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A new argument is given for a lower critical dimension d1 = 2 for the Ising model in a ran­
dom magnetic field. It forms the basis for a proof that the three-dimensional model exhibits 
long-range order at zero temperature and small disorder. This settles the controversy 
between the values d1 = 2 and d1 = 3. 

PACS numbers: 75.10.Hk 

In this paper I present a new argument that the 
lower critical dimension, d1, for the Ising model in a 
random magnetic field is 2. Previous heuristic pro­
posals for d1 = 2 and also for d1 = 3 have been given. 
Both cases have adherents. The question hinges on 
whether or not long-range order occurs in three 
dimensions, at low or zero temperature in the pres­
ence of a small, random magnetic field. 

This physics issue has been resolved by the find­
ing of a new, exact formula for the ground state 
energy-see (2) below. This formula is used else­
where1 to prove that d1 � 2. The formula for the 
energy has two important properties: (1) The ener­
gy is expressed as a sum of local functions of the 
magnetic fields in various regions, so that it is 
amenable to statistical analysis. (2) The sizes of the 
regions vary through a succession of increasing 
length scales (associated with an inductive analysis 
of the ground state), and the probability distribu­
tions of the functions scale accordingly. 

Specifically, it is shown that if the disorder is 
small, the model in dimension d = 3 exhibits long­
range order at zero temperature. At the conceptual 
level, this argument leads to the same conclusion 
for low temperatures. Indeed, I expect that a proof 
for low temperatures will be possible by combining 
the methods described here with the expansion 
methods developed for disordered systems by 
Frohlich and Imbrie.2 

The model is defined by the Hamiltonian for a 
finite subset A c Z3 with plus boundary conditions: 

H+ (A)= I to- a;o)- I th;a;. 
(i,j) IE A 

Here a1= ±1 fori E Z3, a1=1 fori� A, and (i,j ) 
denotes a nearest-neighbor pair. The magnetic 
fields h1 are taken to be independent random vari­
ables with a common Gaussian distribution with 
mean zero and width ( h/) 112 = e (a measure of the 
disorder). The angular brackets indicate an average 
over the magnetic fields. We write P(E) for the 
probability of the event E Let us write amin(A +) 
for the spin configuration of minimum energy 

H+ (A). It is unique, with probability 1. 
At temperature T = 0, the question of long-range 

order reduces to properties of a min (A+ ) as A 
increases to Z3• We have long-range order if 
a Fin (A+ ) is more often + 1 than -1 for some 
fixed i E Z3, and if the disparity is uniform as A in­
creases to Z3. This is the content of the following 
theorem, proved in Ref. 1. 

Theorem.-Let An be a sequence of cubes cen­
tered at the origin 0 E Z3. There exists a constant 
C > 0 such that for any i E Z3 and any n, 

P(aflin(An+) = -1} � exp( C/e2). (1) 

The limit limn-ooaflin(An+)=aflin exists with 
probability 1 and satisfies the same bound. 

Other results of Ref. 1 include a proof of near­
exponential decay of correlations between ground­
state spins: 

I (alfina?in)- (alfin) (arn> I 

� exp(- cj exp[- c'(ln lnj)2]e-2]. 

In Ref. 2 it is shown that the model has no long­
range order for large e. Hence there is a T = 0 tran­
sition from long-range order to absence of long­
range order as the disorder parameter e increases. 

I expect that my methods will be useful in other 
problems, for example in studying the interface in 
random-field models. A reasonable conjecture is 
that the interface in d dimensions is rigid for d > 3, 
as a result of the similarity with the ( d- 1)­
dimensional bulk problems studied here. The 
continuum interface may of course be much 
rougher.3•4 

We recall that the lower critical dimension is de­
fined as the dimension above which long-range or­
der occurs. Recent numerical work5 has indicated 
ordering in three dimensions, which would imply 
d1 = 2. However, neither the domain-wall argument 
for d1 = 2 nor the dimensional-reduction argument6 
for d1 = 3 has been universally accepted. Domain 
walls are defined as surfaces separating regions of 
constant a. According to the domain-wall argu-
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ment, 7 the typical fluctuation of the magnetic field 
energy in a domain of linear dimension L is of the 
order of L d/2. This should be smaller than the 
domain-wall energy Ld-l in an ordered state; hence 
d > 2 is necessary for long-range order. As pointed 
out by Imry,8 this is an argument for d1 � 2, rather 
than for d1 = 2, because other mechanisms could 
destroy long-range order in three or more dimen­
sions. This is in fact what was argued for in some 
of the interface work.3 The most obvious mecha­
nism is the entropy of domain walls. There are 
exp[ 0 (Ld-l)] domain walls of area Ld-l; this has 
the potential for swamping the small probability 
exp[- O(Ld-2)] that the magnetic field energy in­
side any particular domain wall is larger than the 
surface energy. 

