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We study a T step weakly self-avoiding random walk in d>4 dimensions by treating it as
a one-dimensional statistical mechanical system. We use the polymer expansion along with the
lace expansion to arrive at an expression for the Fourier-transformed propagator of the
self-avoiding walk, valid in some neighborhood of the origin, that up to small edge effects is
equal to that of some simple random walk. This yields simple proofs that, as T — oo,
the variance of the endpoint is asymptotically linear in 7 and the scaling limit of the endpoint
is gaussian.  © 1992 Academic Press, Inc.

1. INTRODUCTION AND RESULTS

We study a model for weakly self-avoiding random walks on a d-dimensional
hypercubic lattice. The model is defined by the two-point function

1 s
Clx, T)E(Z) Y Il (1-4,.) (1.1)

w:0—-x 0<s<t<T

lw| =T
which is proportional to the probability of travelling from 0 to x in T steps. Here
d is the dimension of the lattice, w: [0, T] — Z¢ any path on the lattice beginning
at the origin with nearest neighbor steps, and 2 the strength of the self-interaction.
We also define the Fourier-transformed propagator by

Ck,T)=Y e**C(x, T) (1.2)
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SELF-AVOIDING RANDOM WALKS 143

with ke[ —n, n]? and, here and throughout, the arguments will serve to
distinguish functions from their Fourier transforms.

The above model, when 4 =0, reduces to the simple random walk with nearest
neighbor steps; i.e., the probability distribution p(x, y) governing a single step is
proportional to the nearest neighbor coupling matrix J,, =1,,_, ;. In general, the
distribution of the endpoint of a simple random walk after T steps (which is a sum
of displacements of single steps) is equal to the convolution p*7(0, x), which
in Fourier space is just p(k)”. So in the nearest neighbor case, we have

D(k)

|-

d
Y, cos(k,). (1.3)
u=1

We will exhibit an exact expression for C(k, T') in some open neighborhood of
the origin. Specifically, for any T', we will define a function I'(k) such that
for TS T,

C(k, T)=(D(k)e"™*))". (edge effects). (14)

We will show that for k in some neighborhood of the origin (which depends on T")
I' (k) and its first two derivatives are O(1) when d> 5 and that the edge effects are
negligible (these statements will be made more precise below). This is a particularly
revealing form since, for k small, it mimics the form of the propagator for some
simple random walk (up to edge effects) and hence makes explicit the fact that self-
avoiding random walks behave like simple random walks above four dimensions. It
also allows us to easily compute quantities of interest; for example, we find the
mean square end-to-end distance:

0 C(k, T
(o(T)*)= Y, —ké(k( T)) .

p=1

~ T(1+ O(4)); (1.6)

(L.5)

i.e., the effect of self-avoidance is to add a small correction to the diffusion constant
of the free walk.

This model has previously been studied by Brydges and Spencer in [1], who
introduced the lace expansion and used it to prove diffusive behavior of the
endpoint of a T-step walk and the Gaussian nature of the scaling limit. They
studied the Laplace-transformed two-point function C(k, z) (the generating function
of C(k, T)), and used Cauchy’s theorem to extract fixed-T information. Their
results were extended to, and other results proven about, the case of the standard
self-avoiding walk above some high dimension d, in [9-11, 7], and in five or more
dimensions in [6]. These works also used the lace expansion and generating
functions, but in different ways. Related works [3-5, 8] used similar methods to
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144 GOLOWICH AND IMBRIE

prove results on percolation and lattice trees and animals. In this paper we also use
the lace expansion, but with a view towards other models (e.g., branched polymers)
we dispense with generating functions and work directly with the propagator in
(k, T')-space using techniques drawn from statistical mechanics.

The principal technique we use is the polymer expansion. To see how such an
expansion can arise, we rewrite the two-point function in a more suggestive form.
We expand the product [] (1 —46,,_,) into a sum of graphs on the interval [0, T'].
These graphs split into connected components, where a graph that spans an inter-
val I is considered connected if every point in the interior of / is spanned by some
bond in the graph. For an interval 7 we define the activity

I\
MeD=(35) T T T T (B (17)

x w:0—-x G (s5¢)eG
[e] =17

where G are connected graphs consisting of bonds (s, ¢) on [0, T']. Then it is easy
to see that

Ck,T) LIk 1)
D(k)T - Z Z H D(k)llil’

n=0 {I}j_, i=1

(1.8)

where the {;} are nonoverlapping intervals in [0, T']. This is a form amenable to
polymer expansion, but we cannot prove its convergence in this form. Instead,
following [1] and using the idea of the renormalization group, we first consider
walks that self-avoid only on short lengthscales and gradually work our way up to
fully self-avoiding walks. Roughly, we define a sequence of times T, indexed by a
number /, and write as C,(k, T') the propagator for walks that self-avoid only on
times shorter than T,. Then, defining {(T) by T, =T, we write

CI(T)= Cury .CI(T)~1._. (1.9)
Co  Cury-1 Cyry-2

and find an expansion for C,/C,_, similar to (1.8). For an appropriate choice of T,
we can prove convergence of such an expansion.

The structure of the rest of the paper is as follows. In Section 2 we will exhibit
the expansion for C,(k, T), the convergence of which will be proven via an
induction on timescales in Sections 3-6. In Section 7 we use the expansion to prove
the main theorems, which we now state.

THEOREM 1.1. For any T'>2 there exist real-valued functions I (k),
%% (k, T') and T'-independent constants o> 0, f >0, ¢’ >0, and € >0 such that for
any T T', with 0 <A<A, and k such that |D(k)| > T' /T

Clk, T) = (D(k)e T ®)T . ol ¥k T) (1.10)
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and

|0 (k) <64 (1.11)
|04 M9e(k, T)| S QAT ™2 4245 —d2.0) (1.12)

where u is a multi-index for k-derivatives, and |u| < 2.

There is also convergence of I';.(k) in an appropriate sense near k=0 as
T’ — oo. This is used in the following theorem.

THEOREM 1.2

{(T)*»=DT(1 +20(T %)), (1.13)

where D=1+ €A, with € independent of T. Also, the scaling limit of the endpoint is
gaussian in the sense that

lim Clk// s, 1) \/S,St)=e_m(k2/2d) (1.14)
5 C C(O’ St) |

for any real t and k e R?, with the same D as before.

