There is also convergence of r r·(k) in an appropriate sense near k = 0 as 
T'-+ oo. This is used in the following theorem. 

THEOREM 1.2. 

(1.13) 

where D = 1 + <f/1 A, with <f/1 independent of T. Also, the scaling limit of the endpoint is 
gaussian in the sense that 

1. C(k/rs, St) -Dt(k2/2d) tm e 
s�w C(O, st) 

for any real t and k E Rd, with the same D as before. 

2. THE EXPANSION 

(1.14) 

We first define the propagator for the model that self-avoids only on scales 
smaller than T1 : 

C1(x, T) = ( 2
1
d) 

T 
L L (1- Abw;<o,). 

w:O-+x O�s<t�T lwl T ls-ti.;T, 
(2.1) 

This gives rise to an activity Il1(k, !), just as in ( 1.7), except now the bonds (s, t) 
in the connected graphs are restricted in length, Is-t I � T1• We then define 

(2.2) 

and it is not hard to see that 
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0 T 
FIG. l. Contribution to CdC1_1• 

Here {11} are again nonoverlapping intervals on [0, T], and {K1} are the 
complementary intervals; e.g., see Fig. 1 .  The last term here acts as an interaction 
between the / 1, so we must do a further expansion to obtain a form amenable to 
polymer expansion. 

First, we make an inductive hypothesis about the result of the expansion: 

Note that this implies 

where 

/- 1 
r���(·)= 2: t5rJ·)(·). 

1 (2.6) 

In the above, exp(F1) is the multiplicative correction to D(k), and rf and r�F are 
edge effects arising from interactions with just one and both edges of [0, T], 
respectively. This form holds trivially for T1 < 2, since this case reduces to simple 
random walk (the shortest subwalk that can intersect itself is two units long). In the 
remainder of this section, we will define t5r,, t5rf, and t5r�F so that Ct/C,_ 1 is in 
the fortp of (2.4). We will then be able to prove estimates on these quantities in the 
following sections. 

We begin by substituting (2.5) into (2.3), to find 

n 
x n (1 + Mlt**(k, K1)), (2.7) 

}�0 

where we have defined 

(2.8) 

(2.9) 
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and {I;} are nonoverlapping intervals with integer endpoints in [0, T], while { Kj} 
are the intervals bet ween the I;'s, as in (2.3 ). 

No w, we see that the interactions bet ween the intervals I; are the terms 
1 + f>Jir, so we m ust expand the prod uct over j. The res ulting s um of graphs splits 
into connected components of t wo types: those connected to the edges by a factor 
of f>Jit** and those that are not. We define activities for both types of connected 
components. The activity of an interval not connected to an edge is given by 

n 
f>fl,(k, J) I I n (f>Jlt*(k, I;) fJnr(k, K;)) f>JI,*(k, I"), (2.to) 

"""-0 {!.) i� I 

where the {I;} are nonoverlapping intervals on J s uch that the left and right 
endpoints of 11 and I11, respectively, coincide with those of J. The activity of an 
interval connected to an edge is 

n 
f>fl!(k,J)= L L TI (JJI,* *(k,K;_dbJI,*(k,I;)), (2.11) 

n I {/1) 

where the {!;} are nonoverlapping intervals on J s uch that the right endpoint of In 
coincides with that of J. The expression for CtfC1_1 no w splits into three parts: 

C1(k, T) 
c,_,(k, T) 

{no interaction with edges } 

+ {interaction with one edge only } 

+ {interaction with both edges }. (2.12) 

In a moment, we will apply the polymer expansion to the piece that does not 
interact with the edges; for no w, define 

n 
P(k,l) L L TI (bfl,(k,I;)), (2.13) 

n=O {!;) ;�I 

where the {I;} are nonoverlapping intervals on I, other wise unrestricted. This 
allo ws us to write 

c,(k, T) 
c,_,(k, T) 

e-rlF 1(k. T) {P(k, T) + 2 L Jflf(k, KL) P(k, /) 
KL 

+ L f>flf(k, KL) P(k, I) Jfl!(k, KR)} . 
KL.KR 

KLnKR=0 

(2.14) 

where KL, KR are intervals contained in [0, T] with left and right endpoints at the 
left and right edges, respectively, of [0, T], and /is [0, T]\{KLuKR}· 



148 GOLOWICH AND IMBRIE 

We now must recast this into the form of the inductive assumption. The first step 
is clearly to perform a polymer expansion on P(k, !), as follows (see, e.g., [2]), 

( 1 I! 

) P(k, I) = exp L' L n (Jfll(k, J;)) L TI A(Js,J,) ' 
n n. Vt .... .J.) I (s,t)<=G' 

on I 

(2.15) 

where (J 1 , .•• ) denotes an ordered collection of intervals on I (otherwise 
unrestricted), Gc are connected graphs on { 1 · · · n }, and A is defined by 

Now, (2.15) becomes 

if lsnl,# 0 
otherwise. 

(2.16) 

P(k, / )  = exp(T JT1(k) + 2 JTf1(k) + JT1F1(k, I)) (2. 17) 

if we make the appropriate definitions. Let 

S= L 
1 

L:' fi (Jfll(k, l;)) L n A(Js, J,), n' n • (Jt, ... .J.) i= 1 G' (s,t)<=G' 
on ( oo,oo) 

where the meaning of 2::' depends on the quantity being defined: 

where we require inf{ J 1 u .. · u J,} to be the left endpoint of I, 

2Jrr1(k) = -s, 

where we require { J1 u · · · u J,} to intersect the right endpoint of I, and 

JrjF1(k) = s, 

where we require { J1 u · · · u J,} to intersect both endpoints of I. 