The entropy problem was solved by Fisher, 
Frohlich, and Spencer9 and by Chalker.10 They 
used coarse-grained domain walls to exploit the 
large degree of dependence amongst the field ener­
gies for different domain walls. Their result is that 
for d > 2 it is unlikely that any domain wall sur­
rounding the origin encloses a total field exceeding 
the area of the wall. 

The second problem with the domain-wall argu­
ment lies with the assumption that the energy shift 
resulting from forming a domain wall is essentially 
the sum of the magnetic fields inside the domain 
wall. This assumption can only be valid if the sys­
tem is known to be ordered, so that domain walls 
within the given domain wall are unimportant. For 
example, it almost certainly fails for d = 2, where 
the model is generally believed not to have long­
range order. It has recently been argued11 that 
domain walls within domain walls raise d1 to 3, in 
contrast to the present results. 

The problem is circumvented in my argument be­
cause I use an exact formula for the energy shift, 
valid independently of the behavior of the system 
(ordered or not). However, in three or more 
dimensions, there is sufficient control over the ran­
dom variables appearing in the formula to show that 
there is long-range order. 

One might ask what when wrong with the dimen­
sional reduction, especially in light of the nonper­
turbative12 and rigorous13 versions that now exist. 
The Parisi-Sourlas correspondence is exact only in 
the case of unique solutions to the equations of 
motion, as was pointed out by Parisi and Sourlas.14 
This excludes the case of most interest for the Ising 
model at low temperature, since the desired interac­
tion potential is nonconvex. It is still possible that 
the correspondence is of relevance in a disordered 
phase, where it would be more reasonable to as-
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sume a convex potential. 
I now explain why the three-dimensional ran­

dom-field Ising model should be ordered. Let us 
take A = Z3 in this discussion. The main point is to 
expand the ground-state energy in terms of local 
random variables, 

H*{a-min(A +)) 

=- + I  h,+ I r./h). (2) 
iEA ')':V(,)<;A 

Here y runs over all possible connected domain 
walls, and V ( y) denotes the volume enclosed by y. 
Each random variable r "( ( �) depends only o? h; for 
i E B ( y), where B ( y J 1s a cube of diameter 
2k(,)+3 with diam(y) E [2k('>'),2k(,)+l). This for-
mula is expression of the fact that the ground state 
can be obtained through a sequence of local ground 
states in cubes B ( y) on increasing length scales. 

To see how this is accomplished, let us say that y 
is favored ( +) if it is an outer domain wall of the 
configuration a-min(B ( y) +), the local ground state 
inB(y). [Outer means V(y)JtV(y') for any oth­
er domain wall y' of the configuration.] Further­
more, let us say that y is maximal ( � v+) if it is 
favored ( +), if V ( y) � V, and if there is no other 
favored ( +) domain wall y' with V( y) � V( y') 
� V. It can be shown1 that the maximal (�A+) 

domain walls are the outer domain walls of the 
ground state a-min(A + ). This fact, together with 
the fact that favored ( +) domain walls have nonin­
tersecting interiors, allows us to derive (2) as a kind 
of telescoping expansion. For any V c Z3, we put 

H�in ( V )  = H+ (a-min( v+)) + I th;, (3) 
iE V 

E+(V)= I H�in ( V (y)) , (4) 
')' maximal ( � v+) 

_,0, if y is not favored ( + ) , 
r 

'>' (h)- H�n ( V( y))- E+ ( V( y)), otherwise. 