2. THE EXPANSION

We first define the propagator for the model that self-avoids only on scales
smaller than T,:

cwmn=(z) T T (-1 (21)

w:0—-x 0<s<t<gT
lwl=T |s—t|<T;

This gives rise to an activity I7,(k, I'), just as in (1.7), except now the bonds (s, ¢)
in the connected graphs are restricted in length, |s—¢| < 7;. We then define

oIl (k, Ty=1I,(k, T)— 11, ,(k, T) (22)

and it is not hard to see that

C,k, T) ol (k, I))
C kT2 L ,H, (c, (&, 1)
. (c,_ ok, Ko) T [C1 (k1) Co itk K)] )
C, (K T) '

(2.3)
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— Ky ——e [} e Ky eom—se— [y —— Ky —

Fic. 1. Contribution to C,/C,_,.

Here {I,} are again nonoverlapping intervals on [0, T], and {K;} are the
complementary intervals; e.g., see Fig. 1. The last term here acts as an interaction
between the /,, so we must do a further expansion to obtain a form amenable to
polymer expansion.

First, we make an inductive hypothesis about the result of the expansion:

C, kT
Gk T) )Eexp(T(SF,_l(k)+25F?,1(k)+51"}§1(k5 T)). (24)
Cl~2(k7 T)

Note that this implies
Cr ik, T)=D(k)" exp(TT,_ (k) +2I"]_ (k) + I'[" \(k, T)), (2.5)

where

-1

() ()= C).
r2,() ,; or; (-). (26)
In the above, exp([) is the multiplicative correction to D(k), and I'{ and I'}* are
edge effects arising from interactions with just one and both edges of [0, T'],
respectively. This form holds trivially for T, <2, since this case reduces to simple
random walk (the shortest subwalk that can intersect itself is two units long). In the
remainder of this section, we will define 6I°;, 6I'¢, and 6I'}F so that C,/C,_, is in
the formp of (2.4). We will then be able to prove estimates on these quantities in the
following sections.

We begin by substituting (2.5) into (2.3), to find

Gk T) v d
—_— {11 5[1* k, Ii
Cr_1(k, T) Eo {Z} ,1.1 (Ot 1)
x [T (1+ 8T **(k, K))), (27)
j=0

where we have defined

811, (k, I)e*Ti-1%)
D(k)"‘ eIII Iy (k)
SITF*(k, K) = (e7i-5) — 1) (29)

SIF(k, I)=
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and {/;} are nonoverlapping intervals with integer endpoints in [0, 7], while {K;}
are the intervals between the I’s, as in (2.3).

Now, we see that the interactions between the intervals /; are the terms
1+ 6IT**, so we must expand the product over j. The resulting sum of graphs splits
into connected components of two types: those connected to the edges by a factor
of dI1** and those that are not. We define activities for both types of connected
components. The activity of an interval not connected to an edge is given by

ik, =Y Y I”—l (6ITX(k, 1,) OIT**(k, K;)) 011 *(k, 1,,), (2.10)

n=0 (I} i=1

where the {I,} are nonoverlapping intervals on J such that the left and right
endpoints of I/, and I,, respectively, coincide with those of J. The activity of an
interval connected to an edge is

sk, )=y ¥ H (OIT¥*(k, K,_,) SITX(k, 1)), (2.11)

n=1 {5} i=1

where the {I;} are nonoverlapping intervals on J such that the right endpoint of 7,
coincides with that of J. The expression for C,/C,_, now splits into three parts:

Ci(k,T)

e = {0 Interaction with edges
C, 4k, T) { Bes)

+ {interaction with one edge only }

+ {interaction with both edges}. (2.12)

In a moment, we will apply the polymer expansion to the piece that does not
interact with the edges; for now, define

=Y ¥ f] (611,(k, 1)), (2.13)

n=0 {4} i=1

where the {/,} are nonoverlapping intervals on I, otherwise unrestricted. This
allows us to write

HCLT)) ~r} 1“‘7’{P(k T)+2Y 6M1(k, K,) P(k,I)

C, kT Z
S itk Ku) Pk, 1) STTI(K, KR)}, (2.14)
KL:LI’(:QQ

where K, , K, are intervals contained in [0, 7] with left and right endpoints at the
left and right edges, respectively, of [0, T'], and 7is [0, T]\{K, v K}.
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We now must recast this into the form of the inductive assumption. The first step
is clearly to perform a polymer expansion on P(k, I), as follows (see, e.g., [2]),

1 n
P(ks 1)=CXP (za (JZ ) H (5ﬂl(ka Jl)) ( ;G HA(J.H Jl))a (215)
n Poverddn) fm=1 st)e GY

where (J,,..) denotes an ordered collection of intervals on I (otherwise
unrestricted), G are connected graphs on {1---n}, and 4 is defined by

Now, (2.15) becomes
P(k, I)=exp(T éI,(k)+2 I (k)+ oI'"F'(k, I)) (2.17)
if we make the appropriate definitions. Let
SEZ% Y [[ Gk J)Y 1 AU, J), (2.18)
e, 7 e
where the meaning of 3" depends on the quantity being defined:
ork)=S, (2.19)
where we require inf{J, U --- UJ,} to be the left endpoint of /,
26r' (k)= 8, (2.20)
where we require {J, U --- UJ,} to intersect the right endpoint of /, and
oriFi(k)=S, (2.21)

where we require {J, U --- U J,} to intersect both endpoints of I.

Note that we have begun to recover the inductive form, as 6I'; is one of the three
functions we need. The other two will include contributions from the edge terms in
(2.14) as well as 65" and 6I''F'. To see what they are, we rewrite (2.14) as

Cik, T)

—————=exp(T oI, (k)+26r{"(k)— T \(k, T
C, (kT exp(T I (k) +20I7 (k)= I';Z(k, T))

x [1+24,(k)+ As(k)+ By(k, T)+2By(k, T)+ B3(k, T)], (2.22)

where
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1F1

Bk, T)= (27 *T1—1) (2.23)
Ay(ky= Y 81Tk, K)e~IKIent (2.24)
IKl=1
Bk, T)=— 5 6k, K)e K157
IKl=T+1
+Y 671k, Ky ) e K sTikyeariTien )y (2.25)
Ky
o 2
A3(k);—-[ S ok, K)e""“’”‘"”] (2.26)
1Kj=1

Bk, T)=- ¥ [61T;(k, K))e K1) S8 (k, K'p)e 'K BTIkY)

K, nKr#O

+ T DIk KpJe RO D 1)

KinKp=&&

x [8IT(k, K g)e ~'Kri o117 (227)

with K,;, I, Kp defined as in (2.14), and K}, K} intervals on (— oo, co) that
intersect the left and right endpoints of [0, T ], respectively, as well as each other.
So we are led to define

