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Abstract: We consider a weakly self-avoiding random walk on a hierarchical 
lattice in d = 4 dimensions. We show that for choices of the killing rate a less than 
the critical value ac the dominant walks fill space, which corresponds to a spontan­
eously broken supersymmetry phase. We identify the asymptotic density to which 
walks fill space, p(a), to be a supersymmetric order parameter for this transition. 
We prove that p(a) � (ac-a) ( -log(ac- a))112 as a/ a"' which is mean-field 
behavior with logarithmic corrections, as expected for a system in its upper critical 
dimension. 

1. Introduction and Results 

The self-avoiding walk (SAW) has long been studied in the physics literature due to 
its significance as a model for physical polymers [dG2, dCJ]. Recently it has 
received attention from a rigorous perspective as well [MS, Bl, IM]. Most of the 
rigorous work has been directed towards establishing the properties of either 
fixed-length walks in the presence of a strictly repulsive interaction or the Green's 
function of such a process at or above the critical point. In this paper, however, we 
study a SAW in the so-called dense phase, where the dominant paths fill space to 
some nonzero mean density. We work in d = 4 dimensions, which is the borderline 
between simple mean-field behavior (d > 4) and complex behavior (d < 4). A conse­
quence of this is that the critical behavior is modified slightly from mean-field, but 
is still tractable. For a weakly self-avoiding walk on a hierarchical lattice we 
rigorously calculate the critical behavior of the density, finding the leading power­
law behavior to be mean-field, but with logarithmic corrections. 

The model we study is essentially the same as the one introduced in [BEl, BI], 
so we will only briefly describe it here. By a hierarchical lattice � we mean the 
direct sum of infinitely many copies of llL•, with L some positive integer. A point 

* Research partially supported by NSF Grants DMS 91-2096 and DMS 91-96161. 



266 S.E. Golowich, J.Z. Imbrie 

xEri can be written as a sequence( . . .  ,x2,x1,x0), with xiEllL•, and all but 
finitely many xi being zero. The hierarchical norm we use is a ri-invariant ultra­
metric defined by 

I I = { 
0 if X = ( . . .  , 0) X - N . L 1f x=( .. . ,O,xN-1, • . .  ,x0) and xN_1 =f0 . 

Our SAW is a perturbation of a Levy process on rJ chosen so that the free Green's 
function G(x - y) = I x - y 1-2 for x =F y. Details on the process are given in Sect. 2. 
We work in a finite volume A by killing the process when it first exists A. We denote 
by Eo, A the expectation for this killed process. 

We measure the amount of self-intersection inside A by 

r2 (A) = J ds dt l{w(s)=w(t)E/1}, 
where w(t) is a sample path for the process. We define the interacting Green's 
function by 

co 
G),, /1 (a, X, y) = J dT e-aT Eo, A (e-Jcr2(A) lw(T) = y I w(O) = X )  . 

0 

This function was studied in [BI] . They found that, in the infinite-volume limit, 
there exists a critical value ac = ac(A-) such that GJc(aco 0, x) = O( l x l - 2 ) as x � oo .  
In other words, the model exhibits massless decay at a =  ac . They also constructed 
the Green's function at values a > ac, finding there the hierarchical version of 
exponential decay. We think of our model as being comprised of an ensemble of 
walks of all different lengths, with each walk weighted according to its length (the 
e-aT term) and its self-interactions (the e-Jcr2 term). When the killing rate a is larger 
than critical value, only short walks contribute, hence the rapid decay of the 
correlations. As a '>. aco walks of all lengths contribute, resulting in slow power-law 
decay. 

We are interested in studying the case of a < ac . Here it is crucial to work in 
a finite volume with a self-avoiding interaction; with these two constraints, we 
would heuristically expect walks to fill the volume, encouraged by the negative 
killing rate, but then to stop at some finite density, discouraged by the interaction. 
In fact this is what happens and, furthermore, after taking the infinite volume limit 
we find a phase transition at a =  ac between the massive phase studied in [BI] and 
this dense phase. The density p(a) is an order parameter, being zero above the 
transition and nonzero below. We make this more precise below. 

In order to simplify the construction we condition on walks beginning and 
ending at the origin (though we could also consider more general walks). We define 
the expectation for such walks 

ScodTF (rT)e-aTE (e-Jcr2<Alt - l w(0) = 0) 
E (F(r)) = o O,A w(T)- o 

a,Jc,A G ( 0 0) ' 
Jc,A a, , 

Where We have defined TT = {ci}xEA• and T;{ is the local time the Walk SpendS at 
site x, defined as 

T 
1:;{ = J ds l{w(s) = x} · 

0 
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Since the local time is a measure of the density of the walk at a site our order 
parameter will involve an expectation of the local time. Notice that 
limA--. 00 Ea,;,,A (rx) =1= 0 for any fixed x in either phase. However, from the analysis 
in [BI] it is possible to show 

lim lim Ea,i,,A (rx) = 0 for a� ac . x--tooA� oo 

So we choose this as our order parameter: 

p(a) = lim lim Ea,Jc,A (rx) . x--+oo A-----t oo 

Our main result is to find the behavior of p(a) for a less than ac. We prove 

Theorem 1.1. Let d = 4, and choose some L sufficiently large, then .?c > 0 sufficiently 
small. Then for each fJ > 0, sufficiently small, 

p(ac(A)- {J) = U{J( - log {J)1 12 ( 1  + 0(( - log {J)-112 )), 

U > 0 is a constant that may depend on L and ),. 

Note that the leading term is mean-field behavior with logarithmic corrections, 
as one would expect for a system in its upper critical dimension. 

The dense phase for a SAW we first discussed by Parisi and Sourlas [PS] . Also 
in that paper they introduced the idea of studying a SAW as a supersymmetric field 
theory, independently proposed by McKane [M], which is the method we 
use. Dense polymers in two dimensions, both linear and branched, have been 
extensively studied by Duplan tier and Saleur; see [DS] and references therein. The 
phase diagram of 4>1 theories in the presence of a field h, for 4> an n-vector with 
n < 1, and its relation to polymer theory have also been studied [GS, WSPP]. 

An important question is whether our techniques could be extended to the case 
of a non-hierarchical walk. As we will see, the bosonic part of the model resembles 
a 0'-model. This fact, especially the presence of Goldstone modes, would consider­
ably complicate the analysis in the non-hierarchical case. While considerable 
progress on such issues has been made by Balaban [B] in the context of bosonic 
models at low temperature, the critical region still presents problems. 

In three dimensions, self-interacting walks with two-body attractive and three­
body repulsive interactions are used to model physical polymers in poor solvents 
[dCJ] . Near the 8 compensation point the theory is believed to exhibit tricritical 
behavior. Also near this point fixed-length polymers undergo a collapse transition 
[ dG 1, OPB]. We believe the techniques developed in this paper, suitably extended, 
could shed some light on these problems. 

We will now outline the proof of Theorem 1 . 1 .  The principle tool is the 
renormalization group applied to the supersymmetric field theory representation 
of the SAW model. We begin in Sect. 2 by describing the Levy process on the 
hierarchical lattice, and show how to compute SAW expectations by evaluating 
certain Berezin integrals, which, in the language of physics, are correlation func­
tions of a .?c<P4 hierarchical lattice field theory, where the killing rate a plays the role 
of the (mass)2• Here the fields are superfields <P = ( cp, (p, tf;, t{t), with the first two 
components comprising a bosonic (commuting) complex scalar field and the least 
two being fermionic (anticommuting, or Grassmann) fields. Because the action 
is a function only of the square <P2 = cp(p + tj;t{t, the theory is invariant under 
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transformations of the fields leaving <P2 invariant. This is the supersymmetry, which 
we will comment on further below. 

In Sect. 3 we set up the renormalization group framework we will be using to 
compute the Berezin integrals. Our treatment in these two sections is brief since 
extended explanations already exist in [BEl, BI] . In Sect. 4 we prove some 
analytical lemmas useful for keeping track of remainders during the induction. 

The main body of the paper begins with Sect. 5, where we consider the action of 
the renormalization group map on the self-avoidance interaction. This consists of 
following the evolution of the effective potential v(<P) as we apply the mapping 
repeatedly. The initial form of the potential is 

with ac = - 0(-1). Because we are interested in the behavior near the critical point, 
we start with f3 small, and hence the initial v has the form of a shallow "Mexican 
hat." While f3 is small, it essentially grows by a factor of L 2 under each step of the 
RG map. This simply reflects the fact that the mass is a relevant parameter, 
according to the renormalization group, and so is driven away from the fixed-point 
value. So the Mexican hat becomes deeper the longer we flow under the RG. While 
we are still near the critical trajectory, the techniques of [BEl, BI] apply with little 
modification, but once we get significantly into the deep Mexican hat region we 
must develop new methods that take the new shape of v into account. Here the 
model starts to look like a <T-model, and in fact we have used ideas developed to 
study the hierarchical version of that model [GK]. 

In Sect. 6 we apply the RG map to those blocks containing observables. In Sect. 
7 we assemble the results of the previous sections into an expression for E a, A., A ( -r z) 
which is a ratio of two one-dimensional integrals, the results of applying the RG 
sufficiently many times so the volume has been reduced to a single point. These 
integrals are easily evaluated, and then the limits A, z ---+ oo may be taken, yielding 
the result of Theorem 1 . 1 .  

Finally, we comment on  the nature of the phase transition and of the order 
parameter p. In the spin system representation, we noted that the model exhibits 
a supersymmetry, and that the killing rate becomes the (mass)2 . Because we have 
set a smaller than the critical value, we see we are in the low-temperature phase of 
the spin system. We thus expect to see consequences of a broken symmetry (in this 
case, a broken supersymmetry). The usual order parameter for such a transition is 
the magnetization, or expectation of a single field component < <P). However, this 
would not be relevant for the SAW model, because only the square of a field <P2 has 
significance (local time) in the SAW representation. But measuring < <P2), where 
< · ) is a spin-system expectation, would always give the result zero, by supersym­
metry (cf. [BEl] Theorem 4.2). By contrast, in an n-vector (bosonic) magnetic 
system where n > 0. <¢ · ¢> is always non-zero, being the expectation of a non­
negative quantity. Our model parameter p avoids both of these extremes because, 
in the spin system representation, it includes the square of a superfield (local time, 
but also two individual components of the field, corresponding to the beginning 
and endpoint of the walk: (cp0ip0<P;). In the limit z---+ oo ,  p(a) = 0 for a� ao 
which is a consequence of the unbroken supersymmetry: i.e. 
(cp0ip0<P;)� (cp0ip0) (<P;) in a massive theory. When a< ac, p(a) =!= 0, and we 
are seeing a consequence of the broken supersymmetry: pis a way of measuring an 
expectation of <P2 that does not trivially vanish. 
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2. The Process 

We will first construct the free (noninteracting) process, and then explain how to 
add self-avoidance. It is a similar process to that used in [BEl] but differs in two 
ways. First, the boundary conditions are different; we work in finite volume A, with 
walks that are killed on first exit from A. This is also done in [BI] . Second, we use 
a slightly different probability density q(x) for the steps of the walk. This is done for 
technical reasons, which we discuss later, and which are related to working in the 
broken phase. The difference between this process and that used in [BI] is minor; 
the short distance behavior of q(x) is modified slightly, but it is the same in the limit 
of large x. 

We now recall some notation from [BEl] and construct our Levy process. We 
denote by '§ the hierarchical lattice, so '§ = ffif'=o 12:", n = L 4. We define the 
subgroups 

{0} = '§0 c '§1 c · · · c '§ ,  

'§k = {x E '§ : Xi= 0, i;:;: k} . 
We use the hierarchical norm on '§, defined to be 

l x l = { 0 ifx = O  
U, p = inf { k : X E '§ k} if X =J= 0 . 

Let Yf be the dual to the group '§, so Yf = x f'=o iL". Also define Yfk to be the 
annihilator of '§b so 

Yf k = { �; 0 ' � 1 ' . . . ) : � i = 0 if i < k} if k > 0 
of[ ifk=O . 

We define a norm on Yf to be 

I � I= { O if�=O 
L- P, p = sup { k: � E Yf d if � =l= 0 . 

We define the free (noninteracting) process w(t) in infinite volume (i.e. on '§) to 
be one that has probability r dt of making a jump in time [t, t + dt] and, given 
a jump, probability q (x -y) of jumping from x toy. We choose 

with 

oo L -4k 
q(x) = 1;<'o- k

�
o (L2k- L 2) (1;1,- L -41;<'k+,)' 

oo L-6k 
K = (1- L -2)-1 - L2(1- L -2) " ---�,-------;;-;-;-.,...,.,­/;;;\ (1 - L 2k)(1 - L 2(k + 1l ) . 

(2.1) 

It is not hard to see that q(x) is positive semi-definite, satisfies J;<'q (x)dx = 1, and 
q(O) = 0. Also, l q (x) l � lx l -6 as x -+ oo .  

Before introducing the details of the finite-volume process we will briefly 
indicate the motivation for this choice of q(x). We define the Green's function 

co 
G(x, y) = G (x -y) = J P (x -y, t) , 

0 

where P(x, t) is the probability of finding the walk at site x at time t. 
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Lemma 2.1. A Levy process on I§ which jumps according to (2. 1), withjumping rate 
r = 1 ,  satisfies 

G X = 
{

-

1
-

if X = 0 
( ) 

lxl-2 if x � 0 · 

Proof Fourier analysis on '§, exactly as in [BEl], Proposition 2.3. • 
Recall that a simple random walk on a Euclidean lattice has a Green's function 

that decays like lxli-d. Because our process on the hierarchical lattice has 
a Green's function with the same decay (measured with a hierarchical norm), we 
interpret our walk as the hierarchical version of the simple random walk. 

We can rewrite Gas 

00 
G(x) = L L -zk r(x/Lk) ,  

k=O 

r(x) = (1 - L -z) llxl = o, 

i.e., G(x-y) is a sum of rescaled copies of a matrix r(x-y) . Recall that, in the 
renormalization group scheme used in [BEl] and here the functions r become the 
covariance matrices of the fluctuation convolutions (see Sect. 3). With this choice of 
q(x), the matrix r(x -y) is proportional to the identity matrix; in particular, it is 
nonsingular. This was not the case in [BEl]; they had a singular r that annihilated 
functions with zero mean on a block. The nonsingularity of our r is important for 
reasons that will become clear later; roughly, it means that our radial mass will flow 
to some fixed point under the renormalization group, rather than off to infinity, 
and it happens that our method requires this feature. We chose this particular 
nonsingular matrix (the identity) because it is the most convenient to handle 
technically (it is the same choice used in [GK]). We note that, with an appropriate 
choice of renormalization group transformation (RGT), one can always obtain 
a nonsingular r for a non-hierarchical model. In the hierarchical case, the defini­
tion of the RGT is tied up with the definition of the model. This is why we need to 
change the model slightly in order to perturb r. 

In this paper we will be using a different process wN (t), which is the same as the 
one we have described killed on first exit from some volume A. We assume A to be 
a balli§N, for some N � 0. Let Eo,N denote the expectation for this process. 

Lemma 2.2 (Levy Hincin formula). 

