ITERATED MAYER EXPANSIONS AND THEIR APPLICATION TO COULOMB GASES

John Z. Imbrie
1.  Introduction

There are many problems in statistical mechanics and field theory
where systems of interacting particles (or particle-like defects,
contours, molecules, clusters, etc.) arise. Understanding these sys-
tems would be simpler if the particles were noninteracting. If the
particles are dilute and weakly interacting, then the corrections to
the independent particle approximation are small. These can be iso-
lated and regarded as new kinds of (nonlocal) particles by a procedure
known as the “ayer expansion. The nonlocal particles (or clusters)
carry all the information about the long-distance behavior of the sys-
tem.

There are many variants of Mayer expansions and cluster expansions
that can be used depending on the type of system under consideration.
The following grand canonical partition function is a representative

example:
oo ZN
7 = Z T fdx]...deexp(-B.z.v(xi - xj)). (1.1)
N=0 i<j
Here N is the number of particles, z is the activity of each particle,

d .th

B is the inverse temperature, X5 € A < R™ is the position of the i
particle, and v(xi - xj) is a two-body interaction potential. The
basic expansion step is to use the fundamental theorem of calculus to
write
-Bv(x€-xj) 1 'SBV(Xi - X.)
ze =z+2f ds(-B)v(x; - xj)e J (1.2)
0

The first term is an isolated particle, the second is a two-particle
cluster. When identities 1ike (1.2) have been applied many times, we
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find (after some combinatorics) an expansion for |A|']1og Z roughly
speaking in powers of z8 flv(x)ldxe'BE, where E is a lower bound for
the energy per particle in any N-particle configuration. Thus we
obtain convergence for small activities or high temperatures, depending
on the strength of the interaction (in the L]-sense) and on the stabil-
ity bound E.

A simple Mayer expansion as outlined above is not well suited to
interactions that are strong (BE << -1) only in a region that contri-
butes little to the integral [|v(x)[dx. In this situation we should
split the interaction into two or more parts vg,l = 0,15..., and ex-
pand in the part with the worst stability estimate El and shortest
range first. The clusters from this expansion are the particles of

the next expansion. One can proceed in this way through all the parts

2
of v without ever encountering a very large product flvg(x)|dx e-BE

Then one obtains an expansion that converges with relatively mild con-
ditions on activities.

This procedure of iterated Mayer expansions was formalized and
applied to the lattice Yukawa gas by Gopfert and Mack [5]. It fits
into the renormalization group idea that the behavior of systems is
best understood by considering what happens at successively larger
length scales. In its current form, however, the procedure works only
when there are just a finite number of length scales to be considered.
This limitation doesn't matter for Coulomb systems where screening
(exponential clustering) sets in at some length scale to break the
scale invariance of the interaction. For truly critical systems, one
needs more refined techniques.

To illustrate the technique, we shall consider a soft core contin-
uum Yukawa gas in three dimensions. For the Coulomb gas application we
have in mind, it is sufficient to split the interaction into two parts.
Let e; = +1 be the charge of the 1th particle. MWrite Ei = (ei,xi),
dei = g { dxi, and put RD = (228)']/2. Define a two-body interaction

i

-|xi-xj[/(A£D) ) e-lxi-le/R

v(EHE5) = e, [® ey (1.3)

arlx; - xj]

Here X parametrizes the range of the Yukawa potential, and R is a short
distance cutoff, necessary for stability. For simplicity we assume

R<B =< AZD. The partition function is
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[

Z= 7 ﬁ?[dg]...g exp(-8 [ V(€ :E,)). (1.4)
N=0 "* i<j
If we put A = » in (1.3), then we have a Coulomb potential with soft
core and QD’ the Debye length, is the length for exponential decay of
correlations in the Debye-Hiuckel theory. Our goal here is to write an
expansion valid for X small, but without putting restrictions on X that
depend on the other parameters B,2,z. This will ultimately lead to a
large region for screening for the corresponding Coulomb gas [6,7]. In
Sect. 4 we discuss applications of these expansions to Coulomb gases.