(2.18) 

(2. 19) 

(2.20) 

(2.21) 

Note that we have begun to recover the inductive form, as JT1 is one of the three 
functions we need. The other two will include contributions from the edge terms in 
(2.14) as well as JT01 and JriFI. To see what they are, we rewrite (2.14) as 

Cl(k, T) 81 IF 
c,�1(k, T) 

=exp(T JT1(k)+2 JT1 (k)-r,_,(k, T)) 

where 

X [1 +2A2(k)+A3(k)+ BJ(k, T)+2B2(k, T)+B3(k, T)], (2.22) 
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00 

Az(k):: L Ml;(k, K)e--IKI&rt{kl 
IKI�t 

a_, 

B2(k, T) = - L i5llf(k, K)e-IK! m<kl 
IKI=T+l 

A3(k):: [ I: bi'If(k,K)e-IKibrtlkl]z 

jKI=l 
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( 2.23) 

( 2.24) 

(2.25) 

( 2.26) 

B3(k, T) = � L [M1;(k, K�)e-IK[I �>rt<k>][Jfi;(k, K�)e-IK�II>TI\kl] KinK�#0 

( 2.27) 

with KL, !, KR defined as in ( 2.14), and K�, K� intervals on (- oo, oo ) that 
intersect the left and right endpoints of [0, T], respectively, as well as each other . 
So we are led to define 

2oTf2(k ) = ln(l + 2A2 + A3) 

= 2ln{l + A2) (2.28) 

c5T}F2(k, T) := ln [ (1 + B1 + 2B2 + B3) 

(l (2A2 + A3)(B1 + 2B2 + B3) 
)] x (1+2Az+A3)(l+B1+2B2+B3) 

( 2·29) 

and we can finish recovering ( 2.4) by defining 

which tells us that 

c5T('(k) := c5T11(k) + ornk) 

c5rnk, r) = c5r�F2(k, T)- r�� 1 (k, T) 

( 2.3 0) 

( 2.3 1) 

( 2.3 2) 
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3. INDUCTION STARTED; MAIN ESTIMATES 

We now begin the proof of convergence of the expansion described in the 
previous section. We achieve this with an induction on T1, the scale on which walks 
self-avoid, with the choice of 

T =2'9/8 , _ . (3. 1) 

Note that for T, < 2 the model becomes the simple random walk, so for I< 1 we 
have r) · l(-) = 0. We make the following inductive assumptions: 

(i) 

(ii) 

(iii) 

lo% JF,(k)l � CuA.T)ull2r:_ f12+e 

lo% oFf(k)l � lit'11 A.T)u112T7_ 1dl2 +• 
(3.2) 

(3.3) { (li6'11A.) T)uii2T7_f12+e for T� T1_1 
lo%r:F(k, T)l � (lifuA.)IT/Ttl T)ui12T2-d!2+e for T,_l < T�N3T, 

(lifuA.)IT/Ttl T)ui/2T/aJT/Tt for T>N3TI (3.4) 
(iv) lloi:C1( ·, T)11�-space � li6'12 Tlul/2 di2P exp(T oF,(O) + 2oFf(O) + or:F(O, T)) 

(3.5) 

where I al denotes the smallest integer greater than or equal to a. Throughout this 
paper we will use the symbol lit' to denote positive real constants independent of 
induction step, k, and T (they may depend on the dimension d). lit'' will denote a 
constant that is independent of lifw while lit' may not be. (i)-(iii) are valid for 
ke u,, where 

and 

for I< 1 
for I?;:; 1; 

(3.6) 

(3.7) 

f, N3, and a3 are constants to be determined in the course of the proof, and we 
choose e = k- A. is fixed smaller than some A-0 and d?J; 5; u is a multi-index for 
derivatives with respect to k;, and lui =L: u;� 2. 

A comment on the origin of the restrictions on k in (i)-(iii) is in order. We see 
that D(k)111 appears in the denominator of (2.8), which must be cancelled by the 
decay of M11(k, I) with I. Clearly this decay becomes slower as T1 increases, so we 
can expect the aforementioned cancellation to occur only for ID(k)l close to one; 
i.e., for any given value of k we can perform the expansion only out to some finite 
value of T1 (which depends on k). Since the long-distance behavior of the walk is 
reflected in the small-k region of C(k, T), the fact that our expansion will only be 
valid in this region need not concern us. In proving the iteration of (iv) we will need 
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to  control the contributions to  the norms from the large-k region, but this is easily 
accomplished (Section 6). 

At the beginning of the induction, l < 1 and all of the <>r& l are zero, so (i)-(iii) 
hold trivially. Also, it is easy to see that (iv) holds for C0(k, T) = D(k) r. So we 
must show that the hypotheses iterate. 

PROPOSITION 3.1. If ( i )-( iv) hold for l 1 then they hold for /, any l ?:- l. 

We proceed in three stages. First we consider the contributions to (i)-(iii) arising 
from the polymer expansion (2. 17), then the corrections due to edge effects 
(2.28) and (2.29). Once the proofs of (i)-(iii) are complete, we can prove the 
iteration of (iv ). 

Since the polymer expansion is in terms of the quantity Mi,, we prove estimates 
on it first. The main result of this section is 

LEMMA 3.2. For any i5' > 0 there exists a choice of <'6'11 so that 

for T� T1_1/6 
for T,_ d6 < T� N2 T, 
for T>N2T1, 

where a2, N2 are constants to be determined and ke V1• 

(3.8) 

Since b, is defined in terms of Ml* and Ml** in (2. 10), we prove estimates on 
these first. Now, Ml** is easy, since from its definition we see 

IMI,**(k, K)l = led�,(k,Kl_ll 
�<'6'' 1n� 1(k, K)l 

and we can use the inductive assumption (similarly for its derivatives). 
i5111* will require more work. We prove 

LEMMA 3.3. 

for Ill � T,-1/6 

(3.9) 

18� i5ll,*(k, !)I� {�<'6''A,)i111ml r )•112 1II" d/2 

(<'6''A_)IIli/Ttl T)•II2T/a(lli/Tt) 
for T,_ d6 <III � N1 T, (3.10) 
for lli>N1T1, 

where k E V1, fixing a1 � !(d/ 4 1) (<'6'f + <'6' A) !'5, with any choice of 6 > 0, and 
fixing N 1 such that a 1 N 1 > d/2 - s. 