Eo,N ( <wN(t), 0) = e-ti/JN<O 

with � E :If and 

= K J dxq(x) , 
I xi> LN 
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Proof Because the metric on the hierarchical lattice is an ultra-metric, the process 
is killed the first time it jumps a distance greater than I A I = L N_ We rewrite the 
expectation, conditioning on the number of steps n, which is a Poisson distributed 
random variable with mean rt. Xi are the steps, which are iid random variables 
distributed according to q(x). So 

oo (rtt / n ) 
Eo,N((wN(t), 0) = 

n
�

o ---;:;!e
-rt Eo,N \ (, 

i
�

1 
Xi1X,;s;LN 

= exp ( rt J dxq(x)((, x) - rt ) 
!xi;:; L'' 

The calculation of l/1( () is an application of the fourier inversion formula 
� 

4k 1"', = L 1ff, , 

which is [BEl], Lemma 2.1. We insert the definition fo q(x) and find 

J dxq(x)((, x) = J dx((, x) [1!x!=O 
!xi;:; LN 

N-1 L -6k 

k
�

O ( 1  _ L 2(k+ 1) ) (11x!;:; L'- L -41!x!;:; Lk+l ) 

oo L-� 

J -(1-L-4) 
k
�

NK(1-L 2(k+1))1!x!;s;LN 

N-1 
=1- L K-1(L2k_L-2)-11l�l=C' 

k=O 
oo L -6k 

-11!'1;:; L -N L 4N (1 -L -4) L 
2(k+ 1)) ' k=N K(1-L 

which immediately yields the result. • 

(2.2) 

Next we calculate the Green's function for the killed process and find a de­
composition similar to (2.2). 

Lemma 2.3. For any x, yEA, 
N-1 

GN(x,y)= I L-2kT(xjU)+FN , 
k=O 

where 
r(x) = (1-L-2)11xl = o, 

FN = L -2(N+1)(1-L -2N) + L -4N(l/11T})-1. 
When N = 0, omit the sum in (2.3). 

Proof 

N-1 
= L (Uk-L-2)1i!'i=L-k+(l/11T ))-11i!'!;s;CN· 

k=O 
Then invert the Fourier transform using (2.2). • 

(2.3) 
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We now describe how to write the expectations for self-avoiding walks in terms 
of Berezin integrals. Given a path w(t), 0 � t � T, for the process, the local time 
spent at a site x up to time T is 

T 
r; = J ds l{w(s) = x) . 

0 

Since our walks are killed on first exit from the volume A = '§N, we have that 

r(A) = J dx r; = T . 
A 

A measure of self-interactions at a point x for a walk living for time T is 

_
2
1 
( �
xT)2 = J , ds1 dsz1{w(s1) = w(s2) = x) , 

0 � s1 � s2 � T 
and so to measure the self-interactions of the entire walk define 

r2(A) = J dx(r;)2. 
A 

(2.4) 

We are conditioning on walks beginning and ending at the origin, and hence define 
the expectation 

Ea,).,N(F((r)) = �, J dte-at Eo,N (e- ..t!2(�Nl F(r1)1{w(t) =OJ I w(O) = 0) 
0 

where r1 = (ri, . . . , r�), N' is defined so that Ea,J.,N(1) = 1 ,  and we have used (2.4). 

Lemma 2.4. 

where 

v(<l>) = a<l>z + ,J_<J>4 , 

S (  · ) = J dJ1GN(<I>)( · ) i/Jo (/Jo · 

Proof Apply [BEl], Theorem 3.3, to (2.5). • 

3. Renormalization Group 

We will now define the renormalization group map, which will be used to calculate 
the functions S (  · ) appearing in Lemma 2.4. Techniques for handling Gaussian 
integrals with combined Fermionic-Bosonic measures can be found in [BEl] and 
references therein. Also in [BEl], Sect. 4, is a discussion of the renormalization 
group framework we use, though the details here are slightly different. For this 
reason we will briefly sketch the construction of the RG map. 
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The functions S( · ) are of the form J dflGJA, with fA= flzEA fz(C/Jz). Suppose 
ai , i = 0, . . . , N are in IR; we will define what values they take below. When we 
write GN + ai as a covariance matrix C we mean Cx,y = GN(x - y) + ai . Define 

G ' (x) = L -ZGN-dx/L )  + oFN + aN , 
where oFN = FN -L -z FN- 1 · Then, referring to Lemma 2.3, we have that 

J dflGN+aN(C/J) fA(cJJ) = J dflo (C/J')dflr(OfA(C/J' + 0 · 

The covariance G ' is constant on blocks x + ':§ 1, which means that in the integrand 
C/J� = C/J� almost surely dflG' if x - y E ':§ 1 .  This allows us to eliminate all but one 
field per block in the integrand; we call these block fields C/JLz, z E A /L .  We next 
rescale, while involves the change of variables C/JLz ---+ L -1 C/Jx, and results in 

J dflGN+aN(C/J)fA(C/J) = J dflGN-l +aN-! (C/J)(T f)A/L(C/J) , 
where aN- 1 = L 2oFN + L 2aN, and we define the reormalization group trans­
formation (RGT) by 

for z E A /  L .  The rescaling operator Pll is an algebra homomorphism defined by its 
action on the generators and the coefficient ring coo (IR 2N): 

Pll(!/1!) = L -1!/1!, Vz E Lx + ':§1, !/1# = !/1 or l[J, 
Pll(cpz) = L -1 cpx , VzEL X + ':§1 , 

(Pllf)(cp)=f(Pllcp), jE C00 (lR 2N) .  
We can now read off how we should define all of the ai for our application. We 

have aN = 0 and, for j = 1 ,  . . .  , N, 

i= 1 
Sine oFi = O(L -4i ), we see that a0 = O (L -2), which will be an important fact in the 
sequel. We will also sometimes want to index G by the induction step instead of the 
size of the volume, so we define 

4. Analyticity and Norms 

We use the same framework for analyticity as that used in [BEl] . We recall the 
definitions and main lemmas here, though we refer to that paper for proofs. 

Let cp = (cp1 ,  . . . , cpp) E <CP. For g(cp) a complex coo function, define 
p 

lglw = sup lg(cp)l TI w(cpi )- 1 , 
'P i= 1 
hl�l 

lglw.h = I-1 lg(a)lw · 

a ex. 
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Here w is a positive weight function and g<aJ is the 1X1h derivative of g with respect to 
cp and ({J . IX is a multi-index. 

Next suppose g belongs to a Grassmann alebra <G, so 

g = I g<fJl(cp)l/J{J . 
{J 

This is the situation we are concerned with in this paper, so we define the following 
norm on such functions. 

Definition 4.1. 

h{J ha 
lg l - "--jg({J,a)j w,h- L.,fJI I w' 

{J,a . IX . 
whe re {3, IX are mult i- indexes wit h  compone nts of f3 = 0 or 1 .  

We will need the following facts, true for all weight functions: 

Lemma 4.1 (Properties of l· lw,h) [BEl]. Suppose f.lc is a comb ine d Fe rmionic and 
B os onic inte gral , and g E <G. T he n  
(i) lg lw,h;;:; lglw',h', if h';;::; h, w;;::; w'. 
(ii) lf.J.c*glw·,h;;:; exp(L,j h-1ICijlh-1) lglw,h• whe re w' s at isfies f.lc*W;;:; w'. 

(iii) l(a� J g
l
w.h

;;:; IX! (h' -h)-alglw,h'• if h' > h. 

We now specialize to the two different forms of w(cp) we will be using. Let X be 
a finite subset of the infinite lattice '!J, let <Gx be the Grassmann algebra generated 
by the fields cPx, x EX ,  and let gx denote an element in <Gx. In the low mass region 
(Sects. 5. 1 and 6. 1), we will take 

w(X ,  cp)) = exp ( - a  [ dx lcpxl2 ) 
and we write jgXIa,h to denote the norm with this weight function. We have the 
following properties for this norm: 

Lemma 4.2. (Properties of l·la,h) [BEl] .  Suppose h;;::; 0, gx E <Gx. T he n  
(i) If X E 'fJ1, t he n  l�gxla,h = igxlva h .  

TXf;L 
(ii) igxla,h;;:; lgx!a',h' if a';;::; a, h';;::; h. 
(iii) if.lc * gxla,h ;;:; exp [J dxdy I C(x, y) I h-2] igx la, h· a=  a (l - a  II Ci1 )-1, whe re 

II C II is t he norm of t he cov riance C(x, y) re garde d  as an ope rt or on L 2 (X , dz) 
and a;;::; 0. 

(iv) If X n Y = 0, igxgr la,h;;:; igxla,h lgrla,h· 
(v) igxgr la+b,h;;:; lgx la,h lgrlb,h· 

In the higher mass region (Sects. 5.2-5. 4 and 6.2-6.4), we will take 

w (X , cp) = exp [r dx(K - 1Xg2(1cpxl-A)2) J' (4. 1 )  
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and we write I gxiK,ag2, A,h· Let n' be the step at which we begin applying this form of 
the norm. We will have gin')"' fi and, in the ensuing steps, gin) will increase by 
a factor by approximately L 2 each step until it reaches one (see Sects. 5 .3-5. 4 for 
details on the flow), at which point its increase slows down as it approaches the 
fixed point of O(L 2). For technical reasons we need to keep track of some of the 
decay properties of the remainder, which we measure by ag2, but we also have to 
give up a Iitle decay at each step while we are still in the regime g2 < 1 (there are 
0(- logLA-) such steps). We accomplish this by changing a at each step; i.e. we use 
a<O) for the first such step, then a<1), . . .  , and we define 

1 1 G((n) =- + -e�bn 
32 32 

( 4.2) 

with some b > 0. Using the fact that there are 0 ( - logL'�-) steps before g2 reaches 
unity, we see that in this regime a<n) - a<n + 1) � 0 ( £5}}-b flog L. 

Some properties of this norm are contained in 

Lemma 4.3 (Properties of I·IK,a,A,h). 

(i) If X c '§1, t he n  19fgxiK,a,A,h = lgxl K £2a A h . 
TXf'TXf'L'L 

(ii) lgx(w·) IK,a,A,h=lgx(·)l a ,forwElR+. K,w2,Aw,h w 
(iii) lgxiK,a,A,h;:;:; lgxiK,a',A,h' if h' �a'� a. 

(iv) If lA- AI;:;:; b for s ome b > 0, t he n  lgxiK,a,A,h;:;:; 0(1)1gxiK,ii,A,h, whe re 
a= a +  O(a2 62). 

(v) 
I.Urrw * gxiK,a("+l),A,h;:;:; 0(1) exp (2: h�1 ltF Wii l h� 1 ) lgxiK,a("l,A,h , ( 4.3) 

'· J 

whe re We have set t E [0, 1] , FW (x, y )  = (yw)bx,y' yw = 0(1), C = 0(1), 

and 

1 (n+ 1) a<n + 1) = 
G( g 2 (1 + d) a<n) = ctg(n) 
L2w2 

, 2 , 

£2 2 (n) ( 
(n)) (n+1) _ W g2 + O f!...J:_ g2 - 1 + (n) A ' g2 yw 

(n) > > 3 { G((n + 1) + k (ct(n) _ G((n + 1)) G( =G(= tct(n+1) 
if g�) < 1 
if g�) � 1' 

if g�) < 1 

if g�) � 1 . 

(vi) If X n 0, lgxgYIK,a,A,h;:;:; lgxiK,a,A,hlgY IK,a,A,h· 
(vii) lgxgYIJ+K,a+b,A,h;:;:; lgxiJ,a,A,hlgY IK,b,A,h· 

The proof is contained in Appendix A. This lemma will be used in Sects 5.3, 5 . 4, 
6.3, and 6. 4. The freedom in the choices of a and a' is not needed until Sect. 6. 
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It is not very convenient to compute these norms from the definitions. We can 
frequently take advantage of facts we know about the analytic structure of the 
functions we norm. We write 

m. = m(1 ) + im(2) m. = ({)( 1)-im(2) 't'l 't'l 't't ' ...,.,l 't'l 't'l ' 

and allow the t:p:n to be complex. We set 

Dh(t:p) = {(t:p{, ip(, ui, iii) E <C4: V' i  = 1 ,  ... , p, 

V'j = 1, 2, lt:p;uJ- t:p�nl, lu il, Iii( I;;=; h} , 

q}JI E JR 
If we have a function F analytic on Dh(t:p), define 

IF ih (t:p) = sup IF(t:p')l , 
q/ E D,(<p) 

and let F (<!>) denote an element of the Grassmann algebra obtained by substituting 
u = t/J, u = lfi in the power series 

1 -
F(t:p, ip, u, u) = L -=-tl (a�:�F)(ip, t:p, 0, O)itua, 

rx.rx. 

with any convention for the order of t/J's in the product (rx! = rx'! = 1). 
Lemma 4.4 (Comparison of Norms) [BEl]. Supp os e F is analyt ic in Sch and 
g = F (<I>), then for c > 1, 

where 
lglw,h;;:; ( 1 _

1
c_1 rp IIF IIw,ch ,  

We will also use a corollary of this lemma that is specific to functions in <G that 
are of the form g = G( <!> 2), where G is a function of a single variable. In order to 
apply the above lemma, we need to bound G(t:p'ip'+u'u')w(t:p)-1 for t:pE<C, 
(t:p', t:p', u', u') E Dch(t:p). To make matters simpler, we could just bound G(v)w(t:p)-1 
for t:p E <C, v ED��) (t:p), where 

D��) ( t:p) == { z E <C : z = t:p' ip' + u' u' 
for some (t:p', rp', u', u') E Dch(t:p)} 

or, simgler still, we define Cch(t:p) to be a disc around lt:pl2 of radius rch(t:p) chosen so 
that Dc�)(t:p) c Cch(t:p). We set 

and also define 

{ 8h2 if lt:pl;;:; h rh(t:p) = Shlt:pl if lt:pl > h 

We now have the following 
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Corollary 4.5. If G is a fu nct ion of a s ingle complex v ar iab le, analyt ic in Rch ' g = G (<P 2), then 

l g lw , h;;; ( 1 _
1
c - 1 r sup I G( I<P I 2 + l) w(cp) - 1 . 

<pE<C IEC,h(<p) 
At times we will want pointwise bounds on a function given bounds on its 

norm. For this we have 

Lemma 4.6. Suppos e  F is a fu nct ion of a s ingle v ar iab le z, and G( <P )  = <P 2" F ( <P 2) 
s at isfi es I G lw , h  < oo .  Set z = q/ ifj1 + l', wit h q/, i{J1 complex conju gat es ,  l' E <C wit h 
111 1 < max ( ( � Y, � I cp I ) . T hen 

(a) 1 _1 [' < {
0(1) h-l(n +a) l G lw , hw(O) if I<P1 1;;; 3h/4 IF (cp cp + ) I = 0 (1) (h l cp1 1 ) -" I<PT 2" I G iw , hW(cp1 )  if I<P1 1 > 3h/4. 

Pr oof Let f(cp1 , i[J1 )  = (cp1 i[J1 )" F (cp1 i[J1 ). Clearly l f lw , h;;; I G lw , h ' and so f is analytic 
in cp1, i{J1 with radius of convergence h. We use this fact in two different ways 
depending on the size of I cp1 1 . 

(i) If I cp' I ;;; 3h/4, then I cp1 ifJ 1 + l' I < 1 5h2 / 16. So we choose some w, w not 
necessarily complex conjugates such that ww = cp' ifj1 + 11 with l w l, lw l < h. Then 
we expand 

Now, 

which tells us that 

wP wP aP aP 
I 

f(w, w )  =I -----p--f . 
fJ , P fJ! fJ! a cp  aiPfJ "'= !j5 = o 

(4.4) 

wP-n -awfi -n - a aP afJP 
I 

p<al (ww )  =I ({J - n) · · · ({J - n- a +  1 ) -p�f . 
fJ.fJ fJ!fJ! a cp  a cpf3 <p=!jj=o 

(4.5) 

Now, becausef(cp1 , ifj1 ) is a function of cp1 i{J1 alone, and analytic at the origin, we 
have that a:. , a £ . f l<p=!jj= o = O unless [J =fJ. Note that F is regular at the 
origin, for otherwise I G lw , h would be infinity due to the F1 term in 
F (<P 2) = F (cp i[J ) + tf;l(/ Fl (cp i[J ). Hence a� 8� f l"' = cjj = o for i =  0, . . . , n - 1. Also, we 
can use Lemma 4. 1 to show that 

Inserting this in (4.5), we find that 

I F( a) (cp1i{J1 + l' ) l ;;; 0(1) h-l(n+a) lffw.hw(O) · 
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(ii) If j cp'l > 3hj 4, we have F( cp' ijj ' + l ' ) = ( ww ) -n f( w, w ) with w = cp' + l 'j ijj ' 
and w = ijj '. We will apply ( 4.4) again, this time expanding f around cp' and (p'. For 
any m, 

a m
m f( w, w ) = I [3· . . (/3 - m +  1) ( w - cp')P -m�w - ijj')ff JP

P 
0�-f l ' . a w  /3,/J f3lf3. o cp  arpP rp = rp 

<P 
= <P' ( 4.6) 

Next use Lemma 4. 1 to get the bounds 

j_'!_ 0/J-f l � f3!fJ!h-( f3+/J)jfjw ,hW(rp ') . o cpP oifJP rp = rp' 
<P = <P' 

Inserting this in ( 4.6) and noting that with this choice of w, w the only contribution 
from the sum over fJ is the {J = 0 term, we find 

I a�m f( w, w ) I� 0( 1) h- m l flw,h w( cp') . 