A convenient splitup of v is

V=Vvo+y (1.5)
-|x;-x,|/B -Ix;-x;]|/R

0 _ e 1 J - e 1 J

v (5.]’5»‘]) e_l[ 4‘nlx.i — XJI ]ej (].6)
] i e‘lxi‘le/()\ﬂf[)) _ e'|x-i-le/8

v (E'I’EJ) - e1[ 471,1')(1 - XJI ]eJ (].7)

Notice that v0 can be written as
V(EEg) = egl(-6 + 87871 - (o + R I0xg0x ey (1.8)

This form is useful for stability and two-body estimates. We have

-2,-

by V0 =<, l(-6 + 8797 - (o + Y>> 0, (1.9)

where p(x) = Z eié(x - xi). Thus
i

I ey %‘Z V(e .80) = /R, (1.10)
1<i<j<N

and EO, the lower bound for the energy per particle in a system with
interaction vO, is equal to -c/R for some constant c. Similarly

E] = -c¢/B; and E, the lower bound for the full system, is equal to -c/R.
Note that f[vo(ii,gj)|dxj is just the Fourier transform of (-A + 8_2)-]

- (-0 + R-z)-] at p = 0. Thus we have

0
JIVi(E;585) [dx;

n
™
1
o)
IA
™

(1.11)

flv ; ]dx

IA
>
o

D (1.12)
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[1v(g ;58 |dx; < xzzg. (1.13)

BEX << 1 to see

0

We can now apply the conditions zBfIv*(Ei,Ej)]dxje'

for what ranges of R,B,z the expansions should converge. For the v

expansion we require z[:'i:‘]ece/R << 1. For the v] expansion we need

szzlgec = cAz << 1. Thus expanding in v0 and v] separately put condi-
tions on A independent of z,8,R as desired. In contrast, expanding in

ZeCB/R 2_cB/R
D

v all at once would require zBXZQ =c\e << 1, or

AZ « e-cB/R'

One is forced to apply the weak stability estimate E
over the whole range of v --a much less efficient procedure than the

iterated expansion we describe below.

2. An Iterated Mayer Expansion

We want to develop an expansion for
N -z R
ZEqs- - oEy) = rexp(-8 ) v(E;.E5)). (2.1)
i<j
At first we consider only v0 and expand
N _ N _ 0
QolEqs---sEy) = z exp( BiZjv (Ei,Ej)). (2.2)

One could write

Tv.. V.. V..
ey n (e, (2.3)
i<j G {i,jleq

where G runs over all sets of unordered pairs {i,j}, but for estimates

it is better to have an interpolation formula. The formula we give is
based on [2]. For a a subset of {1,...,N} we write

ey = 1 e, (2.4)
i<j3i,j€a J
The interpolated interaction for the first step is

V¥ (130) = VO(iua)s, + V@)1 - s,), (2.5)
Sy 1 1

where we take a = {2,...,N}. This yields
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1
N o] N 0 )
QuEyseeosy) = 2Qp (Epsnninfy) + 2 1Zifods‘('8)v (£15E;)

-exp(-BVS (1,a)). (2.6)
1

In the first term particle 1 is isolated from the other particles, and
in the second it is connected to particle i through a "line" vO(E],Ei).
The next interpolation depends on i. In an attempt to remove inter-
actions between {1,i} and the other particles, we put

0 .. R | R, 0 i 0
VS]SZ(1,1,a) = VS](],{1} U a)s2 + (VS](I,{l}) + V() (1 - 52)

= S]VO(E'l,‘E.I) + y (S]SZVO(E],EJ) + 52V0(€1s€3)) + z Vo(gsgk)a

Jj€a j<ksj,kea J
(2.7)
where o contains all particles but 1,i. Thus
d 0 oy 0 0
s, VS]SZ(1,1,a) jéa(51v (€1:85) + VI(ELESD), (2.8)
and the 1th term in (2.6) interpolates to
2* o, (-0)Ve e e (-avg (1,(0))0" ) +
N 2.0 0 0 .
+z ]<Z Jdsqds, (-B) V(8158 ) (5 v (EuE) + V(E40E5))
J#i
cexp(-8v0 _ (1,50)). (2.9)

$152

lle continue in this fashion, always attempting to isolate the group of
particles connected to particle 1 in the remainder terms [the second
group in (2.9)].