26 P(k)=In(1 +24, + 43)
=2In(1 + 4,) (2.28)

SI'F(k, T)=In [(1 + B, +2B,+B;)

(24, + 45)(B, + 2B, + B;) )]
1— 2.29
x< (1424, + A;)(1 + B, + 2B, + By) (229)
and we can finish recovering (2.4) by defining
ST {(k)=0or [ (k)+or (k) (2.30)
STF(k, T)=8I 7 (k, T)~T'Z (K, T) (231)

which tells us that

'k, T)= 6Tk, T). (2.32)
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3. INDUCTION STARTED; MAIN ESTIMATES

We now begin the proof of convergence of the expansion described in the
previous section. We achieve this with an induction on T, the scale on which walks
self-avoid, with the choice of

T,=2"" (3.1)

Note that for T, <2 the model becomes the simple random walk, so for /<1 we
have I'{)(-)=0. We make the following inductive assumptions:

(i) |04 6T (k)| < Cy AT AT -dr+e (32)
(i) |04 0T (k)| < Gy AT (2T~ (P +¢ (3.3)
(6uA) TH2T7-#2*% for TST,_,
(iii) |0y T IF(k, T)| <L (B A T TIMRT2-d2+2 for T, | <T<N,T,

(€, A T TMRT ~aTIT for T> N, T, (3.4)
(iv) 10%Ci(-, TP < G, T2~ 920 exp(T 6I,(0) + 261°7(0) + 6I4F (0, T))
for Tz2T,.,1<p<g2, (3.5)

where [o7] denotes the smallest integer greater than or equal to o. Throughout this
paper we will use the symbol € to denote positive real constants independent of
induction step, k, and T (they may depend on the dimension d). ¢’ will denote a
constant that is independent of %},, while ¥ may not be. (i)-(iii) are valid for
ke U,, where

U= {k:|D(k) =6,} (3.6)
and
0 for I<1
5’={T,‘f”” for Iz1; (37)

f, N3, and a; are constants to be determined in the course of the proof, and we
choose e=3. 4 is fixed smaller than some A, and d25; u is a multi-index for
derivatives with respect to k;, and |u| =Y u;<2.

A comment on the origin of the restrictions on k in (i)-(iii) is in order. We see
that D(k)"' appears in the denominator of (2.8), which must be cancelled by the
decay of 811,(k, I) with I Clearly this decay becomes slower as T, increases, so we
can expect the aforementioned cancellation to occur only for |D(k)| close to one;
ie., for any given value of £ we can perform the expansion only out to some finite
value of T, (which depends on k). Since the long-distance behavior of the walk is
reflected in the small-k region of C(k, T'), the fact that our expansion will only be
valid in this region need not concern us. In proving the iteration of (iv) we will need
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to control the contributions to the norms from the large-k region, but this is easily
accomplished (Section 6).

At the beginning of the induction, /<1 and all of the 6I°§ are zero, so (i)-(iii)
hold trivially. Also, it is easy to see that (iv) holds for Cy(k, T)= D(k)”. So we
must show that the hypotheses iterate.

PrOPOSITION 3.1. If (i)-(iv) hold for |1 then they hold for I, any 1> 1.

We proceed in three stages. First we consider the contributions to (i)—(iii) arising
from the polymer expansion (2.17), then the corrections due to edge effects
(2.28) and (2.29). Once the proofs of (i)(iii) are complete, we can prove the
iteration of (iv).

Since the polymer expansion is in terms of the quantity 6/7,, we prove estimates
on it first. The main result of this section is

LEMMA 3.2. For any &' >0 there exists a choice of 4, so that

0 for T<T,_,/6
|0 1T, (k, T)| << &' (%, A) T Tl2Te-d2 for T,_,/6<T<N,T, (38)
&' (G A TN TWAT fX T for TSN, T,

where a,, N, are constants to be determined and ke U,.

Since /7, is defined in terms of 8/7* and SIT** in (2.10), we prove estimates on
these first. Now, 0IT** is easy, since from its definition we see

I **(k, K)| = |e "1tk 5) _ 1
<SE I (kK (39)

and we can use the inductive assumption (similarly for its derivatives).
oIT* will require more work. We prove

LeEmMA 3.3.

0 for |I|<T,_,/6
|04 SIT*(k, I)| < { (€' 4)T VT T \ul/2 | 2= #i2 for T, ,/6<|I|<N,T, (3.10)
((g/i)rlll/m Tlul/zT;a(Ill/Tz) for |1| >N1 Th

where ke U,, fixing a, <3(d/4—1)— (6f+€L)— 3, with any choice of 4> 0, and
fixing N, such that a, N, > d/2 —e¢.

Proof. First consider the case of u=0. We begin by obtaining bounds on 417,.
Using the lace expansion of [1] (see the appendix for a proof of the first inequality
below), we see that
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2m—1

|5n[(k, 1)| <€ z Am Z l_[ “CI(nj)~~~- 1( . nj)ul;—space

m=1 {n}Zm 1 j=1

<3 @i g (T o)
ms=1

= {n;}

2m—1
xexp( Y (n I 1(0)+2r/(n) 1(0)+rl(n) 1("1,0))>, (3.11)
Jj=1
where (n) is defined by T, ,=n, {n,} satisfies 3 n,=|1|, at least one n,>T,_, /6,
all n,<T,, and *=2 or 1, with exactly one 1 in the product. In the second line we
have substituted the inductive assumptions. We can now substitute this into (2.8),
which yields

2r:1—l n4—d/2*
SIFk IS ¥ (6" . {[W]

m=1 {ni}

=1

(e (<111 s+ Ly, |
J

=1

x[exp( ~20I%_ 1(k)+Z(21";’(,,) 1(0)+F,(,,, o 1,0))>]}. (3.12)

=0

The important term here is ¢,, while 7, and ¢; are just small corrections. We prove
this in

LEMMA 34.

sup £,t; <exp(¥Ak? |I| + mE41), (3.13)
{ni} .

where ke U,.