Finally notice that, again for any m, 

I� ( - )-n I < ( ) 1 ' I - 2n -m a wm w, w = c n cp . 

Inserting ( 4.8) and ( 4.7 ) into ( 4.4) completes the proof. • 

( 4.7 ) 

( 4.8) 

Corollary 4.7. If t he wei ght fu ncti on w is of t he form ( 4. 1), wit h g2 = 4A. A2 � 
L- 2 j"i, h = min (r 114, g2 11 2 ), and F, G, cp', ijj', l '  ar e as i n  Lemma 4.6, t hen 

lp<a>(rn'ir.' + l ' ) � O (A_af2 )A- zn l G I eK-�ag2(1rp'I-A)2• -r -r _ K,ag2, A,h 
The hypotheses of Corollary 4.7 are such that it will be applicable in Sects. 

5.2- 5.4 and 6.2- 6.4. 

5. Renormalization of the Interaction 

In order to compute the expectation of the density at site z, we must compute the 
functional integrals S (IA) and S(cJJ; IA), where the interaction IA is defined to be 

XEA 

g(cJJ ) = exp ( - v(cJJ)) , 

v(cJJ) = A_cp4 + acJJ 2 . 
We begin by computing the RGT in those blocks that do not contain 0 or z, so the 
RGT applies to the function g'!f, , where 

xeX 

This proceeds by three different methods depending on the size of the mass. 
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5.1. Small M ass Flow. The existence of a critical point follows from Proposition 5 .1 ,  
below. We wish to study our model at masses below the critical one, and follow the 
approach to the critical point carefully. For masses very close to the critical one, 
a slight perturbation of the methods of [BEl] apply. These were developed in [BI] , 
and for completeness we present them briefly here. After zero or more RGT's, the 
function T " g  can be represented as 

Inductive Assumption 1 (/3, A, M). Th e fu nct ion g ( 1> )  can b e  r epr es ent ed as 

ef3<P' g(1> )  = ef3<P' ( e-v( l + '7: 1> 6 : GM+aJ + r(1> )) , 

Her e  f.1Z = ac( A) + 2AG00( 0), th e par amet er '7 s at isfi es '7 < c0), 2, and r(1> ) = R(1> 2 ) 
s at isfi es 

dj 
I 1 r(t1> ) = 0, 0 :£ j < 8 . dt t=O 

Proposition 5.1 ([BEl] Theorem 7 .2). Ch oos e  s ome int eger L suffi cient ly lar ge, and 
th en s ome Ao suffi cient ly small. Th en th er e  exists ac( A0 ) = - 2;,0 Goo( O) + 0(),6), 
su ch th at if 

g(1> )  = exp ( - A01>4- ac1> 2 ), 
th en T" g s at isfi es JA1 (0, A, oo) with An = (),1 1 + f3 2 n + O( log n)) -1 for all n. Her e  
0( · ) may depend on L. 

Pr oof Our model is slightly different than that used in [BEl], but this is irrelevant 
since they did not take advantage of the special feature of theirs that the fluctuation 
covariance was singular. This is borne out by the analysis below: take f3 = 0 in our 
Proposition 5.2, and substitute this for [BEl] Proposition 7.1 in the proof of [BEl] 
Proposition 7 .2. • 

We are interested in the case of f3 > 0 small, so we choose 0 < f3 < A  112. Before 
the first step, our starting g satisfies IA1 (/3, A, N) with r = '1 = 0. 

At the end of the induction we will see that our covariance GN is not quite 
massless; it has a mass that vanishes exponentially as the volume tends to oo . 
Because the ac(,1 ) we are using in I A 1 is defined by the infinite-volume process, we 
must correct for this by adding a small negative mass to f3; i.e. to calculate the 
expectation of the density in finite volume with negative killing rate /3, we must 
start with the interaction function exp( (/3 + f3A ) 1> 2 ) g(1> 2). For simplicity of nota­
tion, we will set /3' = f3 + f3 A and then drop the prime. 

We apply the RGT: 

T( ef3<P' g) = 1Yt11r * ( ef3<P 'g)'!J' . 
If there were no interactions, we could do the convolution exactly via a translation 
of the superfield. We do this translation even in the presence of the interaction 
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T( {3<P2 ) _ CilJ f3J,, dxdy<PxWxy(j)y �'(W"') e g - :n e  ' Jlrw * g "' 
w = ( 1 - pn-1 

or, inserting the forms for r, w we have for our model, 
Lz f3 <Pz 

T( ef3<P 'g) = /-py f1llflrw*g�'(W</J) 

withy= 1- L - 2. So, keeping in mind that {J --* L2{J /( 1-{Jy ), we can study the 
recursion for g(</J )  exactly as was done in [BEl], with the changes of replacing 
r --* r W in the convolution and evaluating at W </J. Since the differences are 
minor, we will only briefly sketch the argument here, replacing one part of it with 
a more elegant method due to [BI]. 

Proposition 5.2. Let L b e  lar ge enou gh, and c0 = c0 (L), c1 = cdL) in I A1 ({J , -}, M) 
b e  lar ge enou gh. Let 0 < A< A0 , wit h  Ao = )"0( L) small enou gh. T hen ef3<P g(<P )  
s at isfi es IA1 ({J , y ,  M) implies T( ef3<P' g(</J )) s at isfi es I A1 ({J ', A' , M- 1 ), wher e  

{J '  = 1 r:_ �')!- ')!pU {J)o + 0 ({3 2, {J A2 )' 

A' = A-{J 2Jo 2 + O({J A, A3) ,  
IJ' = L -21J + 0 (A2) .  

and {3 2 = 1 6y ( 1 - �} y13 = 4y ( 1 - �). 
Pr oof We will assume .92:;:;; X :;=;; A, which will be justified in the course of the 
proof. We say a term satisfies r bounds if 

lflj):,h:;:;; O( L -4 ) c 1), ,  
jr<a) (0)1 :;=;; c<al (L)A3 for lal < 8 .  

r will be used to denote terms that satisfy r bounds, and its value may change from 
line to line or even within the same line. 
The g�' splits into three sets of terms: those with � 2 remainders r ,  which we 
denote S;:, 2, those with one remainder S 1 ,  and those with no remainders S0. Both 
terms with remainders are handled exactly as in [BEl]; they are r. We omit the 
detailed arguments, but the heuristics are as follows: the S;:, 2 terms are 0()" 2) in 
norm due to the two remainders, and the derivative condition follows when we use 
the fact that r(</J ) starts at O (</J8 ). This same fact gives us the derivative conditon for 
the S1 terms, and to get the norm conditon we observe that under rescaling r scales 
down by L- 8, which compensates for the fact that there are L 4 such terms. 

The remaining term is handled by a new method due to [BI]. Define 

Z(t )- Cil)Jl * e- u(t) + s� ds!l(t-,ITW*u$(s) - ;n (1- t)TW - ' 

u(t ) = fltTW * J dx{v(<Px) -17: </J�:}, 
(§, 

2 ou(t ) ou(t ) u<P(t ) = J dx dy (TW )(x, y )  -_- o</J , 
(§, o</Jx y 
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and we define e on Wick-ordered polynomials to be the ordinary exponential, but 
terms of order: <P6 : are expanded out to first order, and terms of order : <P8 : and 
higher are expanded to zeroth order (i.e. 1 ). Hence it is easy to see that 

Z( O) = �Jlrw *So, 

which is exactly the quantity we wish to calculate, and that 

d -
d tZ( t) = r. 

So, by the fundamental theorem of calculus, we have that 

�Jlrw *So = �g- u(t) + s� dsJl(l-,)J"W*uJ(s) + r. 
It remains to do the calculation. The leading behavior is in the u(l) term. In 

order to calculate this, we first state the identity 

where 

(;JltJlrw *: <Pn :GM+a)(W<P) = (IY eBLJ: pn: GM_,+aM-;' (5 .1) 

B = 2L2 {Jy ( 1-�-{J;) + (GM- 1 + aM-1 - 1)(2{Jy- {J2y2). 

In particular, 

(;JltJlrw*: <P4 :GM+aJ(W<P) = (IY: <P4 :GM-,+aM-1 + 2B (Ir <P2. 

The identity follows from the definitions of GM, aM, W, and r, along with proper­
ties of Wick ordering, which are summarized in [BEl] Lemma 5.1. Note that 
GM _ 1 + aM_ 1 - 1 = 0 (L- 2M), and M can be as large as we like since since we are 
interested in the infinite-volume limit and we only apply this proposition in the 
small-mass regime. 

We can now find the leading behavior of X and {J' from 
UfJ 

T (ef3<P2 g) = e 1 -py <P2 [ ;Jlt (g- u(l) + f� dsJ1(1-,1rw * uJ(s))(W <P) + r] . 
The jlt and 1J terms in u(1) do not contribute to lo' or {J' at leading or next to leading 
order (the largest contributions are O({JA2)). So the only important terms in u(1) are 

;Jltu(1)(W <P) = A,: <P4 :GM-1 +aM-, + 4e {Jy ( 1 - �) A,<P2 + · · · 

Combining this with the e {J<P2 /(1 - {Jy) in front, we find 

lo' = A- +  O({JA-,Ic2), 

{J' = e fJ ( 1 - 4y ( 1 - �) lo ) + 0 ({32, [J)_2). 

Hence we have found that 'Yp = 4y (1 - �), as stated. To see that {32 = 16y (1 - �) 
requires examining the u� correction. The calculation is straightfoward, but since it 
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is done in [BI] we will not repeat it here. We note that the ratio yp/{32 = 1/4 is the 
same here as it was in [B1], as would be expected. 

The final step is to absord the r terms into a shift in (J, A, and ry, which occurs 
exactly as in [BEl] and incurs only 0 (),3 ) shifts in [3', A', and r( • 
5.2. Swit ch of R epr es ent at ions . After applying the small-mass recursion up to the 
point where one more RGT would result in 1/3 1 � ,fi/4, we must stop using the [BI] 
method and use a new approach for a while before switching methods again and 
using the large-mass techniques. Both of the other techniques act on a different 
representation for the function g, to which we must switch. This new representation is 

Inductive Assumption 2 (f3A, K, A, A, a). 

lrnewiK,agz,A,h ;£ C2 ,fi ' 
r�i2w l<t>z = Az = 0 for i < 3 , 

wher e  a is des cr ib ed ab ov e ( 4.2), h = min(r 1i4 , g21i2 ), g2:= 4AA2 is t he r adial 
cur v atur e of Vnew(lcpl2) at t he minimum, and, in t he last line, we ar e cons ider ing 
r = r ( cJ>2) t o  b e  a fu nct ion of one v ar iab le, diff er ent iat ing wit h  r es pect t o  it i t imes ,  and 
ev alu at ing at A 2. 

Up until now we kept most of the mass outside of the interaction (we left the 
critical piece ac inside v ). At this point the mass is large enough that we must take 
the Mexican hat shape of the potential into account. This is reflected in I A2. So we 
move most of the mass back into the interaction, but we still leave the vol­
ume-dependent piece f3 A outside. We will find that f3 A is very small throughout most 
of the induction, so it will not cause us any problems. 

Proposition 5.3. gnew s at isfi es IA2( (J', K', A', A', a) wit h  t he choice of c2 = c2 (L) 
lar ge enou gh, and 

Als o, 

K' = ([3 - f3A + 2( G<" l( O) + a<" l ) A - p�f /4A + O (j): ) , 
A'2 = ({3-f3A + 2( G<" l( O) + a<nlp - p� )/2), + 0( 1 ) , 

A' = A +  O( A3! 2 ) ,  
a = 1/16 . 

eP A<Pz gnew(cJ> ) = ef3<1>z g(cJ> )  . 
We will assume IA'2- A2l ;;;;; 0(1), to be justified in the course of the proof. We 

begin by defining 

K = ([3- f3A + 2( G<" l( O) + a<n l) A - p�)2 /4), 
= 0 (1) ' 

A2 = ({3-f3A + 2( G<" l( O) + a<" l ) A - p� )/2A 
= O( A- 1; 2 ), ( 5.2) 
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so that 

ef3<P2 g = ePA <P' eK- l{<P'- A2)2 (1 + 1J : <P 6 : r( <Pz) e(/3- /JA)<P' e- K + J"(<P2- A2)2) 

(5.3) 

where the last line defines f We Taylor-expand f to second order around some 
point B, chosen below: 

so we can write 

where 

c = ___h_ 
1 + fo' 
fz C2 D = -- --1 +fo 2' 

J,. = (!�
o
- CD(<Pz- B)3-

C�D (<Pz- B)4'  (5.4) 

which allows us to write 

where 

eP<P' = ePA<P' eK- i(<Pz- A')z (1 + fo) [(ecW- B) - e;w- B)) 

( D(<P2- B)' _ D(<P'- B)2) + r J x e e 2 Jr , 

1 (1 -t )i - 1 . 
X s dt (X L ei = 0 (i _ 1)! 

e x . 

(5.5) 

(5.6) 

We expand the above equation into five terms, the first of which becomes the 
leading term in 9new' the rest becoming ruew· We get the desired form of the leading 
term by making the choice B = A' 2 and shifting K, A, ;t to eliminate the linear term: 

K' = K - C2/4), + log (l + fo), 
A'2 = A2 + Cj2 ;t ,  
X=J-D . 

In order to show the norm condition for the remainder, we need bounds on the};, 
which we obtain with the help of the identity r(i l (<P 2 ) = ijJ-n a� r (<P 2) used as 
follows: 

i r(i) I<P'=A'' = IifJ -i(�)i r l � (A')-i l(�)i r l w (A') 8rp <Pz = A'z O((J .ji, 0 

� O (l ) (A'h)-il r lj;:,h � O (/c 1-� )" 
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This, along with (5.2), allows us to show 

The derivative conditions for r new are obvious. To see the norm condition, we need 
the following 

Lemma 5.4. 

l exp [ -b 1 (<P 2 - B d2 + b 2 (<P 2 - B 2) ] (<P 2 - A'2)m]o,ag',,A',h' ::;=; c(m)rm1 2 , 

where b 1 = A +  0 (A31 2), b 2 = O(A), I Bi - A2 l ::;=; 0 (1), g2 = 4A'A'2 , and h' = g'2- 11 2 . 

Proof Let F (<P 2) denote the function inside the norm in the statement. Using 
Corollary 4.5, we need to bound IF (z )w(cp)- 1 1, with z = I cp 12 + l ,  l E C2h (cp), cp E <C. 
This is easiest to see if we pick some number L1 = 0(1 ) (chosen large enough) and 
consider two regions separately: 

(i) ll cp l 2 - A'2 1 < Ll A  - 112 . Here we have that Il l ::;=; O (A - 11 2 ), so using the condi­
tions in the statement on the bi , Bias well as the definitions of g2 and w(cp) we see 
that both IF (z ) l  and w(cp)- 1 are bounded by 0(1). 
(ii) I I  cp I - A'2 1 � L1 A - 11 2 . In this region, if I cp I < h, then 

If I cp I � h, then 

I 
l 

I 
< O(h2) < - 1 

l cp l 2 - A'2 = Ll A  1 /2 = O (Ll ) . 