Proof First consider the case of u = 0. We begin by obtaining bounds on i5fl1• 
Using the lace expansion of [ 1 ]  (see the appendix for a proof of the first inequality 
below), we see that 
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2m�1 
lt5flt(k, I)I � �' L ,tm L: 0 11Ct(n1> .j ( ·, n)ll�·space 

m = 1 { n;} J::\-1 j = 1 

� L (�',t)m L (20 1 ni-d/2•) 
m 1 {n,) J= I 

(2m- ! 
0 ) xexp 

1
�

1 
(n1F1<n1l 1(0)+2F 1(nJ) 1(0)+F�fn1> 1(n;,O)) , (3. 1 1)  

where /(n) is  defined by T1<n> n, {n1} satisfies :L n1 Ill, at least one n,;;:. T1_1j6, 
all n1 � T1, and * = 2 or 1 ,  with exactly one 1 in the product. In the second line we 
have substituted the inductive assumptions. We can now substitute this into (2.8), 
which yields 

., IJ 

The important term here is t1, while t2 and t3 are just small corrections. We prove 
this in 

LEMMA 3.4. 

where ke U1• 

sup t2t3 � exp(�.lc k2l/l + m�t1.), 
{ni) 

(3. 13) 

Proof Fix a choice of {n;}. Using (i), along with the fact that r, is even in k, 
we see that 

Inserting this into our expression for t 2, we find 

lt21 � exp ( � t1.P III+� n1 
�
��:

1> 
c5F,(O)) 

:!Cexp (�A. k21/ l +"' n.I(JJ..TI+e�d/2) "" L. 1 /(nj)-1 ' 
; 

(3.1 4) 

(3. 1 5) 
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where we have used (i) and performed the sum m the second line. Now, 
Tl+e d/2 �L>T I Tl+e d/2 �LJ d h /(nj)-1 <10 l(nJ)' so nj l(nj) 1 <11> , an we ave 

( 3.16) 

The third term t3 is even simpler as no cancellations need occur; we just directly 
substitute the inductive hypotheses to see that 

and we are done. I 

sup t3::;; (e-ol.)m 
{ni} 

Next we must handle the main term, t 1• We first need 

LEMMA 3.5. 

where *• {n;} are defined as in (3.11). 

for III::s;T,_1j6 

for T,_,j6 <Ill::;; N1 T1 

for Ill> N1 T,, 

( 3.17) 

(3.18) 

Proof For Ill::;; T1_1j6, we observe that at least one n; must be longer than 
T,_ tf6. For (T1_ t/6) <Ill::;; N1 T" we note that at least one of the n; must be 
longer than III/(2m 1 ). We use the condition L: n; =III to fix the length of the 
longest interval given the other 2m-2. Inserting a combinatorial factor of (2m 1) 
for which interval is long and taking * = 1 on the long interval, we obtain 

(3.19) 

For III> N1 T,, we set * 2 on all n; as an upper bound. We note that at least 
I III/2T,l of the n; must be longer than l/l/2(2m-1) in order to satisfy L: n; =Ill, 
subject to the constraint that n;::;; T1• Next insert a combinatorial factor of ( rfn'12-A1) 
for which intervals are longest, and on these intervals use the bound 

£ n-d/4::;; 1'(1' ( Ill ) ' d/4 

n�llll/2(2m-l)l 2(2m-1) 

:lS; 1'(1' ( m ��;r/4 
t TJ d/4 (3.20) 
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The short intervals contribute a constant factor each. So 

" n -d/2• & u;lm ( 2m- 1 )((£)/ ( Tt) d/4- I 
T I

-
d/4)r lli/2T;l 

{-;:} 1 
n

, """ 'li) I/I//2Ttl 
'li) m 

/1/ 1 • 

Next use the general result (j) � (q('(i/)) ) 1  to see that 

L Tin1-d!2•�qr'mqr'III/T, _1 
T)il2l(l-d/4)(1II/T1) [(mT ) lll/mT,J (m/2)(d/4l 

{n;} i /1/ 

� qr'mqr'lli!T!Tjl!2)(!-d/4 )(III/Til 

which completes the proof. I 

(3.21) 

(3.22) 

Finally, we put the results on t1, t2, and t3 together to bound M/1*. We note that, 
for k near 0, 

and when /D (k)/ > 61 along with k near 0, we have 

k2 <((jf
ln T1

• Tt 

(3.23) 

(3.24) 

We require A. small and fix/so that N1(((jf+q(A.) <e, and noting that the series in 
A. starts at some m:;:::: I ll//T1l, we obtain the result for u = 0 (the fJ in the definition 
of a1 comes from the derivatives, which we consider next). 

To handle the derivatives, we must consider their action on each of the four 
terms that constitute C5J/1* (and Leibnitz's rule gives us a factor in front that is 
dominated by the powers of A.). We easily see 

( ( 1//2 ) lul/2 ) /o;;e 111 r,_t(kl/ � qr A. -r;- In r1 + CG/.. /f/lul/2 e 111 r,_t(kl 

/o;; fJIIt(k, I)/� (((j /f/lul/2) L (q(A.)m L 
(20 1 nJ

-d/2•
) 

m 1 {n1} I 

xexp c;�
1

1 
(n1T1(,.1l 1(0) + 2Tf(,.1l 1(0) + T�fn1>_1(n1,0))

) 

/ilk D(k)-111/ � 
( qr ('i

,

2 
ln T,yul/2 

+ qr /f/lul/2
) 

D(k) III 

Now, use 

any fJ >0. 