Proof. Fix a choice of {n;}. Using (i), along with the fact that I', is even in k,
we see that

[T (k) < T, 4(0) + €Ak, (3.14)

Inserting this into our expression for ¢,, we find

-1
|t2] <exp (%lkz +Yn 3 61",(0))

i =l

<exp (%lkz 11| +Znﬁ€ﬂT}(;;f 1‘“), (3.15)
i
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where we have used (i) and performed the sum in the second line. Now,
145 df2 -1 L+c—d2
Tl -2 <€T,,, so m;T '~ " <€, and we have

|t2| {e(@zkﬂu(ew)m. (3.16)
The third term ¢, is even simpler as no cancellations need occur; we just directly

substitute the inductive hypotheses to see that

sup t, < (e**)™ (3.17)

{ni}

and we are done. ||

Next we must handle the main term, ¢,. We first need

LeEMMA 3.5.
0 for |I|<T,_,/6
Y [1n <€ 1| for T,_,/6<|I|<N,T, (3.18)
iﬁi i @meg T (YDA =dDATY  for | [| >N, T,

where x, {n,} are defined as in (3.11).

Proof. For |I|<T,_ /6, we observe that at least one n, must be longer than
T,_,/6. For (T,_,/6)<|I|<N,T,, we note that at least one of the n; must be
longer than |I|/(2m —1). We use the condition Y n,=|I| to fix the length of the
longest interval given the other 2m — 2. Inserting a combinatorial factor of (2m — 1)
for which interval is long and taking * =1 on the long interval, we obtain

Z nnfd/2‘<(2M—l)< || )—d/z(z n_d/4)2m-2
2m—1 o

{n} @

<E™ |1~ (3.19)

For |I| >N, T,, we set x=2 on all n; as an upper bound. We note that at least
['111/2T,7 of the n; must be longer than |I|/2(2m — 1) in order to satisfy 3" n,= |1,
subject to the constraint that n, < T,. Next insert a combinatorial factor of (Fm/ng{‘l)
for which intervals are longest, and on these intervals use the bound

T

Z n—d/4<(6ﬂ |]| 1 d/4
=T \22m-1)

n=[H/2(2m —1)7]

T1 df4 1
< (mm> T4, (3.20)
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The short intervals contribute a constant factor each. So

2m—1 T d/4—1 /217
—d/2» < @'m @' ( _l> Tl —d/4> . )
LIl <r|1|/2m>( ™ ! (321)

Next use the general result ( ;) <(Z'(i/j)Y to see that

mT, |11/mT ) (m/2)(d/4)
Z l_[ ni—d/Zv s%"ng’lll/ﬂ |:<_) ] T51/2)(1-d/4)(|1I/T/)
{ri} i 1]

sg'm(gflll/Tnglﬂ)(l-d/4](I1I/T1) (322)

which completes the proof. |

Finally, we put the results on ¢,, ¢,, and ¢, together to bound 6/7*. We note that,
for k near 0,

D(k) ™\~ gt G32) (3.23)
and when |D(k)| > 0, along with k near 0, we have

K <grnll (3.24)
T,

We require A small and fix f so that N,(%f+ %A) <e, and noting that the series in
A starts at some m>=[|I|/T,7, we obtain the result for #=0 (the J in the definition
of a, comes from the derivatives, which we consider next).

To handle the derivatives, we must consider their action on each of the four

terms that constitute 6/7* (and Leibnitz’s rule gives us a factor in front that is
dominated by the powers of 1). We easily see

2 8
la,‘;e"’-l""l < T}“'/z((gl)ezrl—l(k)

2 |u|/2
[028""”' F:-l(k)l < <(€l <% In T,) +(g)“ |]||“V2> e"lll Iy (k)
1

2m -1
10 61,0k, I)| < (@ |11M7) T (%2 T ( 1 n;‘“*) (3.25)

m=1 {m} \ j=1

J

2m—1
xexp( (njrl(nj)—l(o)+2F?(nj)—1(0)+r5(l‘;j)~l(n]’ 0)))
=1

2 (/2
|0% D(k)~M| <<fg ('IT—l In T,) +<€|1|'“'/2) D(k)~".
!

Now, use

[I]?In T, <ET3+20VT any 5> 0. (3.26)
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This allows us to absorb the extra factors of || that the derivatives give into the
exponential, which makes subsequent bounding of derivatives convenient: the
action of a derivative on our estimates is just to bring down a factor of T}"2. Note
that the same is true for 677**. ||

We can now combine the results on 6/7* and dI7**. We will need

LEMMA 3.6. Define

RT)= 5 oMtk 1)sIr*(k K), (327)

|K| =0

where ke U;and I=[0, TI\K. Then for any ¢’ >0 there exists a choice of 6y, so that

lﬁZF(T)K{O Jor T<Ti1/6 (394

8 (@A) TN TR +e=d2Te=d2 G TST, 6,

Proof. Fix 6'>0 and for now take |u|=0. For T<T,_,/6, we have
O0IT¥(k, T)=0. We separate the A dependence from the T dependence by noting
that if we divide each term in the sum by (€'A)"//71 (g 1)I¥I/T-11 we obtain, for
(T,-1/6)ST<2N;T,_,,

&~df2 N3Tj- 24+e—df2 NTy
@ | = K2+5—d/2 €' (_7_‘) ( Je—92 T ~ald/T)
G X +'(3 Y reey 3o

K=1 I=T;.1/6 I>NT

g\%,T?j]ﬁ_dsze_d/z, (329)

where we have used (3.10) and (39), and for T> 2N, T,_,,

[%”'Te_d/zT?ff_d/z+‘K’T,__ai(r/ZT"‘)“+“‘1/2]S%'T?jf’d/ZT’“’"’/z, (330)

where we require a,, N, to satisfy a;N;>d/2—2—¢.

Now we bound the sum by multiplying this result by the leading order of %4,
which we find by noting that the bonds in d/1}* are T, units long while those in
OI1}¥* are only T,_,, meaning that at most one power of 4 can come from the
OI1X* at leading order. Hence the leading A dependence is, for T< T,

(g: 2 %:f
(€'AP + (B ANEE, L) = (6, 4)* ((—-—-) + ( ) %’) (3.31)
€. %
and for T> T, it becomes
' N T/ 8
(%, A7 ((g) + (é) fg'). (3.32)
I 11

We see that by taking %;, large enough we obtain the result.



156 GOLOWICH AND IMBRIE

For |u| >0, the derivatives bring down the desired factors of T,, along with a
harmless factor from the Leibnitz rule. |

We are now in a position to prove Lemma 3.2:

Proof. Fix §'>0. For the n=1 term, we have 6/1, =411}, and so the result
follows from Lemma 3.3 as long as we require a,<a,, N,=N,, with %, large
enough,

Now consider the n>1 terms. First let |u|=0. For T<T,_,/6, all of the
subintervals in the partition of [0, T'] are shorter than T,_,/6 and hence the o.T}*
terms are zero.