I 
l 

I I 
O (h) l cp l  

I l cp i 2 - Ar 2 ::;=; l cp i 2 - Ar 2 . 

The function l cp l /( l cp l 2 - A'2), with l cp l in the large-field region, achieves its 
maximum at I cp 12 = A'2 + L1 }, - 1; 2 . So . 

and we can write 

I 
l 

I < 0 (h) (A'2 + ,;1), - 1/2) 1 / 2 
l cp i 2 - A'2 = Llr 1 /2 

::;:; O (Ll- 11 2 ) ,  

where Ki = 1 + O (Ll - 11 2 ). At this point we can use half the decay to cancel the 
weight function and half to kill the monomial, leaving us with the bound in the 
statement. • 

Lemma 5.4 applies directly to the terms in (5.5) containing an e2 or e3• To see 
that the term containingj;. is also small enough in norm we apply Lemma 5.4 to the 
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last two terms in (5.4) and then write 

f � 3 = f- fo -!1 ( IJJ2 - A' 2 ) -!2 ( IJJ2 - A' 2 )2 · 

Lemma 5.4 applies to all of the terms but the one containing f; for this one, we 
need to norm the quantity 

eK-i,(<P'-A'')'11: q>6 : + e<f3-fJA)<P' r . 

To handle the first term we expand the Wick monomial and then write 
q>2 = (!JJ2 - A'2) + A' 2, applying Lemma 5.4 to each of the resultant terms. For the 
term containing the remainder we use 

;£ 0(1)[e<f3-fJA)<P'ri1y'}:,i-'1• 

;£ 0(1)[e<f3-fJA)<P'[_L/2X'I•frfy0:x'l• 

;£ O(Jc) . 

We have used Lemma 4.1, part (i), in the second line and the last line is true because 
we have assumed f3 < ,fi/4. 

As long as c2 = c2 (L) is chosen large enough, we have shown that the sum of the 
various terms we have claimed comprise rnew satisfies the norm condition, and the 
proof of Proposition 5.3 is complete. 

5.3. Intermediate Mass Flow. We now have a new representation gnew ' 
and we drop the labels "new." It takes into consideration the fact that the 
minimum of the potential has moved far away from zero, which is reflected in the 
norm we use to measure the remainder; essentially we are expanding around 
IJJ2 = A 2 rather than IJJ2 = 0. Eventually we will want to use this in our 
renormalization procedure, but in a narrow intermediate regime we must use 
essentially the old procedure of expanding Jlc• as 1 + Llc + · · · though there are 
a few differences. 

We call the radial curvature of the potential at the minmum (the "radial mass") 
g2 , and note that g2 = 4AA 2• So far we have been keeping track of the parameters 
{3, A, 11 along with the function r(Jl� is not a parameter since by definition it 
is just the mass along the critical trajectory). When we begin to do RGTs after 
the mass is well away from the critical point, we no longer need to keep track 
of 17, since its role was to allow us to track the evolution of A carefully, which 
we only need to do very near the critical point. In the new representation, we 
keep track of the parameters K, A, A along with the function r new . Theere 
is also a relation between these parameters and r new given by gnew (O) = 1, 
due to [BEl] Theorem 4.2, which accounts for the fact that we are dispensing 
with 11 and therefore losing a degree of freedom. It happens that it is more 
convenient to just track the evolution of K, A, A independently and not make 
use of the relation. We can also use g2 = 4)"A 2 to parameterize our recursion 
by K, g2 , A instead, and we will use both parameterizations at various points 
in the sequel. 
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Proposition 5.5. Let g2E [L-2 X1 1 2j 5, ), 1 i4 + v,], and s uppos e ef3A<P2 g  s atisfi es 
IA2(f3 A, K, X, A, et(n)). T hen T (ef3A <P2 g) s atisfi es A2(f3�, K', Jc ', A', et(n+ 1 ) ), with 

K' = L4K + O(J-i-+v,), 
5 

X ' = w1 X + O(J4+v,), 

A'2 = (�
A 
y A2 + 0(1) , 

/31 - L2 f3A A - 1 f3 . - Ar 
Here vb E (0, 1 /4), n is the numb er of times this Propos ition has b een applied s ince the 
s witch of reres entations, and et(n) was defi ned in (4.2). 

Initially we do not know what K', X', A' are. We will prove estimates under the 
assumption that 

A' = w1 X  + O( X8), 

A'2 = ( � y A2 + 0(1) (5.7 )  

for some c: > 0. This will be justified in the course of the proof. We also set a = a(n), 
rx' = rx(n+ 1 ). 

As in the low-mass region, we define a quantity r that will be used to absorb 
harmless remainder terms during the renormalization process. Here we take 

fPiK',a',g�,A',h' � L - 2 c2.Ji', 

(5.8) 
where in the second line we are considering r to be a function of a single variable 
and differentiating rx times with respect to it. Note that we do not yet know that A' 
is, only the assumption (5.7). 

Again as in the low-mass region, we write 

f3 cp2 � <P2 T (e A g) = e'-p,r (£4lflrwA*g�')(WA<l>) ,  
wA = (1-f3An- 1 , 
g�' = S0 + S 1 + S � 2 , 

where S0 is the term with no remainders, etc. We can use Lemma 4.3 to handle most 
of this in the same manner as in the low-mass region: e.g. for the S � 2 term, 

i.'Wflrw * S z 2(WA ')IK' a'g' A' h' = iflr* S z2( · ) iK: __:"_<;_ . wAA'.wAh' A - • • 2• ' - L" L"w_A L L 
� 0(1) 1flr * s � 2IK, a'g� , (1+d.) ,A, WAh' 

Lzw2 L A 
� 0(1)iS�2iK ,ag2,A, wAh' L 
� 0(1) IS � 2iK,a92,A,h 

� 0(1) L iri1:� 92 ,A,h lgoi�:�:2 ,A,h 
IXI�2 

� c (L) O(X), 
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where g0 is g with r set to 0, and c = 0(1). We have used Lemma 4.3 in all but the 
last line, and Lemma 5 . 4  in the last line. Since c(L) can be bounded by ..1.', this yields 
the first of the r estimates. The second follows by applying Corollary 4.7 to S;:;; 2 .  

We next claim that !!ltflrwA * s 1 is r. We first write 

1 
!!liflrWA * S 1 = JllS1 + !J1t J dt fltFWA * LlrwA S1 · 0 

By arguments similar to those above, we can show the second term is r. The first 
term will require a new argument. We write it as 

F (z )  = L 4 e-W - 1)u (z) r(z ) , 
v (z ) = - K + ), (z - A2f .  

We start by showing the second of the r conditions. It is helpful to write 

1 1 r (z )  = l J dt(1 - t)2 r" ' (t(z - A2) + A2 ) (z- A2)3 , 0 (5.9) 

where we have used the inductive assumption on the vanishing of the derivatives of 
r. In bounding this and its first two derivatives we use our assumptions (5.7) along 
with Corollary 4.7, which tells us that 

lr ("')IA · z ;p � O(A. 1 f2 +af2)eK . 

The derivatives can also act on the exponential, which brings down a power of ..1. for 
rx = 1 or 2. Hence we have that 

I ( 
a 

)
"' 

I 
2 K' -a 2 f?A?S1 � 0(..1. ) e  , cfJ <Pz = A'2 

which gives us the second r estimate. 
We still need to show the first r estimate, the norm condition, for which we 

prove the following. 

Lemma 5.6. Suppos e X(cJ>) = Y (cfJ 2) s atisfi es IXIK,ag2,A,h < oo ,  andY is afunction 
of a s ingle v ariab le s atisfy ing Y (a) lA 2 = 0 for rx < m, s ome m � 0. Let 

Z (cfJ) = X(cJ>x)(e-u(<P)r�,\{x} 

for x E c:# 1 . T hen 
l!!ltZ(WA ·)IK',a'g�.A',h' � O(L -lm)IXIK,ag2,A,h . 

Proof We first observe that f?A!Z is analytic in a sufficiently large region to apply 
Corollary 4.5, since 

lf?A!Z(WA •)IK',a'g�,A',h' � 0(1)1ZIK,o:g2,A,':Ah' 

� 0(1)1ZIK,agz,A,h 

� c(L)IXIK,agz,A,h 
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where the second line is true for any c < L/wA, since h' � h. So we can certainly 
choose c large so .?h!Z(WAz) is analytic for z E R2h' · To apply Corollary 4.5 we must 
bound F(z)w' (cp)- 1 , where 

F (z) = e- (£4 - l ) v (z) Y(z) 

z = ( :A Y ( I cp 1 2 + l) l E C zd <P) . 

We handle the bound in slightly different ways depending on the value of 1 cp 1 2• 
Recall that l l; l � max (32h'2 , 1 6h' l cp l ). We call the region of 

with L1 > 1, chosen large enough, to be the large-field region. In this region, if 
I <P I �  16h', then 

(5. 10) 
We obtained the last line by noting that if Ll..:t - 1 ; 2 > £2 A 2 jw�, then we can use 
h' � h � r 1i4 to get the bound of O (LJ - 1 1 2 ), where as if Llr 1 12 < L2 A2jw� ,  then 
we are in the regime where h' = 0 (h/ L) and we can use the fact that hA = A- 1 12 /2 
to get the bound 0 (Ll - 1) � 0 (Ll - 1 12 ). Finally, if I cp I < 1 6h', we see directly that the 
estimate 0 (Ll - 1 ) applies, so (5 . 10) applies for the entire large-field region. This 
allows us to write 

We also have 

1 ( 1  t)m- 1 
Y (z) = J - y<ml(t(z - A2) + A2)(z - A2)m . 

0 (m - 1) !  
Using Corollary 4.7 to bound the derivatives of Y, and inserting (5 . 1 1), we obtain 

I F (z)w'(cp)- 1 � exp [ (L4 - 1) ( K- K)< (:A Y I <P I 2 - A2 Y) J 

X eK O (;tm/2 ) I X I K, ag2 , A, h l z - A 2 Im w' (cp)- 1 

� O (L- 2m) I X IK, ag2 , A, h . 
with K = 1 + 0 (LJ - 1 1 2 ). We used half of the exponential to kill the weight function 
and half to kill the polynomial in z. 
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In the small-field region, l is comparable in magnitude to w� I IP iz/Lz - Az, so 
we can no longer get any decay from the e - ", but nor do we need it. From 

(:A y I l l ;:;; O (L - zp - 1/Z 

we see 

I (:A y I �P i z _ Az + (:A y 1 1  ;:;; O (L - zp,- 1 /Z .  

Since w' (<p)- 1 ;:;; 0(1) in this region, we have the same bound as before. • 
We are left with the S0 term. We relegate most of it to r by writing 

�f.11WA * 9�1 = [ 1 + Ll + � dt( 1 - t) f.ltTWA * LI Z J g;1 

and claiming the last term is r. The proof is an application of Lemma 4.3; i.e. to get 
the norm condition we write 

where the last line is true since we have chosen v6 > 0., To get the derivative 
condition we use p<nl (<f!z) = cp -" a;F(<Pz), and again Lemmas 4. 1 and 4.3 show 

and so 
e - K' l o��f.ltrwA * Liz So lwzrp<P = A' z ;:;; c (L) h- 4-n 

e- K' I o" z P!tu * Ll z S I z - , z < ) <1 + n)/Z + Zvii <l> rtTWA 0 w rprp = A  = o • 

This is the second of the r conditions. So we are left with 

�f.lrwA * g*' = (1 + LI) So + r 

= exp [ L4K - 2w� ( <P� - ( �A
y A2 YJ P(wA<PJ) , 

P(<P2) = 1 + ywAL4 ( 42z ( (? y <P6 - Az y 

+ 42 z A z ( (:A y <P6 - Az y 

- 2)0 ( ( :A y <P 6 - A z ) - 22A z ) . 
The cubic term is r, as long as we take Cz large enough, as is easily seen from 
Lemma 5.4. We denote by P < 3 the terms in P that are at most quadratic. We write 

( Lz Az
)
z 

(�f.lrwAg*' ) (WA <P) = e L•K - ).w� <t>
z

- w3 (1 + j<lJ + J<Zl) ' 

j<1) = p < 3 - 1 ' 
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where r is the sum of r terms we have accumulated up until now. We now can 
proceed in a manner similar to what we did following (5.3) by setting f = f < 1 > + f <2>. 
It is important to notice thatfg� = 0, so thef� 3 contribution tofr comes only from 
f <2>. This fact, along with the assumption (5.8), allows us to see that fr is small 
enough in norm. We can then read off 

c2 
K' = L 4 K - 4A + log ( 1  + fo) , 

3 
A' = w!A - 4A2 A2yw1 + O (J2+ 2v• ) ,  

A'2 = (.£ )2 
A2 + .£ . 

WA 2A 
Also, noting that g; = 4A' A'2, we have 

L2 2 
g; = wAg2 (1 + O (J!·+2v, , A - 2)) . 

1 + g2 )!WA 
The proof of Proposition 5 .5 is complete. 

5.4. Large Mass Flow. At this point it becomes more useful to parameterize our 
recursion in terms of g2 rather than A, since here the main behavior comes from the 
first term in 

while the others are small corrections because A � 1. We retain the same definition 
of the representation g because exp (- g2( I q> I - A)2) by itself does not have very 
nice analyticity properties, a fact that would have to be compensated for by the 
remainder, which would be undesirable as we would like the remainder by itself to 
have nice analyticity properties 

Proposition 5.7. Let g2 > A 1 14 + v,, and suppose exp ([3 A <P 2 ) g satisfies 
IA2( f3A, K, A, A, r:x <n>). Then T(ePA<I>'g) satisfies IA2([3�, K', A', r:x<n + l J ), with 

1 K' = L4K - l L4 log( 1  + g2 ywA) + O (L4) , 

A'2 = (:A y A2 + 0(1) , 

A' = W� A (1 + 0 (g2 ) ) . 
1 + g2 ywA A 

[3 , - L2 f3A 
A - 1 - fJA'Y . 

(5. 12) 

Here n is the number of times this Proposition or Proposition 5.5 have been applied 
since the switch of representations, and o:<n> was defined in (4.2). 

Initially we do not know what K', A', and A' are. We will prove estimates under 
the assumption that they take on the values (5. 12), which will be justified in the 
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course of the proof. We also set a = a<nl, a' = a<n + 1 ), and notice that g2 approaches 
a fixed point value of order L2, since 

g� = 4A'A'2 =  L2 w�g2 (1 + 0(g2 )) · 
1 + g2ywA A 

As before, we accumulate error terms in r, now defined by 

I F IK ',a',g;,A',h' � L - 2 c2p ,  

w(a) I<P' = A'2 � 0 (1 ) eK ' ).1� .  

We begin by writing gq;' = S0 + S1 + S ;;; 2 , and S2 goes mainly as before: 

l flll S (W )I < J dxdy i TWA (x, y) l h - 2
I S  I flrwA * ?; 2  A . K',.x'g2,A',h' = e ?; 2 K,agz , A, h  

< eO(ywAL') I S  I = ?; 2  K, ogz , A , h  

� eO(ywAL6) O (}c) 

� L - 2 c2ft ,  

( 5. 1 3) 

where we have used that h stays bounded from below by 0 (L - 1 ), since g2 ap­
proaches a fixed point value. This gives us the first r estimate, and the second 
follows exactly as before. So we have that 

T (ef3A<P'g) = ef3;,<P'  [flllflrwA * (So +  Sd + r] · 

To handle the other two terms, our basic strategy will be to write 

flllflrwA * (So + S 1 ) = eR - :i(<P' - A')' + R (5. 14) 
and to show that R satisfies r estimates for some choice of K, X, A. 