To describe the general step, let i],iz,... be the sequence of
particles differentiated down in some term of the expansion
(i] = 1,12 = 1,13 = j above). MWe define inductively

0 . . 0 . . .
v (iqs.0.51 3a) =V (950001 3(i Y UQ)s +
SEERE S n Sy-++Sp-1 | n-1"""'n n
+ (V) (iseeesi 1308 1)+ V0))(1 - )
Sqee-S 1> n-1>"'n n"’

n-1 (2.10)
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It can easily be checked that

(Gyseeesi s{i qseeusi }) = S ..
Sq-++5, 1 n’ ‘ntl m T<uvam U

0

Gy &)
satisfies the recursion (2.10). Thus the general formula analogous to
(2.8) is

“Smin{v-1,n}"

Vv

d 0 v E
—V (i75.0051 30) ) s R
ds, "sq...s,0 1 n i “ex n(nf1)=1 n(n+1) n-1
n+1
0
V(g £; ). (2.11)
nt1’ ‘n(n+1)
We use the convention that s ...s ;= 1. Ue see that i ., has been

determined for the next interpolation. The procedure also generates

a tree graph n, which is a function from {1,...,k} to itself satisfying
n(n) < n. The interpolations stop when all N particles have been used,
so that all terms have a form analogous to that of the first term in
(2.9). The expansion then reads

N
N Ky k=1
Q (g seees ) = z 2 z (‘B) de ...ds _ z
PUUTNT R (i) ke g
k 0 /0 .1 -
Jobn(e) - Se-2 (€ (n) 1 explBYg s, ToToee o Tty
Qe ). (2.12)

a
Here (12, .,1k) is any ordered subset of {2,...,N}, a® is the comple-

mentary subset, E = (&, )1€a’ and n is a tree on k vertices.

lle have 1so1ated connected parts of Q which will become the
particles for the second expansion. In place of activities z, these
nonlocal particles (or 1-vertices, or subsets @ of {1,...,N}) have

vertex functions

k-1 k
k(-8 0
ol(&,) B a0, YZ] RACTOREL SR
exp(-8Y0 (1, k130K, (2.13)
Skl

lle have labeled the particles ino as 1,...,k. The operator S symme-
trizes the expression following in g],...,gk. Permutations involving
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5] are not present in (2.12), hence the factor 1/k. With these vertex
functions (2.12) can be written as

N
N 1 N-k
Q(EqseesEy) = ] ) klo (£_)Qy " (& )s (2.14)
0™ L e S T 1 0 1= 11 o L R B
where now we sum over unordered subsets a < {1,...,N}.
Equation (2.14) can be inserted into itself repeatedly to yield
a complete decomposition of Qg into products of 1-vertex functions:

N :
Q (E 9-..,& ) = : n [ !0 (E )]' (2‘]5)
o N geP(l,;...,N) a€n lal la| o

Here P(1,...,N) is the set of partitions of {1,...,N}. Ve would Tike
to write (2.15) in a form more like a grand canonical partition func-
tion. To this end we change from summing over partitions to summing
over multiplicities N for 1-vertices of size k = |a]. Given a set of
multiplicities N], NZ"" and some corresponding partition of {1,...,N},
a new partition can be obtained by permuting 1,...,N. However, permu-
tations of particles within any element of the partition do not change
the partition, and permutations of elements of the partition of a given
size do not change the partition. Thus a combinatoric factor

NCn e )T
a€m k

should be included, and we obtain

N N -1 1
QoEys--asty) = ) N!(E NS oy

(€,). (2.16)
NpaNos o sZkN =N €T

Here m is an arbitrary partition correspondina to N], NZ"°" and $
symmetrizes in E],...,EN.