For T<N,T,, we take {J,} a partition of [0, T] and note that the longest
interval has length at least T/n. So with %, large enough we have

|5ﬁ[(k’ ]~)ln>ltm‘ms< z Z F(JI)F(Jn—-l)énl*(Jn)
n>1 {J;}

’

5 e—dj2
S"“ Z n((gul)max(n.rT/Tﬂ) ht (T?1~126~d n—1
2 n>1 n

S%(%ll)r”m Te= 92, (3.33)

For T> N,T,, we look at

I(Sﬁ/(k, T)|n> Lterms T72(T/T/)

n-—1
< Z Z I‘[ (|517,*(k, Ij)T;’Z(”fl/T’)l |517,**(k, Kj)Trlzz(lK,VTl)l)

n>1 {I} j=1
x |611 ¥ (k, I,,)Tj‘z"”"/r”|

’

) :
<5 T (GA™ T () (s, (3.3)

n>1

where we have analyzed the 4 dependence as in the proof of Lemma 3.6, inserted
our bounds for 611* and 611**, and defined s,, s, as

MNTy
$ = Z @’ lIla—d/2 T72<III/TI)+ z g'Tﬁar-n)(lll/Tt)
[7=1 i >N T
<ETI I, ' (3.35)

where we fix a, such that a, N, <1—3¢ and (a, —a,)N,>d/2—1 + 2¢. Also,

N3Ti-y
5y = 2 ¢’ |K|2+s~d/2 Ttllz(IKI/TI) + Z %%«FIKI/T/-ﬂTI:li(IKI/T/—I)T;Zz(IKI/TI)
IK|=1 K| > N3T)_

SE' T+, (3.36)
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Note that we have used the fact that §I7** contains bonds of length at most T,_,,
so after we pull out a factor of AT'XV/71 we are still left with a factor of A€T!Xl/Ti-1
for T,>2. So the n>1 terms give us

~ o
I(S”[(k, T)|n> lterms T‘IIZ(T/TI) < —2— Z ((g“l)max(n.['T/Tfl) (Tls:igrd)”_1 T%:fe—dﬂ

n>1

<%(<g“1)f T, (3.37)

For |u| >0, again the derivatives bring down the expected factors of T, along
with harmless factors from the Leibnitz rule. |

4, CONVERGENCE OF POLYMER EXPANSION

LEMMA 4.1. For any &' >0 there exists a choice of %, such that

. . . . T,_
Y 18I, (k, T IV <66, €A TIT ) i~ \J| for |J|>-'?i, (4.1)
In~J

where ke U, and the sum is over all intervals 1= (— o0, 00) that intersect some

interval J.

Proof. We write

I/
X=X O+Y Y ) (42)
InJ 130 ==

= Y ek, DI+ Y [V 16,k 1)), (4.3)

11=1 =1

where we have defined the origin to be at the left endpoint of J. Apply Lemma 3.2,
fixing N, so that a,N,>d/2—e¢. ||

We are now in a position to prove convergence of the polymer expansion. We
begin with I, defined in (2.19). We overcount configurations of intervals by
requiring only J, to satisfy the condition inf{J,} =0 and inserting a combinatorial
factor of n for which interval has its endpoint fixed. We do not restrict the other
intervals. We can now use standard techniques to bound the sum (we only sketch
the argument here; see [2] for details): first note that, given a connected graph G¢
and a compatible configuration of intervals {J.}, [Ti.neg A(J,, )= (—1),
where b(G¢) is the number of bonds in G°. Then we have

spols ¥ (44)
2
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ie, for an upper bound we can discard bonds (1+ A) until the intervals are
connected in a tree structure (see [2] for proof). Recalling that we are summing
over ordered collections of intervals, we choose J; to be the root by thinking of it
as attached to an additional vertex with coordination number fixed at one. We then
form a tree of n+1 vertices with coordination numbers (1,d, +1, ..,d, +1),
defining x to be the number of vertices with coordination number greater
than 1. We choose J,,..,J;,, to be the intervals connected to J,, then
Jisays15+oJ1+a+4, to be those connected to J,, etc, and multiply by a
combinatorial factor of the number of trees with this structure (n— 1)!/(d,! ---d,!)
(given by Cayley’s formula) Summing over all trees of this type, we arrive at

n—1
|6, (k)| < Z nyYy ¥ ¥ X
n=1 N x=1 Jy di=1 (J)a
inf{/1} =0
XY XY X
dr=1 (J)dy dy=1 (g,

d

X 1_[ A(J19J1+31) 1_[ A(J2s‘]l+d|+.\'1 ]._[ Ial7 J)I, (4'5)

sp=1 sy=1

where we have defined

= 3 (46)

i (Jidg ot d A Lok dy 4 by 4 dy)

and the {d,} satisfy

id,.=n-1. (4.7)

Now fix n, k, and the {d;} and perform the sums on the {J;}. Apply Lemma 4.1
in the following manner: the terminal intervals (those furthest down the tree) give
factors of €'AT ) * =% |I|, where [ is the node they are forced to intersect. So if d,
terminal intervals overlap some J, and J is forced to intersect some J', the 3,
gives

Y 16,k D (AT 2~ NS (@DP ) T2 T, (48)

JnJ’

where we have used T|*;~%’T,<%'. Note this gives the same power of T,_,
multiplying the length of the interval |J'| as did the terminal intervals. So we can
proceed in this manner up the entire tree until we get to the root, which requires
special treatment as it is a restricted sum: for d; =0, 1 we can choose %, so that
for any 6’ >0

0

> 18Tk, L) (T~ | L) < 86y AT 21~ (49)

ihl=1
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while for ¢, >2 we find

e
Y NSk, I (T 12~ (L) S 8 AT e e i

[l=1

KOG AT 292, (4.10)
So (4.5) becomes

6Lk <Y 66, €" AT 5 4*

n=|

1
raraancecall I (7 ALRERY? /S5 ) 4.11
«3 % () (e (@11)

Now, there are (}-3) solutions to the equation % ,d,=n—1, and
Ze(i2D=2""% 0

67, (k)| < 8" AT [ 2{ =" (4.12)

which is the desired result for |u| =0. Derivatives act on the 8/7, terms to bring
down a factor of T}*/? along with harmless factors from the Leibnitz rule, so finally
for %, large enough, any 6’ >0,

|04 8T\ (k)| < 3G AT AT +e= 2, (4.13)

Clearly, by looking at (2.20) we see that /"' goes exactly like 67, except
instead of requiring the root sum to have one endpoint fixed we only require it to
intersect a given point. So the root sum gives a factor of T7*f~%?, and we can

obtain for any 6'>0
8% 61 ] (k)| < 8'G AT 2T~ (4.14)

We must treat 677! a little more carefully because of its 7 dependence.
For T<T,_,, we overcount contributing configurations by only requiring
{J U --- UJ,} to intersect O instead of both 0 and T. This reduces it to the case
of 6I'{", so that result applies.