(5) 

Here maximal ( � v+ ) is defined in the same way 
as maximal ( � v+ ) , only replacing � with <;; 
everywhere. It is easy to see that E+ ( V) 
- I1 E vt h; is the energy of a comparison confi­
guration in V equaling a-min ( V ( y) + ) in each 
V ( y), y maximal ( <;; V), and equaling 1 elsewhere. 
Thus r, measures the amount that the energy can 
be lowered by permitting y to occur in V( y) +. 
This implies that r, � 0, with r, < 0 if y is favored 
( +). As a consequence of all these definitions, we 
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have the following expansions: 

H�0(V)= I ry, (6) 
y:V(y) � V 

E�n( V)= I ry. (7) 
y:V(y) � V 

[We assume V =A or V =A ( y) with y favored 
( + ).] Working by induction on diam( V), we note 
that (6) implies (7) for larger V's by substitution 
into (4). Furthermore, (7) implies (6) by the de­
finition of r11v (a V is the boundary of V). We ob­
tain finally the desired expansion (2) by combining 

(3) and (6). 
We now obtain the long-range order from an esti­

mate on the distribution of the r -r's. Consider all 
domain walls y* with B ( y*) = Bx, a cube centered 
at x, and with k(y*)=k, area(y*) E [a,2a ), 
IV( y*) IE [ w, 2w ). If the number of such domain 
walls is in the range [v, 2v), then we define 

Otherwise, we put rk,a,w,v,x(h) = 0. Putting N(a, w) 
= t log2( w/ a), we formulate our main estimate: 

P(rkawvx< -R)�expl- (vat R)2 exp(-co[inN(a,w)J2) 1. ' ' ' ' E VW 
(8) 

Here c0 is a constant, and R � 0. In the simplest case, R = 0, v = 1, and the right-hand side is bounded by 
exp[-(a2/E2w )1-'�] for any fixed small 'YI· This estimate exhibits the basic scaling (area)2/volume in the 
exponent, up to logarithmic corrections involving N (a, w). Since a2/ w � 2k in three dimensions, we easily 
see that with probability 1-exp(-C/e2), there is no domain wall y surrounding the origin with ry < 0. 
However, if a0= -1 in the ground state, then there must exist a favored ( +) domain wall surrounding the 
origin. Since such contours satisfy r -r < 0, we obtain the long-range order (1). 

The main estimate (8) is proven by induction on N(a,w). This means that information about how likely it 
is for domain walls of a certain size to appear is used to estimate probabilities for larger domain walls. In or­
der to see why an estimate such as (8) should hold, we express r Yin terms of r /s with V( y') � V( y). This 
is done by noticing that 

H �n ( V ( y) ) = area ( y) + I h1 + H �in U' ( y) ) , 
i E  V(y) 

where V(y) is obtained by deleting from V(y) sites adjacent to y, and where H;;rin is defined as in (4) but 
with fields and boundary conditions flipped. This identity is just a reflection of the fact that if y is favored 
( +), having plus boundary conditions on V ( y) is the same as having minus boundary conditions on V ( y). 
With use of (5)- (7), this implies that 

r/h)=area(y)+ I h1 + I r ,(-h )- I r , (h) . 

. E V( ) ' ' - 'Y , , 'Y (9) 
I 'Y y:V(y )�V(y) y:V(y�V(y) 

The field term can be treated as in Ref. 9, yielding 
an estimate like (8) (without the inside exponen­
tial). The other terms form almost a sum of sym­
metrized random variables. To deal with the entro­
PY problem (too many domain walls to permit indi­
vidual treatment) we reformulate (9) in terms of 
the aggregate variables rk,a,w, v,x· Except for some 
harmless positive terms on the right-hand side, we 
obtain a sum of symmetrized, essentially indepen­
dent, random variables for each scale k and each 
a, w, v. (Independence is a consequence of locality; 
rk,a,w,v,x depends only on h1 for I i - x I� 2k+2.) 
These properties and the bound (8) allow us to 
show that it is unlikely for the symmetrized terms 
to exceed area ( y) in magnitude (as would be 
necessary for ry < 0), for any y contributing to 
rk,a,w,v,x· Again, coarse-graining methods9 are need-

ed. In this way we recover (8) for larger values of 
N(a,w ). The factor exp(-c0[lnN(a,w)J2) con­
trols the deterioration of the estimates (due to sums 
over k,a, w, v) as the induction proceeds. 
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