Finally we can apply this expansion to ZN(g],...,gN) in (2.1) by
reintroducing the v]-interactions as interactions between 1-vertices.
Let us write for two 1-vertices a,B

v (0,8) = ) v](ai,g.). (2.17)
i€, €8, 17 J

Then we have

Meps.. gy = )

-1 1
1 .
N]:NZa-.. (n Nk') s 0 clal(ga)

=N k a€m
-exp(‘% ) v (@,8)).
@8 (2.18)

;Zka
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This expression is similar in structure to (2.1), only here there are
more kinds of particles and the particles have more structure in their
activities o]aI(Ea). Thus it is possible to formulate these expansions
inductively (see [5]). This would be especially useful if v had been
decomposed into many pieces. Since we have only one expansion more to
do, we will simply write it with equations (2.10) - (2.16) as a guide.

Interpolating interactions are defined as before by taking convex
sums. Letting 7 denote a collection of 1-vertices {a1,...,uM} we

define
V](g)=% ) v (@.8) (2.19)
a!BEf
1 1
v (0, seeesay 3m) =V (0 5oeesa; 3o, Tum)s +
Sq---S, 1y i’ S1+++Sp-1 1 L i ’n
1 1
+ (v (0s 5eeesOs sla; 1) +vi(m))( - s ). (2.20)
S1+++Spa1 L L n
Then the differentiated interaction is
d 1
—V {0y sevests 3m)
dsn 1°°Sp 1 i=
) ) ‘ L (2.21)
= ) ) cees Vi@ san 2.21
i . en n(n¥1)=1 n(nFD)TTee 1 'n(ntl)
n+l ™ -
n+l
With
o) = mol (€ Jexp(-8V'(r)) (2.22)
1= “lal Yo P - :
a€m

The first interpolation yields

o) - o}alltga])oT"(g \ o))

* Lo 01 ) (-8)¥ (o )exp(-8Vg (apsm \ fog})),s
Jj#l o€ 1

(2.23)

and in general
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M) = Y ) "ol (e, )( 8)* Vas, .. )
7= kél (12,...,1k) v=1 |u1 1 k'] n
K 1
sz[sn(a)"‘sz-z" (°‘1n(2)’°‘1l)]'
1 M-k
<exp(-BV (s 5enests C QN (wC). (2.24)
P S1o+Sk-1 g ]k-l k 1 -

Just as a l-vertex a is a collection of particles or O-vertices, we
define a 2-vertex o to be a collection of l-vertices {a],...,ak}, and

give it coordinates £ = (£.). . Let N, be the number of
o i’i€o .€a t

1-vertices in o of size t. Then we define 2-vertex functions

a ~
oé(aq) - N;!)-],oé(iq)
. k k-1
oé(iq) s [a I(& ) LBYfas .. as, | g

k

1
sz[sn(g)...sl_zv (an(l)’al)]'

1 )
exp(-BVS].-‘Sk-1(a],...,uk_],{uk})), (2.25)

where S symmetrizes in Upseees®ye In terms of these, (2.24) becomes
M

ofx) = ) ) ko2 (e )d) *r \ o). (2.26)
k=1 acm,o € |af=k = =

Just as in (2.15) we insert (2.26) into itself to obtain

Q@ = ] 0 laliohe). (2.27)
peP(m) a€p

This expansion can be inserted into (2.18) to yield

Mgy - ) mn)T's T [falel(e)].
N],Nz,...;Zka=N k

(2.28)
As before, we would rather sum over multiplicities of types of
2-vert1&es. The type [g] of a 2-vertex is just the set of multiplici-

ties (Nk)k=1,2,... of 1-vertices of each size in a. If there are N[q]

vertices of type [a], let p be a corresponding partition in (2.28).
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A combinatoric analysis as in the first expansion shows that there are
1" ( m nN !)-] terms in (2.28) corresponding to

[a] [g]‘)
{N[a] . The third group of factorials and each |a|! in (2.28) converts

nN!(m
K k*

02 to 02, and we obtain

N
IV (Eqs..nnEy) = 1 (MmN 41" 2
1 N Qo [a]’ $ no. (s ).(2.29)
) kN’ =
We can now obtain the full partition function by summing over N
and integrating over E],...,EN. Symmetrization is no longer necessary,
and furthermore the sums over N[a] factor into a product of sums
T 07V o2 ) = explfde o2 )
Npa 10 (a]’ aa e ata el
o