For T,_,<T<N,T,, we note that at least one of the intervals is longer than
T/n, so we require the root to be at least this long and put in a combinatorial factor
of n. Now, every configuration that contributes must have at least [ 7/T,| powers
of A, since they must all have connected sets of intervals that stretch from 0 to 7.
We overcount configurations by allowing some that do not stretch all the way, but
we multiply these by enough powers of A so the total is [ 7/T,]. We then proceed
as before, and here the root sum yields, for ¢, =0, any 6’ > 0 with %, large enough,

o

24 ¢ df2
Z (%1,{)max(rf/‘n‘lwrlhi/ﬂ'w) Hx' |5ﬁ1(k, I, )| éé’(%’"l)r”m (,;11:) (4_15)

|71l 2 T/n

585/217/1-11
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and for d, > 1

@

Y (G )TN L (87T (K, 1y)| (T3 +5 2 |1 )™

|2 T/n
gé/((gnl)rT/Tﬂ T;!L(11+e—d/2)T% + e+ dy—d/2

Sér(%ni)rT/Tf] T2+£—d/2 (4.16)

which is the desired result.
For T> N,T,, we show that for any &' >0 with &, large enough,

|0 ™Y (k, T)| T T < ' (%, A) 7711 (4.17)

which implies the desired result. To show this we will need

LEMMA 4.2. For any &' >0 there exists a choice of %, such that

S 1601, (k, T)| 1) TS0V

InJ

o T
KOG C AN TITIHE= 2414 111 for || z%, (4.18)

where ke U,.
Proof. We fix a; so that a;N,<j Then everything proceeds as in
Lemma 4.1. |

a1

We now proceed as in the proofs of 6, and 6§, finding
|5rlFl(k’ T)l T;,J(T/TI’SZ 6/(%li)max(n,l‘T/Tf|) 2nT%_+lz'"d/2+1/4

<O ()T, (4.19)

Once again, derivatives yield a factor of T!“/2 So we have shown, for any 6’ >0
and %, large enough,

5@ AT M2 T2+ e a2 for T<T,,
04 6T (k, T)| < { 8'(Gu A VTN TWRT2+e—d2  for T, | <T<N,T, (4.20)

8 (G AT TMAT fsTT) for  T>N,T,.

S. EDGE EFFECTS

In this section we obtain estimates on the edge effects (2.28) and (2.29), which
allows us to complete the proof that (i)-(iii) iterate. It is clear from |In(1+ x)| <
%’ |x| for small x that we need only bound the 4, and B, and the results for 6I"{>
and 672 will follow.
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LEMMA 5.1.  For any 6' >0 there exists a choice of %y, such that
|04 ST P (k)| S 86 AT AT+~ 92, (5.1)
where ke U,.

Proof. Fix 8'>0. Since A; = A3, we need only prove the result for A4,. Recalling
our definition of F in (3.27), we see that

sk K)= Y S T1 FU, (5.2)

n=1 {1} i=1

where {J;} is a partition of K. Using the same methods as in Lemma 3.2, we find
for any 6” >0 and %, large enough,

0 for |K|<T,_,/6
6% M itk, K} << 8" (G ATV T PTI*p= 2 \K|*= 2 for T, /6 <IK| <N T,
5"(%“,1)FIKI/TH T',“l/zT?ff'd/zT,"‘””Kl/T’) for |K|= N,T,; (53)

i.e., 811, obeys the same bounds as 617, times a factor of T3+~ %2, So immediately
all the results we proved involving /7, carry over, with this extra factor.
Derivatives of 4, can act on the exponential term as well as the 617, term. In this
case, they yield an extra term of at most A(%(|K|*/T,)'/? + & |K|"“/?). Applying
(5.3) to bound the sum, and using smallness of A to ensure (a, —6A)N,> d/2—¢,
we obtain

& .
05 Ax] <5 GuAT AT} (=427 [+ 1= 02

s%‘glllT}“"’sz_ff”d/Z. (54)

Inserting this into the definition of 67°¢ immediately yields the result. [

LEMMA 5.2. For any &' >0 there exists a choice of %y, such that

&' Gy AT A2+ 8= for T<T,_,
104 STk, T)| <L 8'(G, A VTN T2 2+e=d2 for T, <T<N;T, (55)
5’(‘6112)”"”3 Tiuf/ZT;»m(T/Tx} for T> N;T,,

where ke U,.

Proof. We examine each of the B; in succession. The result is obvious for B,
from (4.20).

Fix 6’ >0. We write B, =v, + v,, where the v; are the two sums in (2.25). First
look at v,: for T<T,_,, apply the result from A, an as upper bound. For
T,_,<T<N,T,, an application of (5.3) yields the result. For 7> N, T,, we note
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two rcqu1rements on N, (which we will use below when we fix N;): N;> N, and
(a,—a,—6A)N;> 4 +¢—d/2. Applying (53) once again gives the result.

For 02 and T< T,_,, we note that 6/1/(K) =0 unless |K| > T,_, /6, so we assume
this. Then one of K and 7 is longer than T, ,/12. We sum the shorter interval, and
use the fact that the size of the longer interval is fixed by that of the shorter. When
I is the longer interval, we use

|6 F\(k, I)| S 6'G AT ;2 (5.6)
to bound the longer interval, along with
T
Y 180Tk, K)e M0 <36, AT e (57)
|K|=1

to bound the sum on the shorter interval. When K is the longer interval, we use

|61T;(k, K)| exp(GAT 1+~ |K|) < &' (6 4) T332 K|~

< (GuA)T3 T (58)
to bound the longer interval, and the sum on the shorter intervals is bounded by
T
Z |51’*IFl(k I)l <5r(g“/1T3+e d/2
7] =0

Multiplying these bounds, we obtain the result. A similar argument gives the result
for T,_,<T<N,T,.
For T> N,T,, we examine

|oy] TP <@ Z [I67T;(k, K)| TV exp(@AT | *{~ 4% |K|)]