(3.25) 

(3.26) 
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This allows us to absorb the extra factors of III that the derivatives give into the 
exponential, which makes subsequent bounding of derivatives convenient: the 
action of a derivative on our estimates is just to bring down a factor of Tf12• Note 
that the same is true for ()II,**. I 

We can now combine the results on ()Jir and ()Jlr*. We will need 

LEMMA 3.6. Define 

T-1 
F(T) = L ()JI1*(k, I) ()Jlr*(k, K), (3.27) 

IKI =0 

where k E U1 and I= [0, T]\K. Then for any()'> 0 there exists a choice ofCCu so that 

for T< T1_1j6 (3.2 8) 
for T� T1_ tf6. 

Proof Fix (j' > 0 and for now take lui = 0. For T < T1_ d6, we have 
()JI,*(k, T) = 0. We separate the A. dependence from the T dependence by noting 
that if we divide each term in the sum by (CC'A.)IIli/Til (CCuA.fiKI/Ti�tl we obtain, for 
(T1_1j6) � T� 2 N3 T1_1, 

� t'L''T3 + e-df2Te-d/2 
-..::; 10 /- 1 ' 

where we have used (3.10) and (3.9), and for T� 2N3 T1_�> 

where we require a3, N3 to satisfy a3N3>d/2-2-e. 

(3.29) 

Now we bound the sum by multiplying this result by the leading order of CC A., 
which we find by noting that the bonds in ()JI1* are T1 units long while those in 
()JI,* * are only T1_ u meaning that at most one power of A. can come from the 
()Jlr * at leading order. Hence the leading A. dependence is, for T � T1, 

(3.31) 

and for T > T, it becomes 

(3 .32 ) 

We see that by taking CC11 large enough we obtain the result. 
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For I ul > 0, the derivatives bring do wn the desired factors of T1, along with a 
harmless factor from the Lei bnitz r ule. I 

We are no w in a position to prove Lemma 3.2: 

Proof Fix J' > 0. For the n = 1 term, we have {>ll1 = Dfl1* , and so the res ult 
follo ws from Lemma 3.3 as long as we req uire a2 � a1, N2 ";3; Nu with �11 large 
eno ugh. 

No w consider the n> 1 terms . First let lui = 0 . For T< T1_1j6, all of the 
s u bintervals in the partition of [0, T] are shorter than T1 _ 1j6 and hence the {>flt* 
terms are zero. 

For T < N2 T1, we take { J;} a partition of [0, T] and note that the longest 
interval has length at least T/n. So with �u large eno ugh we have 

n> I {J;} 

� � ( """ , )IT/Til T"- d/2 -..:: 2 "011 11. • 

For T>N2 T0 we look at 

IJfi,(k, T)l n >!terms Tf2(T/Ti) 
n I 

� L L fl (IMI,*(k, I1)T/2(11JI/Ti)IIM11**(k, K1)Tf2<IKJIITI)I) 
n>l {I;} }� I 

X lbflt*(k, 111) Tf2(1l.I/Ti)l 
{>' � 
2 L (�uA)max(n,IT/Til) (sd" (sz)"-1

, 
n>l 

(3.33) 

(3.34) 

where we have analyzed the ). dependence as in the proof of Lemma 3.6, inserted 
o ur bo unds for bll1* and bfl1**, and defined s1, s2 as 

NtTI 
sl = 2: �I III"-d/2 T/2{111/Ti) + L �'T�a2-at)(III/Ti) 

Ill� I Ill> NtTI 
��'T7�f12 2s, (3.35) 

where we fix a2 s uch that a2N1 � 1-3e and (a1- a2)N1 > d/2- 1 + 2e. Also, 

N3T1-1 
s2 2: �' IK12+e-d/2 Tf2(1KI/T)) + L �')c'<fiiKI/Ti-!lT[_aJ(IKI/Ti-tlT/2(1KI/Tf) 

IKI �I IKI > NJTI-! 

(3.36) 
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Note that we have used the fact that JIIr* contains bonds of length at most T1_1, 
so after we pull out a factor of A_IIKI/Ttl we are still left with a factor of A_'CIIKI/Tt�tl 
for T1 � 2. So the n > 1 terms give us 

{>' 
lbil(k T) l Taz(T/Tt)� -" (� A.)max(n.IT/Ttll(T5-e-d)n-1 r2-2e-d/2 I ' n > !terms 1 ---=: 2 L..., 11 /- 1 1- 1 

n>1 

� (j' (w A_)l T/Ttl 
"" 2 'fi>ll • (3.37) 

For lui > 0, again the derivatives bring down the expected factors of T1, along 
with harmless factors from the Leibnitz rule. I 

4. CONVERGENCE OF POLYMER EXPANSION 

LEMMA 4.1. For any (j' > 0 there exists a choice of C€11 such that 

L: IDfi,(k, T)IIII1::::: J'C€11 C€'1A.j! nT:�:-d12 lll 
I r,J 

T,_1 for Il l �-6-, (4.1) 

where k E U1 and the sum is over all intervals I c (- oo, oo) that intersect some 
interval l. 