Set F(1>) = (flllflrwA * g'!f' ) (WA 1>). We apply Lemma 4.3 to find I F IK', x',g2,A',ch' < 
oo if c � L/2w A •  say. Now, by Theorem 4.2 of [BEl], we know that F is a function 
of 1>2 alone, so we can project down to the degree-zero component of <G and 
consider the function f(q;, ijj) = F (q;ijj). Clearly the purely bosonic norm 
I!IK',x'g2,A',ch' is bounded above by the combined fermionic-bosonic norm 
I F IK',o(g2,A',ch' , and hence f is analytic in q;, ijJ with a radius of convergence of at 
least ch' everywhere, which implies that f(z) is analytic in the interior of 
Ucp E <CD��/ (q;) :::J Rzh' ,  if c (and L) i� large enough. The same argument applies to 
flllflrwA * S :2: 2 , so we conclude that R(z) is analytic in R2h . ,  and hence we can apply 
Corollry 4�5 to it; we need only bound R ( l q; l2 + l) for q; E <C, l E C2dq;) . In 
particular, note that we have projected onto the degree-zero component of <G ;  i.e. 
when we evaluate R (1>2) we can set ljJ = lfr = 0, which simplifies our calculations. 
Also, at this point we further simplify by specializing to our specific form of r(x, y ), 
namely yb (x, y ). 

We begin by defining q;' = q; + y, (jj ' = (jj + y, where y ,  y E <C are such that 
q;'(jj' = q;ijJ + l and ly l , I .Y I/2wA - We use this to write 

2 -
K - i. ( I  w�cp' + (B I' + eFrJ 

P ( l q; l  + l) = f dflywA (O e , 

Q ( l q; l2 + l) = J dflywA (0 r ( I  w�q;' + (B I2 + e[F ) , 
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where ( is the fluctuation superfield, with bosonic and fermionic components 
((B, (F), and by I u 12 we mean uu even when u, u are not complex conjugates, as is the 
case here with q/, (/J' . 

Hence, 

�flrwA * (So + Sd(w� ( l cp l 2 + l ) ) = pLd + LdpLd-1 Q + r .  
We further subdivide by expanding in power series in (F [F, which have only two 
terms in this case: 

- - B 
K - -< ( l w�cp' + \" 12 - Azy 

Po (<P<P + l) = J dflywA (( ) e , 

- - B F 
K - J. ( I w�cp' + \" 12 - Azy 

Pp(cpcp + l) = J dflywA (( ) dflrwA (( ) e 

x ( - 2Jc) ( l w�cp' + (B iz - Az) (F[F 

Qo (<PiP + l ) = J dflywA ( (B) r ( I  W �cp' + (B 1 2 ) , 

Qp(cp<P + l ) = S dflywA (e) d/lywA (e) r' ( I w�cp' + 'B i
z ) erF . 

We will choose K, X, A to be of the form (5. 12); the precise values of the 0 (  · ) 
corrections will be determined below. We will deal with two regions of cp space in 
different ways; the large-field region, when cp is far away from its minmum, has very 
little weight, which we can use to bound its contribution, while the small-field 
region is amenable to perturbative expansions. 

Large-field analysis. We define the large-field region to be 

I WA1<P I _  A I > hA' . 

Lemma 5.8. If I u I , I iii E <C not necessarily complex conjugates, then for all z E <C, 
( 5. 15) 

for some (1/4) - £ < b < 1/4. 
Proof Pick some L1 > 0 large enough. Then, if l i z I - A I � Llh, the left-hand side of 
(5. 1 5) is bounded above by 0 (1 ), while the right-hand side is bounded below by 
0(1). If l l z l - A I > Llh, we bound the left-hand side of (5. 1 5) by 

e - (1- O (A - 1  )) l( ]z l2 - A2) � e - bg2 ( l z l - A)2 

for b =  ( 1 - O(Ll -1))/4. • 
We apply this to P0 by setting 

(5. 16) 
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and, choosing b near to 1/4, find 

I 
K - }, ( l z + W�9J' + (B I ' - A' )'

I I Po l ::£ J df.lywA ((B) e 

::£ 0 (1) s df.lywA ((B) eK - bg, ( lz l - A)' 

K ( (ywA) - 1 1 rp l / L + b gzA ) ;£ 0(1)e [( ) 1 b ] 31 2 YWA + gz 
( -bg2 ( wA i rp l A )2 ) 

x exp -- - , 
1 + b gzYWA L 

293 

(5. 17) 

where to obtain the last line, we have shifted e __, ,B - wA rpjL. Now we use the 
fact that b - r:x � 0 (1). Choose b = r:x + (b - r:x)/2, and use part of the exponential 
to kill the powers in front, valid for rp in the large-field region. We conclude 

K _ bg, (wA I 9' 1 _ A)' _  O(A'' ) I Po (cpqi + l ) I � O (l) e l + bg, ywA L . (5. 1 8) 

The PF term goes almost as the P0 term; the only differences are a 
factor of yw A from the fermionic fluctuation integral and the extra factor of 
- 2/t( I z + wAY j L 1 2 - A2 ) inside the integral. The latter can be dominated by the 
exponential at a cost of a fraction of the decay, which we can easily afford, and 
a factor of ), - 1 12 . We are left with 

bg, (wAI 'I' I  )' I PF(rp<,D + l) l :;£ O(Jc112 ) eK l +bg,ywA -L--A -o<A''l . 

for rp in the large-field region. 
We only need very crude bounds on the remaining terms Q0 and Qp, as we can 

get all of the decay we need from the P's. So we just apply Corollary 4.7 to 
r( l z + wAy/L I 2 ), retaining the definitions (5. 1 6), and find 

I Qo (tp<,D + l) l :;£ O(J. 112 ) eK , 
I QF(rp<,D + l ) i  :;£ O(lt) eK , 

which is true for all values of rp. 
The next observation we need to make in the large-field region is that, from 

Lemma 5.8, we have 
J ek- X< i 'I'' I' -A' l' J ::£ 0( 1)�-b9, ( 1 '1' 1 - A l' 

::£ eK-bg, ( I 'P I -A ) 2-0(A2') (5. 19) 

for rp in the large-field region. Again, we have lots of decay to spare, of which we 
have used part to produce a factor exponentially small in A and part to produce 
a term that will kill the weight function . 

The final step to complete the bound in the large field region is to combine the 
estimates (5.1 8)-(5 . 19): due to our choice of b we see that we have plenty of room in 
the decay to shift LAjw A --+A' and that the L 4 - 1 factors of P have enough decay 
to compensate for the fact that we have not kept track of any from the Q terms. We 
find 
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for cp in the large-field region, which, along with analogous bounds in the small­
field region, will be enough to obtain the r norm condition from Corollary 4.5. 

_ The second of the r estimates, the derivative conditions, involves evaluating 
R at a point which is well outside the large field region, so we do not need to deal 
with it yet. 

Small-Field Analysis. Next we attack the small-field region, when I w A I cp 1/ L - A I ;::£ 
hAe. Here it will be convenient to define 

WA(/Jo = (O" + A)<$ ,  
L 

(5.20) 

so cp0ip0 = cpip + l. We see that I O" I ;::£ O(hAe) when cp is in the small-field region. We 
also write the bosonic fluctuation field in a new basis: 

(B = (J<$ + iii<$ ; �B = (J/p - iii$ . (5.21 ) 

Putting these definitions together, we have 

I
W�o + 'B r = (A + (J + 0')2 + ii2 . 

We use this in considering the integral 

(5.22) 

where the two cases we are interested in are F = 1, for P0 , and 

for PF . At this point we are in a situation similar to that in [GK], and we perform 
similar manipulations. Actually the analysis here is easier because we are not 
concerned with a delicate approach to the fixed point, as they were. Some differ­
ences arise because the framework we use to keep track of the analytic properties of 
the remainder is not the same as theirs. 

First, write 

1 
I =  

N
S dO'dit exp { - (ywA) - 1 (G-2 + 7CZ) - g2 (0" + 0')2 

- [A( (A + O" + 0' )2 + ft2 - Az )z - g2 (0" + 0')2 J } F(O" + O', ii) 
and then shift 
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to find 

g, g, 1 I = e - g,£o-' -A:(!!o-)' -4A' (.I.' of - J dii die exp { - ( ywA) - l  ( Q-2 + 1r2) N 

- A.( (A + ii)2 + ic2 - A2f - v(£<T, iJ-, 1r) } F(£<T + iT, it) ,  

( o - - ) ( o ) [ 3gz _z + g2 - 2 + g2 -( -z + -z)J v _:.;_CJ CJ n = _:.;_ CJ - CJ - n - CJ CJ n ' ' A A A2 

where we have set 

Now define 

( - _ ) _ { 1 if I o'l, l it I ;;::; A,. 
X CJ, n - . 0 otherwise 
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(5.23) 

with s' > 8, and insert 1 = x + xc inside the integral. We name the resulting terms 

P = P� + Pb + P} + P� 
and estimate the Pc terms first. We use 

l v(£CJ, iJ-, 1r) l  ;£ g2 [iT20(hA' - 1 ) + ic2 0(hA'- 1 ) + O(h3A3' - 1 ) + �� G-(Q-2 + ii;2 )] 
along with 

£CJ gz A2 G-(G-2 + n2) ;£ )_Q(hA'- 1 ) ((A + iif + ir2 - A2f + g2ii2 0(hA'- 1 ) 

to get 

Re[A.( (A + ii)2 + ic2 - A2 )2 + v(£<T, iT, n)] 

;;;; � ( (A + ii)z + fc2 - Az )2 - O(g2h3 A 3e- 1 ) 

- ii20(g2hA'- 1 ) - ir2 0(g2hA'- 1 ) ,  
where we have used the fact that hA'- 1 � 1 for 8 small enough. Hence 

1 { 1 
WI ;£  e-g,l.'Reo-' 

N
J dii dic xc exp - l(ywA) - 1 (iJ- 2 + 

ii;2 ) 

- � A. ( (A + iif + ir2 - A2 )2 - O(g2hA3' - 1 )} I F(£CJ + iT, it) l  . 
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Now, for P0 we have F = 1 ,  and for PF we have the estimate 

so in both cases we obtain the bound 

xce -�(ywA) - 1 (o" + ii2) I F I ;;:; e - O(A2' )
. 

The final observation for the pc terms is that 

s difdne -� '-( (A + u)' + ii:' - A')' ::£ 0(1 - 1/2) 
which is dominated by the exp( - 0 (Au)). So we have shown that 

{ I Po( (JJqJ + l) I } ::::; eK - g,i!Rea' - o(A'"l (5.24) 
I PF(qJq:i + l ) l  -

for qJ in the small-field region. 
We look at the Q terms next. First, we examine 

Qo = J dflywJe)r((A + (J + Bf + n2 ) 
which we write as 

where the choice of & will be made below. Next perform a shift 

which result in 

- - &gz (J --'> (J - - 1 - (J ,  (ywA) + rxgz 

(5.25) 

(5.26) 
where TI = (1 + ywA&g2 )- 1 . An analogous expression holds for QF. We then insert 
1 = x + t into this expression. We investigate the Qx terms below, and just get 
crude bounds on the Qc terms now. For this it is convenient to shift back again and 
observe that we still have at least one of lo"l,  I ii: I > O(A"') since the shift is smaller 
than O(A') for all small-field values of qJ and values that g2 can take on, and we 
have chosen a' > a. So we can use the bounds on r from Corollary 4.7 again, and 
find 

I Q0 1 ,  I QJ, I  ::£ eK - O(A'" l
. (5.27) 

We now consider the px, Qx terms where (J/A, G-/A, and ii:/A are small. First 
handle P 0 , defining 

< > 
1 

J d - d -
(

- -
) ( ) 

(yw )- 1 (0'2 + n') - J.((A + &)2 + n' - A2)2 - tv(i!cr 0' ii) 0 t = - (J nx (J, n ° e A ' ' 

N 

(5.28) 
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and performing a perturbation expansion: 

P3 = e-P.,p(a) < I  >t= l ' 

= ( 1 )0 (1 + (£a)a1 + (£a?a2 + a3 (a) ) . (5.29) 
Here a1 = O (g2/A) and a2 = O(g2/A2 ) are constants, and a3 (a) is a function 
satisfying a�l I,= 0 = 0 for 0 ;;:; n < 3, analytic for a in the region I a I < 2hA ', and in 
this region satisfying l a3 (a ) l  < O(A4'- 2 ). Also, we have set 

We do a similar calculation for P�, finding 

P� = e-P.,p(al ( l )0 (k0 + (£a)k1 + (£afk2 + k3 (a)) , (5.30) 

where k0 = O(g2/A2), k1 = O(g2/A), k2 = O (g2/A2) are constants, and k3 (a) is 
a function satisfying k�"l l a = o = 0 for 0 ;;:; n < 3, analytic for a in the region 
l a l  < 2hA', and in this region satisfying l k3 (a ) l  < O(A3' - 3/h) . 

We next focus on the Q terms. We need only a very crude bound for Q�, which 
we obtain from Corollary 4.7. We must first verify that the definition of a and the 
complex shift of (f has not taken us out of the region of validity of the Corollary. 
Recall from (5.26) that in Q� we are evaluating r' at (A + £a + o-f + n2 = I (fJ 1 2 + T, 
where we have defined 

I ({J I 2 = (A +  Rei?a + a-? + n2 , 
l = 2i(Im£a) (A + Re£a + (f) - (Imf?a? . 

It is not hard to see that, for <p in the small-field region, I ll ;;:; 20wAh' I ({J I/L, and 
since h' ;;:; h we can safely apply Corollary 4.7 to find 

l e&g,(Tia+ a)' r'( I ({J I2 + f) l ;;:; l e"g,(ReTia +il)' r' ( I ({J I2 + f) I 
;;:; O(A 1 12 ) l r iK, ag2 , A,h eK 

if iX < rx/2. From this we immediately have 

I Q� I ;;:; O(A) e -ag,llRecr' . 
In order to deal with Q3 we define 

H( l u l 2 ) = [h- 3 ( l u l - A)3 eK-&g,(Rella + iil' l r iK,ag, , A ,hr 1 r( l u l 2 ) ,  
u = I ({J I  u = I ({J I + lf i ({J I , 

l u i = (uu)112 . 
Lemma 5.9. 

for u, it as in (5.32) and <p in the small-field region. 