K| =0

. [|¢51‘f“(k, )| T?;(III/T/)] (59)

but we can bound the last term by &'(%;,4)"/V7 for |I| > N, T, (see (4.20)), and for
any |I| < N, T, we have

|51"}F1(k, 1)| T;za(IlI/TnS5/(%11)FIII/TH |1|a3N3+2+f:*d/2
$5’((g“l)rm/2_| T73N3+2+a~— dj2 (510)
so we see that
|U I Tag(T/T1)<512((g )')[‘T/T/‘} Ta3N3+2+e d/2T3+s dj2
NaTy
X [ Z |K|6—d/2 T;lz(IKI/T/) + Z Tf(az—as—fl)(IKI/Ti):l
1K|

= T.-1/6 IK| > N2T;
< 5/2(%11)”/”! [T73N3+2+c—d/2Tlll:-125—d+a3Nz

+ T?:-ls—d/2Tl3+s—d/2+a3N3+a3N2—(az—gi.)Nz]. (511)
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So we fix N, subject to the above conditions along with a;N;<d/2—3e—3,
to obtain

|oy] TPTT0 < 87%(%, )70 (5.12)

So we have completed B, for |u| =0. The derivatives give the usual factor of T [/

by the same mechanisms as in Lemma 5.1.
B, can be handled in exactly the same manner as B,. |

The proofs that (i)—(iii) iterate are now complete if we choose 4’ small enough
in the various lemmas and %;, large enough.

6. INDUCTION COMPLETED

We now close the induction by showing that (iv) holds for / In this section
we fix T>T,,,. We estimate the L, norm by splitting k-space into [/]+1
disjoint regions:

U= {k:|D(k) =6,}
U,={k:|Dk) e[d,,d,,,)} for y=1-[1, ., 1-1

1]

(6.1)

We first handle U,, looking at k in the neighborhood of the origin (analogous
results hold for the rest of U,). For these values of k we have the expression

C,(k, T)= D(k)" exp(TT,(k)+ 2r{(k) + I'\F(k, T)) (6.2)
which, since we have proven (i)—(iii) iterate, satisfies
ICi(k, T < |D(k)I T exp(TT,(0)+ 2I2(0) + I'F(0, T) + €ATk?). (6.3)
Also, from (i)-(iii) it is not hard to see that when |u| =1,
|04 exp(TT(k)+2r¢(k)+ I} (k, T))|
<@AT |k| exp(TT (k) + 2l (k) + I'F(k, T)), (6.4)
and when |u| =2 we have
|6 exp(TT, (k) + 2T (k) + T\ (k, T))
SMET*>+%T) exp(TT (k) + 2 (k) + T (k, T)). (6.5)

Using these bounds, it is easy to see that
/e
[ [ 1ezcite Ty a% j <ETW2 427 exp(TT(0) +2I'%(0) + (0, T)).
ke U

(6.6)

Now, the constant here is some universal constant plus corrections of O(1), and
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only the corrections depend on %;; and %;,. By taking lambda small and choosing
%,, appropriately, we can arrange for the € in (6.6) to be 3%,.

Next examine the integral over U,, y</—1. For now take y=/—1 and |u| =
and work in the region of U, closest to the origin (analogous arguments hold for
the rest of U,). Recalling (2.3), we write

Cy(k, T) exp(—TT,(0)—2I"7(0)—I'[7(0, T))

=exp(—2I'}(0) =7 (0, 7)) 3. 3 [Cro 1k, Ko)e™ ™ 1]

n=0 {a;}

ﬁ (81T, (k, I)e M TO[C, (k, K,)e~KI IO)]), 67)

Now, in U,_, we can apply our expansion to C,_,, so it is not hard to see that
IC,_,(k, K)|e—IKI no) « (g(D(k)e@Akz+%’/1T,’_‘1“‘”2)|X[

<(e¢ +(m)k2+wr,‘jf“‘/2)|xl. (6.8)
Also, we can use (3.11) to see that
0 for |1|<T,_,/6
(81, (k, )} e~ 1O < L ()T VVIT | 1)~ 42 for T, ,/6<!I|<N,T, (69)

((gl)rlll/Tz1 Tl—ax(lli/Tr) for |]| > N1 T,.

Next we use the fact that the longest interval of {/;, K;} is longer than T/(2n+ 1),
and its length is fixed by those of the 2n shorter intervals. So as an upper bound
we let the sums over the shorter intervals be unrestricted,

S (8T, (k, I) e~ O < GAT !~ (6.10)
=1
Y 1C ik, K)| e IO [@k* — AT |+~ 92] !
|K|=0
In 7,1
s[(g nT {} ; (6.11)
!

where in the last line we have used k2> %(In T,/T,). Inserting these into (6.7),
we find
|Cy(k, T)| exp(—TT,(0)—2I{(0)—I'}F(0, T))
— K2+ AT G- 2(, —€(InTH/TYNT/(2n + 1
<(e )y +% z T?e (InT/TH)T/(2n+1)
n=1
T\
€ -—L t—d/2yn
x( ™ T/) (AT ;- 7?)
3(T/T-1)
ST *TM4g Y TAT7¥TT(GAY, (6.12)

n=1
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where the upper limit on the sum arose, since 6/1,(k, I)=0 if I is short enough. We
bound the sum by (number of terms)- (maximum value):

|Cy(k, T)l exp(=TT,(0)—2I'{(0) = '] (0, T'))

1/2
ST,‘%‘T/T”+exp—[—(€ln(‘€i)%]n T,] ) (6.13)
!

In the case |u|>0, we can use (i)~(iii) to bound derivatives of all of the terms
on the right-hand side of (6.7). It is evident that all factors due to these derivatives
are dominated by the exponential in (6.13). Since T>T,,,, with 1 small and an
appropriate choice of %;,, we can arrange for the contribution from U,., to
the norm to be less than any inverse power of T times any inverse power of /, so
in particular,

Ur
(], 1oxci T ax]
ke Uy

< % G, T2 =42 exp(TT,(0) + 22 (0) + I''F(0, T')) (%ﬁ;) (6.14)

We can handle the other regions U, in the same fashion: e.g, for y =1-2
we write

Cl(k, T)= z Z CI—Z(k5 K())
n=0 (I}
< T1 (k1) + 31, 10k 1)1 Cp 2 K))  (6.15)

i=1

and proceed as before to find an expression like (6.14). We sum these terms, along
with (6.6), to see that (iv) holds for /, and Proposition 3.1 is proven.