The expansion reaches its final form:

.5 N .
Z-= Nzojdg]...diNZ (Eqs.-.58y) = exp( [ fdgaca(ga)) (2.30)
We have achieved our goal of writing the partition function as an en-
semble of noninteracting 2-vertices. Equation (2.30) also gives us an
expansion for the pressure:

. -1 2
Tim |A] 'og Z = [2 £ dana(Eu (2.31)
R a]

where the x-integrals on the right extend over R3 . 0f course the
validity and usefulness of (2.30), (2.31) depend on some convergence
estimates; these will be discussed in the next section.

3. Convergence of the Expansion

We estimate the vertex functions o in (2.13) and (2.25). The
restrictions derived in Sect. 1,

zB"’eCB/R << 1, r<<1, (3.1)

will guarantee convergence of the first and second expansions,
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respectively. We claim that

3 cB/R

[om o deyloge)] = 2(z8% R, (3.2)
i€a,i#i
0
The definition of Vg s through successive convex combinations
17 7k-1

(2.10) preserves the stability estimate derived in Sect. 1. Thus

(1,...,k-1;{K})) < eCKB/R, (3.3)

exp(-BVS s
15k

The £-integrals are handled using (1.11); we integrate out sequentially
the positions of extremal vertices of the tree n, leaving in the end
only the 10 vertex,which is fixed. Each integration produces a factor
82. The remaining sums and integrals in (2.13) are handled using
k k-1
fds]...dsk_] g ILI‘I [Sn(l)“'sl-z] <e . (3.4)

This is a standard estimate that appears in many kinds of cluster
expansions. It is quite important as it controls the sum over the
(k - 1)! trees n. le prove it as a special case of (3.7) below. Put-
ting all these estimates together, we obtain (3.2). Note that when
k = 1 we have gl(ga) = 7,

The estimate for 02 proceeds similarly, and we can see an inductive

structure emerging. Let a = {oy,...,0,} with ) lail = t. We prove
that !
[ omde ol )] < 2(czse Rtk (3.5)
iti, | ¢ ¢
Again the stability estimate
exp(-BV] (o a, 3{a, 1)) < ck (3.6)
S+ Sk 17777 7k-1"""k = :

is preserved in the interpolation process. If we expand out the sums

over particles in o (5)"%, in V](an(l)’al)’ then (2.25) 1is represented

as a sum of T [|a [la,|] terms. In each term, and for each
2=2 n(l) L

L =2,...,k, a particle in a, is connected to a particle in an(l)

through a line v](gi,gj). e use (3.2) to integrate over the coordin-

ates of all but one particle in each ag and we use (1.12) to integrate
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out the remaining particle. Extremal 1-vertices are integrated out
first. Estimate (3.4) generalizes to

k k-1
fds]...dsk_] g lzz[sn(l)"°sl-2lan(2)|] < exp(gzllall), (3.7)

and the remaining IGQI factors are controlled using

;| e | 3 )
m |o,lexp( ) |o |) < exp(2 ) |o
g=2 * p=1 M 221

cB/R)

e2(t-1[

| -2) = (3.8)

Altogether we have factors (czB3e lan ] at each ay and factors

czBAZZE = cxz
To prove (3.7) write the sum over n as k - 1 sums over

n(j) € [1,j - 1] for 2 < j < k, and notice that the left-hand side is

less than

for each v]-line. This proves (3.5).

k
[dsy...ds; n(z)%..n(k) gzz[sn(z)"'SQ-ZIQn(Z)I].
k-1
~exp(

S eeeSy o |)
S k-1""

nes-1
paary

k-1

n(2).§.n(k—1)222[5“(“)"'52-2|an(2),] 45y

k-1
.exp(uzl su...sk_]laul)
k-1

< fds1...dsk_2 n(z),g,n(k-]) gzz[sn(l)..‘Sl'zlan(l)l].

= [dsy...ds)

k
sexp(
u

2
su...sk_zlaul + ]ak_]]). (3.9)

HWes-11
—_—

These two steps can be repeated for each sg-integration, and in the end
we obtain the right-hand side of (3.7).