(5.3 1) 

(5.32) 

(5.33) 



298 S.E. Golowich, J.Z. Imbrie 

Proof We use two estimates of r ( l  u l2 ). The first follows from (5.9) by bounding r"' 
with Corollary 4.7 and using l ( l u l 2 - A2 ) 1 _;£ O (A) l ( l u l - A) l to find 

l r ( l u l2 ) 1 _;£ O (h- 3 ) eK i r iK,ag,,A,h l ( l u l - A)3 1 , (5.34) 

where 0 (  · ) does not depend on L. Also, a direct application of Corollary 4.7 reveals 

a 
l r( lu l2 ) 1 _;£ 0(1) l r iK,ag,,A,h eK-2(Rel2o- H)' . (5.35) 

These two facts together yield 

a I r ( l U 1 2 ) I _;£ 0( h - 3 )  I r iK,ag,,A,h eK -2(Rel2a + ii')' l  ( lu i  - A)3 1 (5.36) 

since, for I Re£cr + iT I _;£ h the right-hand side of (5.36) is larger than that of (5.34), 
while for I Re£cr + iT  I >  h it is larger than that of (5.35). The result (5.33) follows 
immediately. • 

We can now write 

Q� = h - 3 l r iK,ag, ,A,h eK-o:g,llo-' �J diJdiixe-«YwAJ - l +ag,)a' - <yw_,r ' n' H( l u l 2 ) ( l u l - A)3 . 
(5.37) 

Now, it is not hard to see that 

and so 

with 

and the bi are functions of cr satisfying 

i- 3 l bJcr) l _;£ O (h - 3 ) ((ywA) - 1 + &g2)-2 , 

l be (cr) l _;£ O(h2A5'' - 2 ) 
with 0 (  · ) not depending on L. The bi and be are analytic in cr for l im cr l < TI- 1 h/4, 
I Re cr l < 2hA'. Since we are interested in cr satisfying l im cr l < 12wAh'/L, we can use 
Cauchy's estimate to bound derivatives of the b's: 

� o�i bi (cr) l  _;£ c(j) fVh - 3 -i ( (ywA) - 1  + ag2(:/ , 

J:;jbe(cr) J  _;£ c (j)£ih2 -iA5' ' - 2 . (5.39) 

We can now assemble the expressions (5.24), (5.27), (5.29), (5.30), (5.3 1), and 
(5.38), for the P and Q terms with <p in the low-mass region, into a form that allows 
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us to find K, X, and A and to complete the proof that R satisfies r estimates. We first 
recall our current status: 

&1?f.lrwA * (So + St)  = pLd + LdpLd- 1 Q + r 
= eR- � <<P' -.Ii')' + R ,  

P = P8 + PJ, + P� + P� , 

Q = m + Q� + m + Q� . (5.40) 

We are applying Corollary 4.5 to R, and we have already shown the necessary 
analyticity as well as the upper bounds in the large-cp region. So all that remains is 
to show upper bounds in the small-cp region and to check the derivative conditions 
(where we evaluate derivatives at I cp I = A'). From the work we have done it is clear 
that, if we expand the powers of P in (5.40), most of the terms already satisfy the 
requisite bounds: namely, any term containing at least one pc or Qc term, any term 
containing more than one P� . The delicate choice of K, X, A is then made to 
compensate for the remaining terms, which are 

e -L4P .. p (rr) ( l )f [( 1 + (520")a1 + (EO"?a2 + a3 (0")F 
+ L 4eP"P ( l )o 1 p� + L 4 eP .. p(<T) < I>o 1 Q�J ; 

i.e. the difference of these with exp(K - X( l cp l 2 - A2 )2 ) will satisfy f' estimates, 
where any term r' that satisfies 

If' I ;;=;  L - 2 c2ft eK' -a'g', < I'PI - A')' ' 
a 

l (r')(a) l<P' =A'' ;;=; 0(1) eK)1 +z 

is said to satisfy r' estimates, or to be an r' term. We Taylor expand 

where 

(1 + (EO")a1 + (EO"?a2 + a3 (0")F = 1 + a10" + a20"2 + a3 (0") ,  
m3 (0") = L4eP"P<"l ( 1 )0 1 P} = Mo + M10" + M20"2 + M3(0") ,  

n3 (0") = L4eP"' ( l )0 1 Q� = No +  N10" + N20"2 + N3(0") ,  

1 1 M 3 ( O") = - J (1 - t? m�' ( tO" )0"3 , 2 o 
1 1 N 3 ( O") = 2 J (1 - t )2 n�' ( tO") 0"3 , 

0 

and we will argue that e-L4P,.,<o-l ( l ){t [a3 (0") + M3(0") + N3 (0")] satisfies f' 
estimates. 

We use 

Lemma 5.10. 

L• o 2 hm l e- 1( 9'�" O"m l ::; c(m)-,-------;-;;----;c-- (K52)mf2 L2m 
for K =  0(1), l im O"  I <  12wAh'/L, ! Re O"  I <  2hA'. 
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Note that the exponential in the Lemma is the leading behavior of e- L•P,p(a). This 
tells us essentially that, in estimating the Taylor remainders, each (J gives us a factor 
of O(L - 2S!- 1 12 )h. Also, from (5.39) we see that each d/dfJ acting on a b ;  yields 
a factor of O(i!/h). Using these facts it is not hard to see that, for g2 � 1 ,  

l e- L•P,.p(a) ( 1 )L• N (fJ) I -::;, O(L - 2 ) ( 1 )£4 e£4K -i£4g,i'Rea' ( 1 )Q i r l 0 3 _ 0 ( 1 )0 K,ag2,A,h ' 

while for g2 near the fixed point value of O(L2), 

l e -L•P.,p(a) ( 1 )L• N (fJ) I -::;, O(L - 3 ) ( 1 )L• eL•K -iL•g,i'Rea' ( 1 )Q l r l  0 3 _ 0 ( 1 )o K,ag,,A,h '  

(for intermediate values of g2 the bound interpolates between these two). We have 
used half the decay from eL·P"P(a) in applying Lemma 5. 10, and the half that is left is 
more than enough to cancel the weight function. Now, ( 1 )Q/ ( 1 )0 = 0 (1), so we 
see we have the first of the f estimates if we make the choice 

K' = L 4K + L 4 ln ( 1 )0 + 0(1) .  

The second r' condition is obvious, using I A' - LA/wA I � O(A - l ). Similar analyses 
of the M3 , a3 terms show that they are also f. We have hence reduced to 

�JlrwA * (So + Sd = e -L•P.,p (al( l )f (1 + M0 + No 
+ (al + M1 + Nd(J + (a2 + M2 + N2 )fJ2 ) + f + r . 

We can easily see that the I N; I � O()Y2h- 3 ) , that IM0 I ,  IM2 1 � 0(/c) ,  I M1 1 � O(g2/ A) , and I a1 1 � O(g2/ A) , I a2 1 � O(g2/ A 2) , where 0( · ) can depend on L. 
We write 0; = a; + N; + M;, and 

with 

02 1 ( 01 )2 D = 1 + 00 - 2 1 + 00 ' 

Or =  - ( 1  + Oo) ( CDfJ3 + �C2D(J4) . 

I C I � O(g2/A), I D I  � O(g�/A), so clearly Or is r'. We can then write 

�JlrwA * (So + Sd = e -L•Pe,p (a) ( l )f ( 1  + Oo ) (eca - e�a) (eDa' - efa') + r' + r 

and, expanding the product, easily see that any term containing an e; is r' (e; was 
defined in (5.6)). So we have further reduced to 

�JlrwA * (So + Sd = e - L•Pe,p(O") ( l )f (1 + Oo) eCa+Da' + r' + r 
= e.K- X< I'P I' -A'l' + .R .  
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We next write 

+ r' + r 

and choose K, X, and A so that the 0"0, 0" 1 , and 0"2 terms in the exponential inside the 
brackets cancel, and when we subtract 1 we are left with a 0"3 term that we show is 
r'. A calculation shows 

(5.41) 

We are left with 

with 

E3 = 4L 4A (w� - X£!3) 

= 
L4�g2 ( 1 _ £2 + o(�)) , 

= L4),£ (1 - £3 + o(�)) . 

Because 1 - £m = O( g2 ) for g2 small, we can apply Lemma 5.10 to conclude that 

le - K'+a'g;( J<p j -A')' R(llflz + 1) 1  � O(L - 2)A_l/2 . 
The derivative conditions are easily checked, so we have shown that if we choose c2 
large enough then 

(:?lf.lrw, *g0'' )(WA<P) = e .K-I(<P' -A'l' + r ,  

with the choices ( 5.41 )  of K, X, A. All that remains is to absorb the r into a true r via 
shifts in K, X, A --+ K', X, A', which we accomplish by writing 

e ( K-i:(<P' - A')' + r = e K-I(<P'-A'l'(1 + f(<J>2)) 
and proceeding as we did following (5.3). The proof of Proposition 5.7 is  complete. 
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6. Green's Functions 

In order to calculate the expectation of the density, we must compute some Green's 
functions of the A,([J4 theory, namely < <p0ip0 ) and < <p0ip0([J; ) . As long as 0 and z are 
in different blocks, the RGT's of the two blocks do not see each other. When 
I z - 01 = L there will be a single RGT that must incorporate both <p0ip0 and cp; , 
and from then on the only distinguished point will be 0. 

Since we are interested only in the limit as A, z -. oo ,  we choose A and z large 
enough (depending on /30) so that the induction will have reached the large-mass 
region before 0 and z merge. So in the small and intermediate mass regimes we need 
only consider the recursion relations for the functions that, before the first RGT, 
look like <pipg0( ([>2) and ([J2g0( ([>2). 

Actually the situation is even simpler than this due to the fact that we have 
chosen our walks to begin and end at the origin. To see why, we have 

Lemma 6.1. IfF is a function of a single variable with exponential decay at oo, then 
(i) 

f.lc * ( <pipF( ([>2 )) = F 1 ( ([>2 ) + <pipF 2 ( ([>2) , 

flc * ( ljlljf F ( ([>2 )) = - F t ( ([>2) + ljflf/ F 2 ( ([>2) , 

flc * ( cp2 F( cp2)) = cp2 F 2 ( cp2) , 

where the functions F 1 ,  F 2 are the same functions in the three equations. 
(ii) 

where cp# = <p, ip, ljf, or ljl, and F3 is independent of # .  

Proof Both parts follow almost immediately from the proof of [BEl] 
Theorem 4.2. 0 

Part (i) of this lemma tells us that we do not need to consider the <pip and ([>2 
blocks separately, but that we can do them both at once since the convolution 
will produce the same function F 2 multiplying the <pip or ([>2 in the two cases. 
It will be more convenient for us to handle the ([>2 case to get control of 
F 2 . Meanwhile, there will be contributions to F 1 in the <pip case that do not 
occur in the cfJ2 case. We will not need to keep any control of these until after 0 
and z merge, because in the single RGT when this occurs the F 1 term will 
be multiplied by a function of the form ([J2G(([J2), and hence will remain of the 
form ([J2G(([J2) under all subsequent RGTs. We will see in Sect. 7 that the 
contribution of such a function in the calculation of the density vanishes identi­
cally. After the RGT in which 0 and z merge there will be new contributions to F 1 
that we will need to keep some control of, but we postpone discussion of this point 
until Sect. 6.4. 

6. 1. Low Mass Flow. The upshot of the above discussion is that, for the 
small-mass region, we need only keep track of functions that can be represented 
as 
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Inductive Assumption 3 (eM'' g, d2 , d4 , M) .  Thefunctionj = j(<P) of afield at a single 
site satisfies 

,P''j( <P)g (  <P) � e'"' { �n (d, + d,( <I>' � 2G(O)) ) g( <P) + t, ( <1') + { 
t
,�t} , 

,, � {;}.w) . 

(�)a t1 (t<P) I = 0 for 0 � a <  6 ,  dt t = O  

t2 = F( <P2) and has exponential decay at oo .  
Here G = GM + aM . 

We are expanding out to fourth order in <P so as to keep careful track of the 
evolution of d2 , which will be important for determining the power of the logarith­
mic corrections to scaling. The reason for the factor <P2 - 2G(O) multiplying d4 is 
that we have chosen to keep track of the non-remainder part in terms of Wick­
ordered monomials and : q;ip<P2 : = q;ip( <P2 - 2G(O)) up to a function of <P2, which is 
in t2 , while : <P4 : = <P2 ( <P2 - 2G(O)). 

We write the RGT acting on j as S(j), defined by 

L'P S(j) T(eP<�'' g) = e1 - P'-�.UrwA * (hg�' ) ( W<P) . 

Proposition 6.2. Choose L large enough and A small enough, and suppose eP<�'' g( <P) 
satisfies IA1 ([3, A.,M) and j(<P) satisfies IA3 (eP<�'' g, d2 , d4 , M). Then S(h) satisfies 
JA3( T(ePA<P' g), d� , d� , M - 1) with 

where J!d = 4y(1 - -f). 

d� = L - 2d2 (1 - J!aA) + O(d2A.[3) , 

d� = L -4d4 + O(d2A.) , 

Proof We will work with the <P2 case only, since in light of Lemma 6.1 the only 
additional result we need for the q;ip case is the exponential decay of the t2 term, 
which is obvious. The method established in [BEl] works here as well, so we will 
not give details but just indicate the origin of the leading contributions. The only 
differences between our situation and that of [BEl] are that, as mentioned before, 
our fluctuation covariance rw is nonsingular and that, due to the presence of W, 
Wick-ordered monomials are no longer exact eigenfunctions of the operator 
f1li.urw• ·  The second one causes some change in the recursion relations which are 
minor since we stop using this method before f3 becomes large. A calculation of the 
type (5. 1 ), when applied to the d4 term, gives rise to part of the O(Af3d2 ) corrections 
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to dz . The rest of the 0(A[3d2) corrections to d2 come from a contraction of d2f!J6 
with the A : f!J4 :  in the exponent. This term also gives rise to the leading correction to 
d4, which is O(d2},). The leading contribution to the remainder comes from d2f!J6 
contracting with two copies of A: f!J4 : with two internal legs, yielding a term that is 
O(d2A2 )f!J6, which is O(j"id2 ) in norm. 

We next briefly indicate the origin of the O(Ad2 ) corrections to d2 • We do this 
by setting up the tools developed in [BEl], and isolating those terms that contri­
bute to the leading correction to d2 . The terms we will ignore here contribute to 
either the corrections to d4 or the remainder; we do not go into details involving 
these last two because the arguments proceed exactly as in [BEl] . 

We will denote by s1 any term that does not contribute to the coefficient of I cp 12 
out to O(d2},). Begin by writing 

up 
S(j) T(eP<P' g) = el - py<P' �E(d2 f!J6g�· ) (Wf!J) + s1 , 

where 
1 2 E = 1 + .drw + 2 L1rw , 

-'- � ( 2L1 pg )j 
E E - L.. . , p g . 

j=O } . 
Here � denotes equality mod (sixth-order 8/8f!J derivatives), and the subscripts 
p and g indicate on which terms the two derivatives in the Laplacians are acting; 
either p = d2 l cp l6 or gw' , respectively. Notice that EPp = p + s1 since the constant 
term is s1 . So we must consider the effects of the three terms involving L1 pg raised to 
the powers 0, 1 ,  and 2, and evaluate the results at W f!J. The leading term is 

The L1 pg term yields 
Up 

el - py <P' �(2L1P9p(E9gw' )) (Wf!J) 

= dz l Cflo l 2 ( - 4Ayw) ((I: r 2G(O) - (� y (G(O) - yw)) T(efl<P'g) + SJ 

with G = GM + aM . The .c1;9 term yields 

e/��y <P' �( 4�(g p(Egg'§' ) }wf!J) = - 2dzAY2 �: 1 Cflo l2 T (eP<P' g) + SJ . 

Summing these terms gives the result in the statement of the proposition. In 
particular, we find 

y d = 4y ( 1 - �) . 
We have used the fact that G(O) = 1 + O(L- 2M), and M can be taken as large as we 
like since we are interested in the infinite-volume limit and we apply this proposi­
tion in the small-mass region. • 
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6.2. Switch of Representations. The new representation in the intermediate and 
large mass regions is 

Inductive Assumption 4 (eM'' g, d2 ) . 

with 

I tj'ew lw =A = 0 ' 

I <P2 t1tw iK.ag,.A,h ::;:; c4-fiA2dz ' 

l t2ew lw = o  ::;=; d2 eK-O(A') after z -+ 0 only 

and has exponential decay at oo . 
Proposition 6.3. There exists a number d2ew = d 2 ( 1 + 0 ( -fi) )  and functions t'lew, 
t2ew such that if ePA4>2 9new satisfies IA2(f3A ,K, },, A, a) then jnew = d2ew { cpip or 
<P2 }9new + tj'ew + t2ew satisfies IA4(e13A4>2 9new , d2ew) .  
Proof First, write t2ew = e<P -PAJ<�>' t2 . We do  not bound t2ew(O) because by assump­
tion 0, z are still distinct points at the time of the switch (see comments below 
Lemma 6.1). 