Proof We write 
IJI 

L: ( ·) = 2: ( ·) +  L: 2: (.) (4.2) 
In J }� 1 I 

inf{/} �j 
00 00 

= L III1+ 1 IDfii(k, I)l +Ill L lflll(jfll(k, I) I, (4.3) 
Ill� 1 Ill� 1 

where we have defined the origin to be at the left endpoint of l. Apply Lemma 3.2, 
fixing N2 so that a2N2 > d/2- e. I 

We are now in a position to prove convergence of the polymer expansion. We 
begin with JF1, defined in (2.19). We overcount configurations of intervals by 
requiring only 11 to satisfy the condition inf { 11} = 0 and inserting a combinatorial 
factor of n for which interval has its endpoint fixed. We do not restrict the other 
intervals. We can now use standard techniques to bound the sum (we only sketch 
the argument here; see [2] for details): first note that, given a connected graph Gc 
and a compatible configuration of intervals {l;}, Dcs.r)EocA(l,l,) = (-l)b(GCl, 
where b(  Gc) is the number of bonds in Gc. Then we have 

12:(-t)b(GC) I ::::: L: t; 
Gc Trees T 

on { 1, ... ,n) 

(4.4) 
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i.e., for an upper bound we can discard bonds ( 1 +A) until the intervals are 
connected in a tree structure (see [2] for proof). Recalling that we are summing 
over ordered collections of intervals, we choose J1 to be the root by thinking of it 
as attached to an additional vertex with coordination number fixed at one. We then 
form a tree of n + 1 vertices with coordination numbers (1 ,  d1 + 1, ... , d"' + 1 ) , 
defining K to be the number of vertices with coordination number greater 
than 1. We choose J2, ... , Jl+ d, to be the intervals connected to J1, then 
J 1 + d, + 1, ... , J, + d, + d2 to be those connected to J 2, etc., and multiply by a 
combinatorial factor of the number of trees with this structure (n 1 )!/(d1! . . · d"'!) 
(given by Cayley's formula). Summing over all trees of this type, we arrive at 

1 n- 1 
lbr,(k)l � L - (n) L L: L L: 

n = I n "= I J1 d, I (J)d1 
inf{ Jt} = 0 

X L L ... L L 

dt d2 n 
X fl A(J1' Jl +st) fl A(J2, J1 +dt +s2) "' fl lbh,(J;}I ,  (4.5) 

Sj =I i=l 

where we have defined 

(4.6) 

and the { d;} satisfy 
I( 
L d; n 1. (4.7) 
i=l 

Now fix n, K, and the { d;} and perform the sums on the { J;}. Apply Lemma 4.1 
in the following manner: the terminal intervals (those furthest down the tree) give 
factors of �'ATJ�:-d/2111 , where I is the node they are forced to intersect. So if d, 
terminal intervals overlap some J, and J is forced to intersect some J', the ::E,,..,,. 
gives 

L lf>hl(k, J)l (�'A.TJ�t-d12IJI)d1�(�',qd,+l (d,!) TJ�:-d12ll'l, (4.8) 
J,;J' 

where we have used T J � t-d/2 T1 � �'. Note this gives the same power of T1_ 1 
multiplying the length of the interval IJ'I as did the terminal intervals. So we can 
proceed in this manner up the entire tree until we get to the root, which requires 
special treatment as it is a restricted sum: for d1 = 0, 1 we can choose �11 so that 
for any f>' > 0 

00 
L lbh/(k, /,)1 (r:�: d/21/ll)d'�b'�IIATJ�f d/2 

lltl = 1 
(4.9) 
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while for d1 � 2 we find 

'"" 

I iJI1Ak,ldl (TJ.�t d/21/tl)dl�J''Ifli'{Tf�It' d/2'Ti+c+dJ d/2 
lid= l 

So ( 4.5) becomes 

d/2 

n I 

X I I (d I · �·d ,) (dl! ···dk!). 
k I {d;) I· k• 

159 

(4.10) 

( 4.11) 

Now, there are G i) solutions to the equation :E� = 1 d; = n 1 ,  and 
LdZ-i)=2n-2, SO 

( 4.12) 

which is the desired result for lui= 0. Derivatives act on the {)/11 terms to bring 
down a factor of T ju112 along with harmless factors from the Leibnitz rule, so finally 
for 'lfu large enough, any c)' > 0, 

( 4.13) 

Clearly, by looking at (2.20) we see that oFf1 goes exactly like or,, except 
instead of requiring the root sum to have one endpoint fixed we only require it to 
intersect a given point. So the root sum gives a factor of Tt! t- d/2, and we can 
obtain for any o' > 0 

( 4.14) 

We must treat Jr;Ft a little more carefully because of its T dependence. 
For T � T1_ 1, we overcount contributing configurations by only requiring 
{J 1 u .. · u J n} to intersect 0 instead of both 0 and T. This reduces it to the case 
of c5F71, so that result applies. 

For T1_1 < T� N3 T1, we note that at least one of the intervals is longer than 
T/n, so we require the root to be at least this long and put in a combinatorial factor 
of n. Now, every configuration that contributes must have at least r T/T1l powers 
of A, since they must all have connected sets of intervals that stretch from 0 to T. 
We overcount configurations by allowing some that do not stretch all the way, but 
we multiply these by enough powers of A so the total is IT/T1l. We then proceed 
as before, and here the root sum yields, for d1 = 0, any o' > 0 with 'lfu large enough, 

I ("ifuA)max<rT/Ttl rlfti/Ttl,Ol !fd liif1,(k, ldl �o'("ifnA)rr;Ttl (02+e d/2 
(4.15) 

lftl;;>cT/ll n} 

595/217/1·11 
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and for d1 � 1 
00 

L (�uA)max<rT/Ttl-lllti/Ttl.Ol l ltllbflt (k, /dl (T��{-d/21/J!)d' 
IIJI;;. T(n 

� b' (�Il A )IT/Ttl Tf�l
l +e d/2)T7 + e+ d, d/2 

�b' (�uA.)IT/Trl T2+e-df2 

which is the desired result. 
For T> N3 T1, we show that for any b' > 0 with �11 large enough, 

l c:5FIFI (k, T)l T�J(T/Tr) � c:5' (�11 ,t)IT/Trl 

which implies the desired result. To show this we will need 

LEMMA 4.2. For any o' > 0 there exists a choice of �11 such that 

L lofl, (k, /)I IN TflWI/TrJ 
I r.J 

for IJI�
T�_\ 

where ke U1• 

( 4.16) 

( 4.17) 

( 4.18) 