We now use (3.5) to control the full expansion (2.31) for the
pressure. We have

3 CB/R)t'k(C)\Z)k-], (3.]0)

¥ dg Ioz(g ) =2 z(czR e
[a] X1£° @' o e “ 3
preee

N1,N

where the 2 accounts for the sum over s and where
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[0} a
t=] jNS, k=7 N3 = |a|. Let us write y = czB3eCB/R, w = cA%; then
J J
3 g Zyt-kwk-] 2 Z _wk-]( z ym-1)k
NT NG k=1 m=1
]’ 2"
-1 3 w_\k z
= = . 3.
W ké] (-I_y) ]_y_w ( ]])

Thus the series for the pressure is absolutely convergent and bounded

3ecﬁ/R - ckz)_], provided the two expansion parameters y

by 2z(1 - czp
and w are small. We can see that after many iterated expansions we
would lose control of the sums; if Ao,x],...,xq were the expansion

parameters, then a bound of the form 2z(1 - Ag = Ay ee -AR)']

would result. The AQ would also have a tendency to grow beyond their

2
naive values A, = zB,fleL(x)ldxe'BE because of the factors arising
from estimates like (3.7),(3.8).

4. Coulomb Gas Applications

In this section we describe how iterated Mayer expansions can be
used in studying screening in the.three dimensional Coulomb gas [6,7].
Let us consider charges *1 again, with a soft-core Coulomb potential
-|x1-xj|/R

(l-¢ Je.. (4.1)

Vc(g.I’E;J) = e ———_‘——‘—4Tr[xi_le 3

i
At activity z and inverse temperature B, the partition function is
given by (1.4) with Ve replacing v. To see screening, we wish to
perform a sine-Gordon transformation whereby the system becomes a
scalar field theory with cosine interaction. The curvature at the
minimum of the cosine should act 1ike a mass and lead to exponential
decay of correlation functions, or screening. The problem with going
directly to the sine-Gordon form is that the short distance cutoff
length R is too small to control the analysis of the sine-Gordon
theory, particularly if we are interested in the region where the

) = (228)71/?
The solution to this problem lies in the use of a mixed gas-sine-

expected screening length 2 is much larger then R.

Gordon representation. The Mayer expansion of Sects. 1 - 3 is well
suited to the short distance analysis, but reaches its limit at a
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length scale XQD. Constructive field theory techniques applied to the
sine-Gordon representation work well at length scales above AQD, but
break downif X is too small. Thus the two approaches complement each
other. The splitting of the problem according to length scale fits
well with the renormalization group philosophy that one should never
attempt to treat at one time a greater range of lengths than can
easily be accomodated in a given procedure.

The splitting we take consists in writing

- 2
V(E0E5) = V(ELES) + VE(E ) (4.2)
where v = v0 + v] is the interaction considered in Sects. 1 - 3 and
2 1- e-'X1_xj|/(>‘QfD)
VE(EE) = el Je;. (4.3)
J 41T|X1. - le J

Let p(x) = Z eié(x - Xi) be the charge density. The interaction can be
i

written as
V= TV (€ = Hdxdye(ulx,yey) - T(8meg) T + T viELE),
icg © 1 i i<j J
(4.4)
where
-[x-y|/7 ()
u(xy) = 1==2 S LN b M (PRI
4r|x - y| (4.5)

The second term on the right-hand side of (4.4) cancels the self-ener-
gies that were included in the first term. It merely changes the

N B/(8NAQD) 2 3
effective activity to z = ze , and for (B/QD) = 228

this is only a slight modification. The sine-Gordon transformation

small

treats the first term by using the identity

2 1/2
e'B<D:Up>/2 = IETB <¢’p>duu(¢)’ (4.6)

where duu(¢) is the Gaussian measure with covariance u. We see that

every particle i has a phase factor exp(is]/2

The third term in (4.4) is the interaction we expanded in (2.30). The
same expansion applies here, only the phase factors must be carried-

e1¢(xi)) associated to it.