We will prove the <P2 case first. Then the cpip case follows immediately. Let 
d2 = d2 - 2G(O)d4 . Then 

eP<P'J·(<P ) g(<P) = ePA<P' {J <P2g [1 + d4 <P2 + 
1 e<P -PA)4>2 t 9 - 1 

J 
+ tnew } 2 new d2 d2 <P

2 1 new 2 · 

Define f( <P) by calling the term in the brackets 1 + f Write f = f(A) + f;;; 1 . Then 

eP<P'j(<P )g (<J>) = ef3A4>2 { [d2 ( 1  + f(A))<P2gnew + d2 <P29newf;;; 1J + t2ew } · 

We claim the second term is t'1ew . By its definition it vanishes at <P = A . That its 
norm is small enough is easily seen by noting that lf(A) I ::;=; 0(-fi), and by 
applying I · IK.ag,,A,h ::;=; 0(1) I · ly0. to the various terms one finds in 

J.A-114 
- 2 - 2 - 2 l dz <P 9newf;;; 1 IK,ag2 ,A,h ::;=; ld2 <P 9newf iK,ag2,A,h + l d2 <P 9newf(A) IK,ag2,A,h · 

For example, 

d4 I <P4 e<P -fJA)<�>'giK,ag2,A,h ::;=; 0(1)d4 I <P4 I _ f, .ic_ 11J e<P -f3A)<P' I _ f, ;_- 1,. 1 9 l.fi, ;.- 1/4 

::;:; O(A-) d2 0(r 1 ) 



306 S.E. Golowich, J.Z. Imbrie 

for c = c(L) chosen large enough. We have used the fact that A =  O (A. � 1 14) at the 
time of the switch. 

We read off d�ew = d2 (1 + f(A)), and we are done. • 

6.3. Intermediate Mass Flow. From now on we will drop the sub/superscript 
"new." Within the new representation, we renormalize using the hybrid method of 
Sect. 5.3 until the radial mass g2 becomes larger than A 114 + v,_ The RGT for the new 
representation is 

(6. 1 )  
Proposition 6.4. Let g2 E [L � 2 A 112/5, A1 14 + v,], ef3A<P' g satisfying IA2(f3 A• K, A, A, rx<")) 
and j satisfying IA4(eM'g, d2 ). Then S(j) satisfies IA4( T(eM'g) , d� )  with 

d� = d2 (:A y (1 + 0(A1 /2 + 2v, )) . 

Here n is the number of times this Proposition has been applied since the switch of 
representations, and rx<n) was defined in (4.2). 
Proof Again we prove the <P2 case first, the rpip case following immediately. We 
define an approximate remainder term f1 for this representation by f1 = <P6F( <P2 ) 
satisfying 

l f1 IK',a'g�,A',h' ;;::; O(L�4)c4fi A'2d2 , 
1 

l f1 I<P= A' ;;::; O(A'z+ Zv,) A'2eK'd2 . 
Later we will show that, with a small shift in d2 , f1 returns to the inductive form of 
tl . 

We begin by writing flrwA• = 1 + Ll + Jdt( 1 - t)f1trwA * Ll 2, and show that the 
Taylor remainder term satisfies f1 bounds: 

l 9l!fltrWA * Ll 2 (jgr1' - t2 ) ( WA • ) IK',a'g',,A',h' 
= l fltrw * Ll 2 (jgr1, - tz ) IK' a'g� wAA '  wAh' 

£4 . £2wr_L_ .--r;-
;;::; 0(1 ) I Ll 2 (jgr1' ) 1  wAh' K,ag2,A,--y;-

;;::; O (h�4) l (jgr1' ) 1K,ag2,A,h 

;;::; O(h � 4) (  I d2 <P6g iK,ag,,A,h + I t 1 IK,ag,,A,h) I g 1r�;,A ,h 
;;::; O (h � 4) (  d2 l <P6 Io ,(a� a)g2,A,h lg IK,ag2,A,h) + I t 1 IK,ag2,A,h) I g lf�;.A,h 
;;::; c(L)d2A2h� 4 

;;::; c(L)d2fi A'z xzv, ' 

where we have defined 

_ _ { rx' + i( !X - rx' ) if g 2 < 1 (X = 5 I ' 

6 !X if g2 � 1 

(6.2) 
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We use part of the ,Fv, to dominate the c(L), and we have the norm condition for 
f1 . The second f1 condition follows immediately by bounding the function by its 
norm. 

We have reduced to 

L'fJA 
S(j) T (eM'' g) = e1 -f3Ay <�>' [�(1 + Arw ) (  d2 cP6g'!i, + t1g�' \{OJ ) (  W cP) + f1 + t2 ] . 

We claim the term containing t 1 is f1 . When the A acts on it, the extra h- 2 it yields 
in the norm estimates give us the necessary bounds exactly as above. For the 
�t1 g�,\{O} term, we appeal to Lemma 5.6 to get the norm condition. The second 
condition follows by writing 

1 a tl (cf>) = f dt L -a a tl ( t (cP - A) + A) (cP - A) 
0 lal = 1 c[> 

and using Lemma 4.1  to bound I a<�> t 1 1 ,  along with the fact I A' - LA/w A I ;;:; 0 (A- 1 ). 
To handle the leading term, we write 

1 + A  = (1 + 2Avg)EvEg , 

where = denotes equality up to fourth-order derivatives in cP (which are f1 terms), 
and the subscripts p, g indicate whether the derivatives in the Laplacian act on cP6 
or g�' , respectively. Now, we can replace EvcP6 by cP6 ,  and Egg�' by flrwA * g�' up to 
f1 terms. So the leading term (without the A pg) yields 

dz (? Y cP6 T(ef3A<P'g) . 

For the other term (with the Avg) we calculate 

a � - ( 1 ) ( 2 2 ) � -Eg-a g ' = Egcf>x - 2A cf>x - A  g ' + t1 . c[>x 

The derivatives in Eg can both act on the polynomial, or both on g�', or one on 
each. In the last case, we get an extra power of A from the exponent, and the result is 
a f1 term. When they both act on the polynomial, we get <P( cf>2 - A  2 ) + <P, and the 
last term ( <P) is f1 . When they both act on g�' we get f1 * g�'. So the result of the L1 pg 
term is 

2d2 ( - 2),)L 4 (7 y cP6 (wi;2
- A2) T(eM' g) . 

Finally, using I A'2 - L2 A2/w� l ;;:; 0(1), we can put most of this term in t1 at the 
cost of an O(A.)  shift in d� . We have found 

The final step is to change the f1 into a true remainder t 1 via a small shift in d2 . 
To accomplish this we add and subtract on the RHS the term 

(6.3) 
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and claim that the difference of f1 and this term becomes the new remainder t 1 .  It 
vanishes at the minimum of the potential by its definition. That its norm is small 
enough is easy to see, since the norm of (6.3) is smaller than c(L)A2 Ad2 , and, due to 
the L- 2 contraction we required to be in f1 , we have plenty of room to add this 

1 
small correction. The shift in d2 is O(J2+ zv,d2 ) .  • 
6.4. Large Mass Flow. To handle the induction in the large-mass region, we will 
need more precise measure of the function F 2 in Lemma 6. 1 .  This is contained in 

Lemma 6.5. 

J.1c * ( cP2F(cP2)) = cP2J.1c * (F + 2CF') + C2f.1c * (cP2F") + 2cPC2f.1c * (<liF") .  
Proof This follows from standard manipulations of Gaussian integrals; see e.g. 
[BEl] for a review of Gaussian integrals involving Grassman variables. We have 
used part (ii) of Lemma 6. 1 to obtain the last term on the right-hand side. • 
Proposition 6.6. Let g2 > },1i4 + v,, 
I A2(f3 A ,  K, A, A, cx<nJ ), and j satisfies 
IA4(T(efiA<�'' g) , d� )  with 

and suppose 
IA4( ePA<�>' g, d2 ). 

t� (O) = t2 (0) + d2 eK -O(A') . 

exp(/3 A cP2 )g 
Then S(j) 

satisfies 
satisfies 

Proof As before, the cpij> case follows from the cP2 case, with an additional 
argument to control the t2 (0) condition after z --+ 0. We will comment on this after 
we have established the Proposition for the cP2 case. 

In light of Lemma 6.5, the single integral involving fields at the origin becomes 

wzcpz 
!!ltf.lywA * cP2 (dzg + tR) (wA cP) = �2 !!ltf.lywA * H(wAcP) 

+ (ywA)2!!ltf.1ywA * (dzg" + t�) (wAcP) 

+ 2(ywA)2 ?cP!!ltf.lywA * <li(dzg" + t�) (wAcP) , 

H( cP) = d2 (1 - 4ywAAX )eK- AX' + d2 (r + 2(ywA)r') + tR + 2(ywA)t� , 
where we have written X =  c[l2 - A2• 

Our strategy will be to find a2 such that 

2 - 2 L2f3A 2 S(j) T (ePA<P g) = d2 cP6 T(eM g) + e1 -PAY <P ( t1 + t� ) , (6.4) 

where we define the approximate remainders by f1 = cP2F(cP2 ) satisfying 

I t1 IK' ,a'g�,A' ,h' :;:; O(L -4)c4fi A'2dz 
l f1 i<P =A' :;:;  O(X)A'2eK'd2 . 

f1 will eventually be absorbed into a small shift in az plus a true remainder term by 
the same procedure as before. 
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Our first observation is that if we expand the product (g0 + r)�,\{O} , the terms 
with more than one r are f1 , as is easily shown using arguments like (6.2). It is 
convenient to put most of these terms in f1 now so that the factor multiplying (6.4) 
has good decay properties (we only know that r by itself decays as fast as the norm, 
while g0 decays a good deal faster, a fact that will prove useful in the sequel). So we 
define 

X E �, . x  * o jXj = O, l  
(6.5) 

We next argue that the terms containing g" or t� are f1 . That they are of the form 
rf>2 F( rf>2) follows from Lemma 6.1 ,  and we establish the norm condition, which will 
imply the second condition, as follows. For e.g. the second (and more complicated) 
term, we set F = d2g + tR , and apply Lemma 4.3: 

l �rf>o.UrwA * (2g( '}'W,,t}2 tPo F" ) (  WA · ) IK',a'g;,A',h' 

). 
;£ c(L) I rf>o I _ , __!!j_ I .UywA H -z(<P� - Az)' tPo F" I ag; wAh' 0, - (a -a )L'w';,

(l +d) ,A ,h K, L'w2 ( 1 +cJ.),A, L 
}, 

;£ c(L) A I e -z(<Pi - A')' tP0F" I wAh' K,ag2,A,--y-

We have taken x E � 1 to be a point where g does not contain a remainder, and 
defined 

- - { IX' + i(IX - IX' ) if g2 ;£ 1 IX - 7 r 'f 1 61X I gz > . 

In the last line we bounded F" using Corollary 4.7 and estimated the norm using 
Corollary 4.5. Now combine (6.4), (6.4), and (6.5); we see that we must show that 
there is a a2 such that 

satisfies f1 bounds, where 

K- J.X2 ( L 2 - ) r 
= (qo + qlX) e + dz - w� dz r + 2d2 (ywA)r 

+ tR + 2('}'WA) t� , 

(6.6) 
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We now show that, for an appropriate choice of a2 , (6.6) is f1 . We assume, to be 
justified later, that l d2 - L2a2jw� l � O(d2g2/A) .  We will now proceed as we did in 
Sect. 5.4, that is, we appeal to general arguments (as was done under (5. 14)) to show 
that (6.6) is analytic in R2h' • and so our problem is reduced to bounding (6.6) when 
evaluated at qJ<jj = l <;o' l 2 + l, for <p E <C and l E  C2h· (<;o'). We again split into two 
regions of I <;o' l 2, the large- and small-field regions, and remark that the large-field 
estimates go largely as in Sect. 5.4, so we do not repeat those arguments here. In the 
small-field region, we use the same definitions (5.20), (5.21), and again split into the 
small- and large-(B regions with (5.23). The large-e region goes as before, so we will 
concentrate on the small-field, sman-e region. 

Using Corollary 4.5 along with Corollary 4.7 we can relegate most of (6.6) to f1 . 
For example, for the term containing tR. , we get a factor of flA- 2 1 t 1 IK,ag,,A,h eK 
from Corollary 4.7 and a factor of O(A2 ) from the IJJ2 in front, with more than 
enough decay coming from the at least (L 4 - 2) factors of g0 in g. Hence we find 

��flrwA * (2ywAgtR.) ( W.t') � O(fl) l tt iK,ag,,A,h · 

l w21JJ2 
I L K',a'g�,A' ,h' 

Similar arguments can be applied to the terms containing r' and ( d2 - L 2a2j w�)r, so we are left with 

up to f1 terms. 
Since we know that (6.6) satisfies the analyticity conditions that Corollary 4.5 

require, we can split it into a sum of pieces that individually need not satisfy these 
conditions and just bound each piece separately. We will call a term f'1 if it can be 
written as f'1 = IJJ2 F( IJJ2 ) and satisfies 

l ( l <;o' l 2 + / )F( I <;o' l 2 + l') l (w'(<;o')) - 1 � O(L - 4)c4fi A'2d2 
for <p' E <C and /, l' E C2h' ( <p') 

l ft lw=A' � O(A')A'2 dzeK' . 
We next argue that the tR term is f'1 . We accomplish this by doing the 

Fermionic integral and observing that the tR. term is clearly t'1 . We name the 
remaining term 

To = J dflywJ(B) tR ( I
W2<p 

+ (B l2) . 

We follow the same procedure as below (5.25) and find the only term not manifestly 
f� is 

T x _ I t t iK,ag,,A,h K -ag,Ea' 
o - A2h e 

where we have retained the definition (5.32) of u, ii, and defined 

J( I u l2 ) = [h - t A- 2 ( I u I - A)eK-&g,(Rella+<>)' l  tt iK,ag2,A,hr 1 tR( I u 1 2 ) · 
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I l l ;:;=; 0(1) by an argument exactly analogous to Lemma 5.9. Notice that (6.7) is 
analogous to (5.37), and we proceed in same manner: 

T(§ = A  - 2 i t1 iK.ag, ,A,h eK - iig,Si"' < l )Q (so (O') + s1 (0') (£0') + se(O')) , 
O(h- 1 ) 

I Sd ;:;:;  1 i ' 
((yw"t)- 1  + iXg2 )_2_ 

l se l  ;:;=; O(h2A3e' - 2 ) .  
Here si , se are analytic for O" in the region l lm O" j < h(4fl)- 1 , I Re O" j < 2hA'. The 
term containing the se is clearly f� . We also write s0(0") + s1 (0') = s0(0) + sr(O"), 
and an application of Lemma 5 . 10 shows that s, is also f'1 . So the only piece not 
shown to be f1 is the constant term which satisfies the bound 

- 1 < ( l )Qc4d2 (g2 ) l A i t1 iK,ag, ,A,h < l )Qso (O) i = ((ywA)- 1 + iXg2 )1 12
0 A · (6.8) 

We next consider the contribution to (6.6) from the term containing q0 + q1X. 
We integrated out the fermions in the fluctuation convolution and obtain 

g(/lywA * (qo + q 1X) eK-J.X' i i/J = i/i= O  = J dpywA((
B)eK -JcY' ( eo + el Y ) + f� , 

e0 = d2 - L2w;j 2a2 , 
e1 = - 4ywAU2 + 2),ywA(d2 - L2w;j 2a2) , 

where on the RHS we have set Y = l cp/L + (B I 2 - A2. We deal with this as we did 
in Sect. 5.4, by performing a perturbation expansion. Here we only need carry it out 
to zeroth order, the first correction being f1 already. So, recalling the definition 
(5.28), we write 

J dpywA((
B) eK - AY' ( eo + e1 Y) = e-g,£v' ( C )o + f� , 

C = eo +  e1 ( (A + £0' + iW + ii: - A2 ) .  
Of the term containing C, the pieces containing O" and 0'2 are clearly f� , assuming 
we choose c4 large enough. Also, since ( iJ )0 = O(g2/A), all terms containing an e 1 
are f� as well. So we are left with 

- w� 2 (6.6) = ( g(JlrwA * g) ( WAcP) e cPa 

X (e-iig,Si"' So(O) ( l )QA -2 1 t1 iK,ag,,A,h + e-g,£v' ( d2 -�; (12) ( l)o) + f� · 

(6.9) 

We now make the choice 

Lz
- ( l)Q - z d2 - w� dz = - so(O) ( l )o 

A i tt iK,ag,,A,h (6. 10) 

and then (6.9) becomes f� , as is easy to see by expanding the difference in 
exponentials in a Taylor series to zeroth order and applying Lemma 5 . 10 to the 
remainder. 
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Since we know that the sum of the t'1 terms satisfy the necessary analyticity 
conditions to apply Corollary 4.5, we see that their sum is actually f1 . All that 
remains is to change the f1 into a true remainder t 1 via small shift in d2 • This is 
accomplished by the procedure described at the end of Sect. 6.3, and incurs a shift 
of O(A-)d2 , which is smaller than the leading term from (6. 10) and (6.8). 