Proof We fix a3 so that a3N2 � �· Then everything proceeds as in 
Lemma 4.1. I 

We now proceed as in the proofs of c:5F1 and c:5Ff1, finding 

lc:5FIFI (k, T)l Tfl(T/Tr) � L c:5' (�11 ,t)max(n,IT/Trll 2nTI�f d/2+ 1/4 
n 

( 4.19) 

Once again, derivatives yield a factor of Tlul/2• So we have shown, for any c:5' > 0 
and �II large enough, 

for T� T1_1 
for T, 1 < T�N3T1 (4.20) 
for T>N3T1• 

5. EDGE EFFECTS 

In this section we obtain estimates on the edge effects (2.28) and (2.29), which 
allows us to complete the proof that (i)-(iii) iterate. It is clear from lln(l + x)l � 
�, lxl for small x that we need only bound the A; and B1 and the results for 6Ff2 
and 0F�F2 Will follOW. 
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LEMMA 5. 1 . For any b' > 0 there exists a choice of �n such that 

where kE V1• 

161 

( 5. 1) 

Proof Fix !5' > 0 .  Since A 3 = A�, we need only prove the res ult for A 2• Recalling 
our definition ofF in (3.27), we see that 

n 

!5fl;(k, K) = z: z: n F(l;), (5.2) 
n 1 {J;} i=1 

where {11} is a partition of K. Using the same methods as in Lemma 3.2, we find 
for any b" > 0 and �n large eno ugh, 

for IKI � T1-1/6 
lo� Mif(k, K)l � {�"(�w1.)11Kt/m r}ul/2rt�r- d/2 IKI"- d/2 

b"(�11,1_)11KI/Ttl T}uii2T7�;- d/2T 1-aJCIKI!Tt) 
for T,_tf6� IKI <N2T1 
for IKI�N2T,; (5.3) 

i.e., �5fl; o beys the same bo unds as !5fl1 times a factor of r;�;-d12. So immediately 
all the res ults we proved involving bll1 carry over, with this extra factor. 
Derivatives of A 2 can act on the exponential term as well as the �5fl; term. In this 
case, they yield an extra term of at most A.(�(IKI2/T1)1ul/2+� IK11ul/2). Applying 
(5. 3) to bo und the s um, and using smallness of A. to ens ure (a2- �A.)N2 > d/2 e, 
we o btain 

Inserting this into the definition of !5Tf2 immediately yields the res ult. I 

LEMMA 5. 2. For any b' > 0 there exists a choice of �11 such that 

where kE U1• 

for T� T1_1 
for T1_1 < T�N3T1 
for T> N3 T" 

(5.4) 

( 5.5) 

Proof We examine each of the B1 in s uccession. The res ult is o bvio us for B1 
from ( 4.20 ). 

Fix b' > 0. We write B2 = v1 + v2, where the v1 are the t wo s ums in ( 2. 25). First 
look at v 1 : for T � T1_ 1, apply the res ult from A 2 an as upper bo und. For 
T1_1 < T� N3 T1, an application of ( 5. 3) yields the res ult. For T> N3 T1, we note 
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two requirements on N3 (which we will use below when we fix N3): N3 > N2 and 
(a2-a3 -�A,)N3>4+s-d/2. Applying (5.3) once again gives the result. 

For v2 and T,;;_ T1_1, we note that i5fiJ(K) =0 unless I KI � T1_i/6, so we assume 
this. Then one of K and I is longer than T1_ i/12. We sum the shorter interval, and 
use the fact that the size of the longer interval is fixed by that of the shorter. When 
I is the longer interval, we use 

li5FJF1(k, /)I ,;;_(j'���;.n�:d;z (5.6) 

to bound the longer interval, along with 
T 

L li5fiJ(k, K)e-IKI.5Fi(kll ,;;_ J'�11AT:�[•-d (5.7) 
IKI I 

to bound the sum on the shorter interval. When K is the longer interval, we use 

115fiJ(k, K)l exp(�J.,T)�[-d12IKI),;;_i5'(�nA) T7�t-d121KI'-d12 

(5.8) 

to bound the longer interval, and the sum on the shorter intervals is bounded by 
T 

'L IJnFI(k, n1 ,;;_ (j'�n;.n�:-d12· 
Ill o 

Multiplying these bounds, we obtain the result. A similar argument gives the result 
for T1_1 < T,;;_ N3 Tt. 

For T> N3 T1, we examine 
T·····l 

lv2l T73<r;m,;;_�' L [ li5fiJ(k,K)I T7311KI/TOexp(�AT)�t d/2IKI)] 
IKI=O 

. [IJFlF'(k, !)I T�J!III/Ttl] (5.9) 

but we can bound the last term by J'(�uA)riii/Ttl for III >N3T1 (see (4.20)), and for 
any Ill ,;;_ N3 T1 we have 

so we see that 

IJnFl(k, !)I T?<lli/Tt) ,;;_ J'(�u;.)riii;r,l111a)N)+2+<-d/2 

,;;_ i5'(�uA)riii/2l T73NJ+2+<· d/2 (5.10) 

X [ Nf' IKie-d/2 TfJ(IKI/Tt) + L T/(a2-aJ-'{/).)(IKI/Tt)J IKI Tt-t/6 IKI > N2Tt 
,;;_ J'2(�w�fT!Ttl [TfJNJ +2 +e-d/2Tj�le-d+ a3N2 

( 5.11) 
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So we fix N3, subject to the above conditions along with a3 N3 < d/2-3e-�, 
to obtain 

( 5.12) 

So we have completed B2 for lui 0. The derivatives give the usual factor of T}u112 
by the same mechanisms as in Lemma 5.1. 

B3 can be handled in exactly the same manner as 82• I 
The proofs that (i)-(iii) iterate are now complete if we choose ()' small enough 

in the various lemmas and �II large enough. 