7. RESULTS

The proofs of Theorems 1.1 and 1.2 are now almost trivial. With the completion
of our induction we have an expression for the full propagator valid for T< T,

C(k, T) = CI(T’)(ka T)
= (D(k)e )T exp(2I 57, (k) + I (k, T)) (7.1)

with ke U,;,, along with bounds for the quantities in the last line. This proves
Theorem 1.1 if we choose

e, T)=2r8,. (k) + Mk (k, T). (72)
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We can also compute the mean square end-to-end distance (given by (1.5)). We
find

(a(T)?y=T- Z 62 Trl(r)(k)+2ff(r)(k +r1(r)(k T))k=o- (7.3)

1),_
We have bounds on the edge terms, for any || =

042 {iry(K) + Tifry(k, T))l ko S GAT™C T 2074200 (74)

along with, for T T',

105 L yry(k) = O L yry (k) g =0 GAT> 22 (7.5)

which tells us that 0} Iry(k)|, o converges to a limit 0;I",, of order A as T — oo
(which is zero for the mixed partials), and hence that

6,2€”F1(T)(k)lk=o=‘gi+O(T“Z""‘“). (7.6)

Putting these results together yields the first result of Theorem 1.2. To prove the
second, we note that for any fixed values of k&, ¢ there exists an s, such that we can
apply our expansion to the terms in the scaling limit of the endpoint for every
§25,. So the limit becomes

(D(k/\//—s_)el‘nsn(k,g/?))ﬂe st /50

lim o
PR (er,(,,,(O))sz ef'_” (0,s1)

(7.7)

Now, the edge terms canccl in the limit s = oo (using Taylor’s theorem along with
Theorem 1.1), and D( k/\/ s ) =exp(k?t/2d). Also, by Taylor’s theorem,

k k*
FI(;:}(\/—S—> F,(s,,(0)+2 Z 0% Fl(sl)(r’s) s (7.8)

fuj =2

where 5, is on the line segment stretching from 0 to k/,/ s. We can see that
_\-lln:o azrl(st)(ﬂs) = azrco (79)
by using the fact that |0} 6I',(k)| is continuous in k for ke U, and exponentially

small in /, along with the comment following (7.5). This proves the second part of
Theorem 1.2. ||
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APPENDIX A

In this appendix we derive the bounds on 8} 817,(k, T') used in (3.11). We closely
follow a similar derivation (of the Laplace-transformed quantity) in [1]. We begin
by bounding I7,(k, T), defined by

T
H[(k’ T)= <%1> Z eik.w(T) Z H (_léwsﬂh)’ (AI)

lo|=T G¢ (s.t)e G

where G¢ are connected graphs consisting of bonds (s,¢) on [0, T'] satisfying
|s—1 < T, Next we use the fact that every connected graph can be uniquely
decomposed into a lace ¥ and a set of bonds X' (#) compatible with the lace. Here
a lace is defined to be a minimally connected subgraph, i.e., a graph of the form
shown in Fig.2, and an m-lace is a lace consisting of m bonds. Bonds (i, j)
compatible with a lace .# are those such that the lace of £ U (i, j) is equal to &
(see [1] for a more precise definition). Hence, we can split the sum over connected
graphs into a sum over laces followed by a sum over bonds compatible with the
lace, which we then resum:

Y I (—4,.)

G' (s,1)eG"
=Y ¥ Il (=) TI (1-48,,). (A2)
m=1 m-};ces (i, e & (s.0)e N (L)

Note that an m-lace is uniquely specified by a set of 2m — 1 integers {n,} subject to
the restrictions

n>1 for all i

1

2m—1

Y m=T

i=1

n+n,<T, (A3)
ni+n +n,,<T, fori=2,4,.,2m—4

Mo 2+ Ry 1 < T

Fic. 2. A 3-lace.
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As an upper bound, we discard those factors of (1 —44,,,,) that connect different
intervals n;. The effect of this is to break up our walk w into 2m — 1 independent
subwalks, each of which propagates according to C,, and with restrictions on the
various endpoints given by the lace:

T, (k, T) < }: am Z Z Cilxy,ny) Clxyg—xy,m3) -

m)l {m} {x}

X CI(me—l ™ Xom -2y Hom 1) 50x2 6){1){4 Tt 6.x2m_3x2m_1‘ (A4)

The self-intersections of the walk, governed by the lace, occur in a simple pattern
of which we can take advantage. Define the operators which act as multiplication
and convolution by a propagator,

M, : f(x)— C,(x, n) f(x) (A.5)
C,: flx HZC x—y,n) f(¥) (A.6)

which give us

Inl(k9 T)' s(g Z A Z (Cnan;) "'an,,,_gan,,,,ZC[(', n2m—l))(0)
mz1 {ni}
2m—1
<€ Z A" Z n HC/ fsp?.a?rn one o * (A7)
m21 {m} Jj=1

(In the last line we have used Lemma 5.8 in [1], an application of Holder’s
inequality). The norms here are all L, except for one which is L, (we have the
freedom to choose which one). Next use C,(x, n) < C;(x, n) for all x, n, and I >1".
This, along with the fact that n; < T, and the Hausdorff Young theorem, yields

2m -1
|[I1,(k, T)| <% Z A Z H ||C1(n,-)~1('9nj)"f-iplazerao,oneco
m3z1 {m} Jj=1
2m—1
SE Y AL T 1Cumy- 1l m)IES L oner- (A8)

mzx1 {ni} j=1

contrlbutes must have at least one long bond |s—¢t = T,_,/2. Denote by 17 ; and
IT,_, the sum of such terms, and use the bound |6[7,| < |IT;| + |IT;_,|. Next we
note that the above condition implies that at least one n;> T,_,/6, so we require
this to obtain an upper bound. We see that

2m — 1

lénl(k, T)l S% Z lm Z I—[ ”Cl(nj)—l(" nj)”’:.ivgzerl,oncl’ (Ag)

mz1 {ni} =1
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where, as an upper bound and for later convenience, we relax somewhat the
conditions (A.3) on the {n,;} and only require all n;e [1, T,], . n,= T, and at least
one n;,=2T,_,/6.

This bound can easily be modified to allow k-derivatives. We write the
displacement of the full walk «(7T) in exp(ik -@w(T')) as a sum of displacements of
the subwalks, and act on this product according to the Leibnitz rule. We find

2m—1
1048k, T Y, A" Y, Y [T 1) Chuy— 1 2T o one
m=1 {m} fw) j=1
2m— 1
€Y A"y Y 1 108Cu, (Il (A10)
mz1 "1‘! {“u Jj=1

where the sum over {u,}, with ¥ |u,| = |u|, is over the possible ways of distributing
the derivatives in applying the Leibnitz rule.
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