The only part of Proposition 6.6 we have not yet proven is the statement 
involving the t2 terms, which occur in the cpi{J case. t� has contributions from the 
image of t 2 under the RG map and also from contractions of cp with i{J. Since we are 
only interested in t� evaluated at zero, we can write 

t� (O) = l!4flrwA* (d2cpoifJog + t1 + tz ) (O) 
because, referring to Lemma 6. 1 ,  the F 2 terms are multiplied by zero. From [BEl] 
Theorem 4.2 we see that 

l!4flrwA * tz gg;,\{Ol (O) = tz(O) . 
We then apply Corollary 4. 7 to t 1 , and, using estimates similar to ( 5 . 17), we see the 
corrections to t2 (0) are smaller than d2 exp(K - O(A2)). Finally, notice that 
Kn - O(A; ), where n is the induction step, is roughly exponentially increasing in n. 
Hence, if l t2 (0) 1  � d2 exp(K - O(A2 )) at any given step, it will satisfy the same 
bound for all remaining steps, which is the fact we need to satisfy IA4. In fact, 
immediately after 0 and z merge, t2 (0) = 0, so this estimate will hold. • 

At some point there will be a unique step in which 0, z are in the same block. We 
have assumed that z is large enough (depending on the initial [3) that this occurs 
while we are in the large-mass regime. This one step requires special treatment, but 
since the proof is so similar to that of Proposition 6.6 we will state without proof. 

Proposition 6.7. Suppose 0, z are distinct points in �1 . Let g2 > A  1/4+ v,, and suppose 
exp(f3AcJ.>2)g satisfies IA2([3A, K, A., A, rx<n>), and j0 , jz satisfy IA4(eflA<P'g, d2 ), with the 
choice of cp0(/J0 in j0 and cJ.>; in jz . Then S(j0jz ) satisfies IA4(T(eflA<P' g) , d� )  with the 
choice of cp0i{J0, and 

t� (O) = O . 

7. Calculation of Critical Exponents 

In this section we piece together the recursion relations we have determined 
for the various mass regimes into a calculation of E;.,N( rz ). We take the infinite 
volume limit, followed by the limit of z -+ oo ,  and find the critical exponent for the 
density. 

We choose some [3 > 0. We will do RGTs using the different methods to keep 
track of the integrands as [3 grows and the volume shrinks. For convenience assume 
f3 < O(A-2 ); this ensures that we start by using the version of the RGT correspond­
ing to very small mass (we can clearly construct the model for other [3 but we are 
interested just in the asymptotic behavior as [3 -+ 0). Next choose some A and 
z large enough (depending on [3) to ensure that we can do enough RGTs to get to 
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the large-mass region before the points 0 and z collapse to the same point. Again 
this restriction is not necessary but it simplifies the arguments and there is no 
reason to handle a more general situation since we are only interested in the limit as 
A and z tend to oo . 

Recall that we are calculating 

where 

. . . . S( ([>; e - Sq;, dx v (<l\l ) 
Pa,A = hm hm Ea,;,,N (Tz) = hm hm ( J dx v (</J l ) 

, z- ro N---+oo z-oo N- oo  s e ?Js X 

The integrands at every point other than 0 and z can be represented in the form 
of IAl while those at the points 0 and z can be represented in the form of IA3, with 
d2 = 1 , d4 = 0. 

Throughout this section we will denote by U a constant independent of 
induction step, though it may depend on L and ),0 . By en we denote a constant that 
may depend on the induction step as well as L and -10 , but is bounded by some U, 
uniformly in n. Either of these symbols can take on different values from formula to 
formula, or even when they appear twice in the same formula. 

At the end of the induction we will see that the final fJ A will be chosen close to 
one. Since fJA increases exponentially throughout the induction, this means that 
wA is always close to one. If we choose the volume large enough we see that, in all 
but the final stage of the induction (after 0, z merge), the corrections due to wA are 
smaller than the error terms we already have. At this point the corrections to the 
leading terms in the numerator and denominator are the same, so they will cancel. 
Hence we can ignore the factors of wA here as well. 

We proceed in several stages, switching methods as {J, and later g2 , grow. Let 
n be the iteration step. The first stage involves applying Propositions 5.2 and 6.2 
repeatedly, stopping at the step n1 before fJn becomes larger than ,1; . We find, for 
0 ;£ n ;£ n1 , 

fJn = {J0L2n exp( - rp �t� ),;) )J� (1 + e)f ) 

= {J0UU"n - ;,;p, ( 1 + en 
lo! n) , 

d�n) = d�0 l L - zn exp( - rd �t� A;) �u ( 1  + e;A.f ) 

= d�Ol UL - 2n n - y,;p,( 1 + en 
lo!n) ' 

where we obtain the second form of the expressions for fJn and d�l by inserting the 
result of the flow of An . 

The second stage involves -1; ;£ fJn < A/4, for n1 < n ;£ n2 . Again we apply 
Proposition 5.2 and 6.2, but now, because the O(fJnAn) terms start interfering with 
the O{}c;;) terms, we do not keep as close track of the subleading terms. Because the 
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fJn are basically increasing exponentially in this regime, the last O(fJnAn) term gives 
the dominant correction: 

An2 = An, + 0(),1;(2) • 

To estimate the evolution of fJn and d�l we use 
n2 - 1 
fl (1 + O(),n)) = 1 + Cn2 An, log An, 

because, due to the exponential rate of increase of fJn and the fact that An is changing 
very slowly, n2 - n1 = O(log An, ) .  So 

fJ = L2(nz - n,) {J ( 1  + C A !og A ) n2 n1 n2 n1 n1 

= fJoUUnzn1 Y,!P' ( 1 + Cnz
lo!

1
n1 ) 

a<n,) = L - 2<"' -n,J a<n,) ( 1  + C A log A ) 2 1 n2 n1 n1 

= d(O) UL - 2n, n- y,;p, (1 + C log n1 ) 2 1 n2 ' n1 
where we have used that An, = O(n1 1 ) . 

We now switch representations by applying Propositions 5.3 and 6.3, resulting 
in (primes indicate the new representation) 

A' = A (1 + 0(A1 12 )) n2 n2 n2 

Now drop the primes. At this point we start to use g2 to parametrize the recursion. 
We apply Propositions 5 .5 and 6.4 up through the last step n3 before g�l becomes 
greater than },�14 + v, . Again this involves 0 (log A.",) steps. So 

n3 - 1  
A;, = L2(n, - nzl A;z fl ( 1  + O (Ai- 2)) 

= L2(n, - n,J A2 (1 + Cn, ) n, 1/2 ' n1 

d(n,)' - L - 2"'d(O) un- y,j{J, (1 + �) 2 - 2 1 1/2 . 
n1 



Broken Supersymmetry Phase of Self-Avoiding Random Walk 3 1 5  

At this point we start applying Propositions 5.7 and 6.6, which will apply until the 
volume shrinks to a point in the denominator, and until the points 0 and z are 
about to merge in the numerator. Denote the former step by n5 ,  and the later by n4 • 
We see that g�l approaches a fixed point of O(U) exponentially quickly, and that 

A2 = L2<n. - n,J A2 (1 + 
Cn· ) 

n4 nz ni/2 ' 

d�4) = L- 2("• -n,) d�') TI 1 + 0 rJ..3_ 
n4- 1 ( ( (n))) 
n=n3 An 

(7. 1) 

(7.2) 

For the denominator, replace n4 by n5 •  The term g�l/An in the first expression for 
d2 first rises exponentially until g2 = O(L2 ) and then drops exponentially there­
after. Hence the error term can be estimated by 1 + O(g�l / AJ, where * is the step 
at which g2 first approaches close to the fixed point. Because the fixed point is 
O(L2 ), we see that this error is much smaller than n1 1i2 ,  which explains the last 
equality. 

All that remains to do for the denominator is to calculate the final one­
dimensional integral. We will do this below after we have finished the induction for 
the numerator. At this point in the numerator we have 0 and z in the same block 
�1 .  We apply Proposition 6.7 to find 

Now en evolves according to Proposition 6.6 again, with the result 

en, =  L - 2"' ( di0) )2fioUn} - (y, + 2y,)/fl, (l + :[/2) . (7.3) 

A;, is given by (7. 1) with n4 replaced by n5 • 
We have reduced the calculation of E;_,N( Tz) to the ratio of one-dimensional 

integrals 

E ( ) _ J dJ1G, + a0( <Po ) efl�s'<Pg (en, <fJoipog(<Po )  + t�e.n,)( <Po )  + t�·nsl ( <JJ0 ) )  
l,N Tz - J dJ1G,+ a0 ( <Po) efl'�s'<Pg (d2' <fJoipog (Po) + tid,n,) (Po)  + t�·"sl ( <Po) ) . 

Now, since 

we see that the expedient choice of fi<;{sl is 

(7.4) 

This substantiates our claim that w A stays close to one throughout the induction. 
We next apply the following 
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Lemma 7.1. If F(x) E C00(lR + ) and has exponential decay at 00 '  then 

00 
J d<PqJi{JF(P2 ) = J dxF(x) . 

0 

Proof Write F(P2) = F(({Ji{J) + F'(([Ji[J)t/Jlf/ and trace through the definitions of 
Grassman integration, e.g. Eq. (3. 1 )  in [BEI]. • 

Applying this to the t2 terms shows us that these do not contribute in the 
infinite-volume limit. We apply this to the other remainder term, writing 
t1 (P2 ) = qJifJtR (P2), and apply Corollary 4.7 to bound tR , obtaining 

Also, clearly 
l r( l m l 2) 1 :S: l r l eK-ag, (l<Pl - A)' . 'I' - K,ag2,A,h 

A simple calculation shows that the contributions to the numerator from the r and 
t�e,n,) terms are both O(�AnJen, ·  The contribution from the leading term 

en, exp( - Jcn, (x - A2f) is (Jn/2)en)� 112 . Replace en, by dn, for the denominator 
in both of these results. Since )"n shrinks by a factor of approximately L- 2 in every 
step after g2 approaches near to the fixed point, while An increases only by a factor 
of L, we see that the r and t1 terms also do not contribute in the infinite volume 
limit. So, for A large enough, these remainders are smaller than the ones we already 
have, and, by inserting (7.3) and (7.2) into (7.4), we see 

E (T ) = /3  Un1 - (y, + y,)/P, ( 1 +  
en, ) A.,N z 0 1 1/2 · n l 

(7.5) 

We now take the limits as N, and then z, tend to oo ,  which clearly exist. In order to 
get the expression in the final form given in Theorem 1 . 1 ,  we must relate n1 to {30 . 
We do this by noting that, by definition, f3n, = O(Jc�, ) = O(n1 2) .  Hence 
n1 = - U log f30 + O(log log /30 ) ,  and inserting this into (7.5) yields the desired 
result. 

A. Appendix 

Proof of Lemma 4.3. The only part that does not follow immediately from what we 
have already done is part (v). For simplicity we handle only the most delicate case 
of t = 1. Write g2 = g�> , g� = g�+ 1) , and let rJ = I ({J I - A. Define 

I = _..!:_ J d(d[e- (yw)-'(\ e -ag,(i<P + s[ - A)' 
N 

(A. l) 

(this is a purely Bosonic integral). From Lemma 4.1, part (ii), we see that if we show 
that 

(A.2) 
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then (4.3) will follow. We consider first the case of  g2 � A. 1/4. A calculation shows 
that (shift ( --> ( - cp) 

O( l ) ( (yw)- 1 J cp J + ag2A) ( - agz 2 ) I � -- exp CJ . - N [(yw) 1 + ag2] 312 1 + ag2yw 
Insert this in (A.2) and consider the coefficient of CJ2 

D = agz - a'g� (1 + d) 
1 + ag2yw L 2w2 

g2 (a - a' + ag2yw(1 - a') + d(a' + aa'g2yw)) 
(1 + ag2yw) (1 + g2yw) 

+ (a'/L2w2 ) 0 (g2/A) (1 + d) .  
We note that the d and O(g2/A) terms will always be dominated by the first two, 
and that in the region of small g2 (which we are now considering), we have 
a - a' > ag2yw(1 - a'). We consider the two regions of small and large CJ2 separ­
ately. 

In the region CJ2 > A2'/(g2(a - a')), with some 8 > 0 chosen small enough 
below, the exp( - g2(a - a' )CJ2 ) dominates the powers in front and we have the 
desired bound. 

Now consider the small-field region of CJ2 � A2'/(g2 (a - a')). We define if, it by 
( = if$ + iii$, and 

_ _ _ { 1 if J if l , J n l  < A'' 
X(CJ, n) = . 

0 otherw1se 

with 8' > 8. Insert x + l inside the integral (A. l), writing I = JX + Ic. We can 
estimate fC simply by bounding the exponential inside by 1 and using J df.lrwl � 
exp( - O(A2'' )). Also, 

( a'g' ) exp u� (1 + d) CJ2 � exp(r O (bjlogL) A2') ' 

so by choosing L large enough we can get the requisite bound. 
We are left with the JX term. For this we define 

or, in a more convenient form, 

E(CJ + if, it) = ( [A + (J + 0')2 + iiz] 1 f2 - A +  (J + 0') 
x ( [A +  CJ + 0')2 + iiz] 112 _ A _ (J _ 0') 

= E1 ((J + O', ii)Ez (CJ + if, it) . 
We now perform a shift if --> if  - ag2yw£CJ, with £ = (1 + ag2yw) - 1 . Then 

n 2 1 
J 

(( )- ' +  ) '' ( ) - 1 -2 E(" + - - ) I =  e - ag,_a 
N 

dO'diie- yw ag, (I - yw n - ag, -" "· " x(if - agzyW£CJ, it) . 
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Now, it is not hard to see that 

1 Et ( £a + a, ii: ) l  ;£ O (A' [o2 (a - a' )r 112 ) ,  

I E2 (£a + a, ii:) l ;£ O (A'' ) . 
where to get the bound on E2 it is helpful to note that A + £a = 

A + a +  O(o2 )a  = I <p I  + O (o2 )a, and I <p I  � 0. Putting these together, 

02 I E( £a + a, ii ) l  ;£ O(oY2 A' +" r o<JflogLl ) 

where we have chosen 8, 8' small enough, and L large enough. Finally, 

I ;£  O (l)e- ag,£o-' 

which completes the proof for o2 ;:; A 1/4. 
Next consider the region A 1/4 < o2 ;£ AJ/logL. We keep the same definition of the 

large-field region of a2• The same arguments imply smallness of the large-a2 region 
as well as the r term. For JX we use a new argument, namely we expand 
E( £a + a, 7i) in a power series in (£a + a) j A, iij A. In this region, we find 

for some 8" > 0, with 8, 8' small enough and L large enough. This, as before, gives us 
the bound. 

Finally let o2 > AJ /nL_ Here we redefine the largejsmall-a2 boundary to be at 
A 2'/o� ,  since now the decay comes from the ao�yw(l - a') term. Simple arguments 
like the ones above now yield the desired bounds. 
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