6. INDUCTION COMPLETED 

We now close the induction by showing that (iv) holds for /. In this section 
we fix T:;;:; T1+1• We estimate the LP norm by splitting k-space into [/] + 1 
disjoint regions: 

U1= {k: ID(k)i :;;:;(q 
for y=l- [!], ... , /-1. 

(6.1) 

We first handle U1, looking at k in the neighborhood of the origin (analogous 
results hold for the rest of U1). For these values of k we have the expression 

C1(k, T) = D(kf exp(TF1(k) + 2Ff(k) + rnk, T)) (6.2) 

which, since we have proven (i )-(iii) iterate, satisfies 

ICJ(k, T)l � ID(k)l T exp(TF,(O) + 2F1(0) + nF(O, T) +(&ATe). (6.3) 

Also, from (iHiii) it is not hard to see that when l ui = 1 ,  

lo� exp( rr,(k) + 2r� (k) + r�F(k, T))i 

��ATiki exp(TTI(k)+2T7(k)+F�F(k, T)), (6.4) 

and when lui 2 we have 

lo� exp(TF1(k) + 2Ff(k) + r�F(k, T))i 

� A(�T2k2 + �T) exp(TF,(k) + 2TT(k) + rnk, T)). (6.5) 

Using these bounds, it is easy to see that 

[ ]I� J 18�C1(k, T)IP ddk ��rlui!Z 
ke U1 

(6.6) 

Now, the constant here is some universal constant plus corrections of O(A), and 
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on ly the corrections depend on �11 and �12• By taking lam bda sma l l  and choosing 
�12 appropriate ly, we can arrange for the � in (6.6) to be !�12• 

Next examine the integra l over UY, y::::; l- 1. For no w take y = l- 1 and lui 0, 
and work in the region of U Y c losest to the origin (ana logous arguments ho ld for 
the rest of Uy). Reca l ling (2.3), we write 

C1(k, T) exp(- TF1(0)- 2 Ff(O)- rno, T)) 

n 
X n ([c5lll(k, l;)e-ll;IT!(O)][CI--l<k, K;)e-IK;IT!(O)]). (6.7) 

i=1 
No w, in U1_ 1 we can app ly our expansion to C 1_ 1, so it is not hard to see that 

I cl-I (k, K)l e -IKI r,(O)::::; �(D(k )e"'-'k2+ <c.<r/__+t-d/2)1KI 

A lso, we can use (3.11) to see that 

ltJD,(k, 1)1 e -III Tt!O)::::; {�� A.)fiii!T!l l/l-d/2 
(�A_)IIII/Ttl y1-al!lfi/Tt) 

for III::::; T1-1/6 
for T1_If6< Ill :::;N,T1 
for III > N, Tt . 

(6.8) 

(6.9) 

Next we use the fact that the longest interva l of {I;, K1} is longer than T/(2n + 1 ), 
and its length is fixed by those of the 2n shorter interva ls. So as an upper bound 
we let the sums over the shorter interva ls be unrestricted, 

00 

L lc'5lll(k, 1)1 e-III r,(Ol::::; �A.TJ�f/2 
III� 1 

00 

" IC (k K)l e-IKIT/(0)� [�k2-�2Tl+e-df2]-l 
L.. l-1 ' "' 1-1 

IKI�O 

(6.10) 

(6.11) 

where in the last line we have used e��(ln TdTt). Inserting these into (6.7), 
we find 

n�l 
X (� _Ii_)n 

(�A.Tl-df2)n 
In T1 1-1 

3(T/TJ- !l 
::::; T [<c(T/Tt)+� L T;T['IJ(T/nTi)(�A.t, 

n=l 
(6.12) 
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where the upper limit on the sum arose, since bll1(k, I)= 0 if I is short enough. We 
bound the sum by (number of terms)· (maximum value): 

(6.13) 

In the case lui> 0, we can use (iHiii) to bound derivatives of all of the terms 
on the right-hand side of ( 6. 7 ). It is evident that all factors due to these derivatives 
are dominated by the exponential in ( 6.13 ). Since T ':;!: T1 + 1, with A small and an 
appropriate choice of '6'12, we can arrange for the contribution from U11 to 
the norm to be less than any inverse power of T times any inverse power of l, so 
in particular, 

[ tE u,�l 
lozc,(k, rw ddk J;p 

� � '6'12 Tlul/2 -di2P exp( TT,(O) + 2rr(O) + rno. T)) c2�2) . (6.14) 

We can handle the other regions Uy in the same fashion: e.g., for y 1-2 
we write 

C,(k, T) = L L c,_2(k, Ko) 
n () (!;} 

n 
X n ([bll,(k, I;) + JIT,_l(k, I;)] c,_2(k, K;)) (6.15) 

i�l 

and proceed as before to find an expression like ( 6.14 ). We sum these terms, along 
with ( 6.6 ), to see that ( iv) holds for I, and Proposition 3.1 is proven. 

7. RESULTS 

The proofs of Theorems 1.1 and 1.2 are now almost trivial. With the completion 
of our induction we have an expression for the full propagator valid for T � T', 

C(k, T) = c,(T')(k, T) 

= (D(k)er'lnfklf exp(2F�n(k) + r�rn(k, T)) (7. 1 ) 

with k E U1rn• along with bounds for the quantities in the last line. This proves 
Theorem 1 . 1 if we choose 

(7.2) 
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We can also compute the mean square end-to-end distance (given by (1.5)). We 
find 

d 
(w(T)2) = r- I a�)Trl(T)(k) + 2r�(T)(k) + r:rT)<k, T))ik=O· (7.3) 

p=l 

We have bounds on the edge terms, for any lui= 2 

i8�(2F�Tl(k)+Flfr)(k, T))ik=o::;;rt'.l.Tmax(3+2• d/2,0J (7.4) 

along with, for T::;; T', 

18�FI(T')(k)- O�FI(T)(k)ik o::;:; rt'.J.T2+le--d/Z (7.5) 

which tells us that o�F1rrJ(k)lk=o converges to a limit o�r oo of order ). as T--+ oo 
(which is zero for the mixed partials), and hence that 