along. Thus the Coulomb gas partition function can be represented as
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2 iB]/zeirb(xi)
= fexp([glfdaqca(ea) moe )du (¢). (4.7)

- = i€o€a u

(Actually to proceed with the screening proof we modify u near the

boundary by replacing A in (4.5) with A,, the Laplacian with Dirichlet

v’
boundary conditions at 3V, V < A.) 181/2e.¢(x.)
A final transformation of (4.7) writes e !

and expands the resulting product. This yields

=1 +e(g;)

2= Jewlog + 1 SHTAE e o (Eqsen B E(E)) . e € ) )du (6),

(4.8)
where

t=s

o (EpseansEy) = 5! ] (§)fdz;s+]...dat[u].gmg:to;(aa) (4.9)
=7k k

is the s-point truncated correlation function of the Yukawa gas. To
understand this action, look at the leading term s = 1 in (4.8) and
t=sin (4.9). It is

. 1/2 . 1/2
Jdx F(e'® 2(x) 4 187700 g . fdx 2Z(cos 812 (x) - 1).

(4.10)

Thus we have a generalized sine-Gordon theory, with interaction
27 cos B]/2¢ plus higher order nonlocal corrections. The nonlocal
corrections are the price we pay for having a good short distance
cutoff (at length AQD). They are well controlled by estimates Tike
the ones in Sect. 3. A strong form of exponential decay of the func-
tions pS(E],...,ES) results, see [3,7]. The usefulness of the Mayer
expansion is now clear. It expressed the partition function of the
Yukawa gas in exponential form, with exponentially localized vertex
functions. These properties are basic to the subsequent sine-Gordon
analysis.

If we expand the cosine about ¢ = 0 we obtain

2Z(cos B]/2¢ -1) = -EB¢2 + T%-EBZ¢4 toa. . (4.11)

-2

D to the inverse covariance of

The leading term adds QEZ =278 8

duu(¢). The new covariance is

W+ T y) = (802 - 8y + T 0oy), (4.12)
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which decays exponentially like e and is bounded by cx ~ on
the diagonal. We can begin to see how the screening arises. To see
what is necessary to control the corrections to the Raussian, choose
units where ED = 1. Then the quartic term in (4.11) is proportional
to 8. Thus we need (B/JLD)2 = 2283 small -- it turns out that

-/ is small enough. Note that with no Mayer expansion we

3 and B/R small to

283 << e
would have X = R/ILD and thus we would need both z8

satisfy 283 << exp(-C(ZB3)-]/28/R)-

Space does not allow a discussion of the expansion of this sine-
fordon model about the massive Gaussian; the reader should consult
[1,3,4,7]. However we can see what conditions are needed on z,B,R
to obtain convergent expansions. The iterated Mayer expansion of
Sects. 1 - 3 required 283 << e'CB/R, X << 1. The cluster expansion
for the sine-Gordon model requires 283 < e-c/x, X << 1. Altogether
283 << e-cB/R is sufficient to prove screening. This is a considerable
improvement over the region obtained with a single Mayer expansion with

the requirement Az << e_CB/R. The B/R-dependent restriction on )

CB/R), which is much worse for g >> R.

entails that 283 << exp(-ce
An even more striking improvement in screening regions was made

by Gopfert and Mack [6]. They studied the lattice Coulomb gas dual to

the three dimensional U(1) lattice gauge theory. In this model the

-8v.(0)/2
activity is linked to B according to z = e » where Ve is now

the lattice Coulomb potential. [In other words, the self-energy terms
with i = j are included in V whereas we have omitted them --see (4.4).]
The lattice spacing plays the role of our short distance cutoff R,

and we set both to 1hereby a choice of units. Using very precise
stability estimates in the first Mayer expansion, they were able to

-(1-e)gv _(0)/2

cB to one like 283 << e

sharpen the requirement 283 «< e
with € > 0. Thus with z as above, the condition on B becomes

3 erC(O)/Z
B” «< e , and screening can be proven for large B. The

expansion also proves confinement in the U(1) model at large B, and
confinement then follows at all temperatures by correlation inequal-
ities.
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