(7.6) 

Putting these results together yields the first result of Theorem 1.2. To prove the 
second, we note that for any fixed values of k, t there exists an s0 such that we can 
apply our expansion to the terms in the scaling limit of the endpoint for every 
s � s0• So the limit becomes 

. (D(k/Fs)ertcs,1(kl-f7l)st er":/gelkl-f7,stl 
hm _,.edge s- 00 ( eFtrsn(O) )'I e st (O,st) (7.7) 

Now, the edge terms cancel in the limit s--+ oo (using Taylor's theorem along with 
Theorem 1.1 ), and D(k/ Fs Y' =:-- exp(k2t/2d). Also, by Taylor's theorem, 

(7.8) 

where 1Js is on the line segment stretching from 0 to kfFs. We can see that 

lim o't.FI(st)(1Js) a�r 00 (7.9) 
s- co 

by using the fact that 18� <5F1(k )I is continuous in k for k E U, and exponentially 
small in /, along with the comment following (7.5 ). This proves the second part of 
Theorem 1.2. I 
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APPENDIX A 

In this appendix we derive the bounds on a� MI1(k, T) used in (3.11 ). We closely 
follow a similar derivation (of the Laplace-transformed quantity) in [1]. We begin 
by bounding ll1(k, T), defined by 

(A.1) 

where Gc are connected graphs conststmg of bonds (s, t) on [0, T] satisfying 
Is- tl � T1• Next we use the fact that every connected graph can be uniquely 
decomposed into a lace Sf and a set of bonds %(Sf) compatible with the lace. Here 
a lace is defined to be a minimally connected subgraph, i.e., a graph of the form 
shown in Fig. 2, and an m-lace is a lace consisting of m bonds. Bonds (i, j) 
compatible with a lace Sf are those such that the lace of Sf u (i, j) is equal to Sf 
(see [ 1] for a more precise definition). Hence, we can split the sum over connected 
graphs into a sum over laces followed by a sum over bonds compatible with the 
lace, which we then resum: 

L: n (- Ab w,w) 
G' (s,I)E G' 

= I L: n ( - Abw,w) n ( 1 - Ab w,w,). (A.2) 
m�l m-laces (i, j) E !f' (s,I)E%(!1') 

!!' 

Note that an m-lace is uniquely specified by a set of 2m- 1 integers { n;} subject to 
the restrictions 

0 

2m- ! 
n; ?3 1 for all i 

L n;=T 
i=l 

for i = 2, 4, ... , 2m - 4 

FIG. 2. A 3-lace. 

(A.3) 
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As an upper bound, we discard those factors of ( 1 -A<\,,.,,) that connect different 
intervals n;. The effect of this is to break up our walk w into 2m 1 independent 
subwalks, each of which propagates according to C1, and with restrictions on the 
various endpoints given by the lace: 

The self-intersections of the walk, governed by the lace, occur in a simple pattern 
of which we can take advantage. Define the operators which act as multiplication 
and convolution by a propagator, 

which give us 

Mn:f(x)�--+ C1(x, n)f(x) 

Cn:f(x)�--+ L Ct(X y, n)f(y) 
y 

(A.5) 

(A.6) 

117/(k,T)I �� LAm L (Cn1Mn2···Cn2m�JMnlm�2C,(-,n2m-d}(0) 
m;;;, I (n;} 

2m-! 
��LAm L n IIC,(-,nj)II:·•P;�·roo.oneoo' 

m;JJ>I {nil J=l 
(A.7) 

(In the last line we have used Lemma 5.8 in [ 1 ] , an application of Holder's 
inequality). The norms here are all L2 except for one which is L00 (we have the 
freedom to choose which one). Next use C1(x,n)�Cr(x,n) for all x, n, and /� /'. 
This, along with the fact that ni� T1 and the Hausdorff Young theorem, yields 

2m I 
117,(k, T)l � � L Am L n IIC/(nj)-1( ·, nj)ll:-�t� 00, one 00 

m;JJ>I (n;} j=l 
2m-1 

�� L Am L n IIC/(n;) l(·,nj)II!•SPf��l.onel' (A.8) 
m;;, 1 {n;} J-l 

Next consider 6111• The terms in 111 and 111 1 in which all bonds are of length 
Is tl � T1 1/2 exactly cancel each other. Hence each term in 111, 111_1 that 
contributes must have at least one long bond Is tl � T1_1j2. Denote by 11; and 
11;_1 the sum of such terms, and use the bound 161711 � 117fl + 111;_ tl. Next we 
note that the above condition implies that at least one n; � T1_ tf6, so we require 
this to obtain an upper bound. We see that 

2m I 
l olll(k, T)l � � L Am L n IICt(nj)-1( ·, nj)II!·�P;�·r I, one.. (A.9) 

m;;;, I {n;} J- I 
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where, as an upper bound and for later convenience, we relax somewhat the 
conditions (A.3) on the {n;} and only require all n;E [1, T1], L;n;= T, and at least 
one n;� T1_1/6. 

This bound can easily be modified to allow k-derivatives. We write the 
displacement of the full walk ro(T) in exp(ik · ro(T)) as a sum of displacements of 
the subwalks, and act on this product according to the Leibnitz rule. We find 

2m-I 
lo%8ll,(k,T)I::;;({? L AmL L n II(·)UJC/(nj)-l(·,nj)ll:-!:;�er'XO,Oneoc' 

m'? 1 {ni} ·lui] }= 1 
2m-! 

:::;;({?L Am L L n nakcl(nj)-l(·,nj)ll!'!:;�erl.onel, 
(A.lO) 

m;;>l {n,} {ui} j=l 

where the sum over {u;}, with L: lu;l =lui, is over the possible ways of distributing 
the derivatives in applying the Leibnitz rule. 
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