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In this lecture I will present a method for obtaining the end-to-end distance of a self-
avoiding walk, assuming properties of its Green’s function are known. The construction
is joint work with D. Brydges, and we apply it to the case of hierarchical self-avoiding
walk in four dimensions.

In four dimensions there are logarithmic corrections to Brownian behavior, and our
method is sensitive enough to pick up the power of the logarithm.

The needed Green’s function estimates have not yet been proven for the ordinary
(non-hierarchical) self-avoiding walk (SAW). However, there is reason to hope that the
estimates can be proven, as closely related models have been treated already in the
literature [GK, FMRS, HT, IM].

As we shall see, the end-to-end distance will be recovered from Green’s functions by
a contour integral. Why not analyze the end-to-end distance directly? The answer lies
in the fact that the precise RG calculations needed to compute logarithmic corrections
are best done in the field theoretic representation of SAW (commonly known as the
zero component limit of the N -vector model). In field theory the length of the walk is
integrated over, as, for example, in the Green’s funciton of random walk:

G(β, x) =

∫ ∞
0

dTe−βT eT∆(0, x) = (−∆ + β)−1(0, x).

Here ∆ is the lattice Laplacian in Zd and β ≥ 0. The operator e−T (−∆+β) describes
the propagation for time T of a walk that undergoes nearest neighbor transitions and
is killed off at rate β. If one wishes to describe properties of the walk at fixed T , one
must invert the Laplace transform:

P (T, x) =

∫ a+i∞

a−i∞

dβ

2πi
eβTG(β, x) (a > 0)

=

∫
dβ

2πi

∫
ddp

(2π)d
1

p2 + β
e−ipxeβT .

Now evaluating the β integral by taking the residue of the pole at β = p2, we obtain

P (T, x) =

∫
ddp

(2π)d
e−p

2T eipx ' const T−
d
2 e−

x2

4T .

(Here we need T large since x ∈ Zd and p ∈ [−π, π]d.) Clearly the width of the

distribution is of order T
1
2 , which, of course, is the end-to-end distance for a simple

random walk.

1 Definition of the model

The hierarchical lattice G is the direct sum of infinitely many copies of Zn, where n = L4

for some integer L > 1. Each x ∈ G is of the form

(· · · 0, 0, xN−1, xN−2 · · ·x0)
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with xi ∈ Zn = {0, . . . , n− 1}. The length of x is defined as

|x| =
{

0 if x = (· · · 0);
LN if x = (· · ·xN−1 · · ·x0).

This lattice is best thought of as Zd with an unusual notion of distance and a nonstan-
dard Laplacian.

Define a Levy process on G such that

P (ω(t+ dt) = y|ω(t) = x) = c|x− y|−6dt, if x 6= y.

Then the Green’s function for this process is defined as

G(β, x) =

∫ ∞
0

dTe−βTE(11ω(T )=x),

where E denotes the expectation for the process starting at the origin. In [BEI] an
explicit formula for Gβ, x) is given, which at β = 0 reduces to

G(0, x) = |x|−2 (x 6= 0),

Thus G(0, x) mimicks the behavior of (−∆)−1 on the standard Euclidean lattice.
The function G(β, x) is a meromorphic function of β with poles at β < 0. Thus

P (T, x) may be evaluated explicitly by inverse Laplace transform. This leads to the
following proposition.

Proposition 1. (End-to-end distance for the unperturbed walk on the hierarchical
lattice.) Let 0 < α < 2. Then

lim
m→∞

1√
L2mT

E(|w(L2mT )|α)
1
α = f(T )

exists for each T > 0 with 0 < f(T ) <∞, f(T ) = f(L2T ).

This gives a precise sense in which |ω(T )| ∼ T
1
2 for the simple random walk on the

hierarchical lattice. Higher moments do not exist because of the |x|−6 tail in the jump
distribution.

We seek a similar statement for a weakly self-avoiding walk, which we proceed to
define. First, let

τ(x) = τ (T )(x) ≡
∫ T

0

ds11{ω(s)=x}

denote the local time at x, the time in [0, T ] that the walk spends at x. We write the
interaction as

τ 2(G) =
∑
x∈G

dxτ 2(x) =

∫
ds dt 11{ω(s)=ω(t)},
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where the last expression shows it is a measure of the self-intersection of the walk.
From this we define an unnormalized probability distribution for the walk at time

T ,

Pλ(T, x) = E
(
e−λτ

2(G)11{ω(T )=x}

)
.

Finally, the normalized expectation is

ET
λ (·) =

∑
x

·Pλ(T, x)∑
x

Pλ(T, x)
.

Theorem. Let 0 < α < 2 be fixed. Let L >> 1, λ << 1. Then

ET
λ (|ω(T )|α)

1
α = (1 + ε1(T ))E(|ω(`

1
4T )|α)

1
α ,

where
` = C(L, λ) log T + ε2(T )

|ε1(T )| = O
(

1

log T

)
|ε2(T )| = O(log log T )

C(L, λ) > 0.

This theorem shows that

ω(T ) ∼ `
1
8T

1
2 ∼ (log T )

1
8T

1
2

∼ const (log T )
1
8T

1
2

in the same sense that the noninteracting ω(T ) goes as a constant time T
1
2 .

As indicated earlier, the idea is to derive the behavior of Pλ(T, x) from its Laplace
transform, the interacting Green’s function:

Gλ(a, x) =

∫ ∞
0

dte−aTPλ(T, x).

It was shown in [BEI] that when a = ac(λ) the Green’s function decays as |x|−2. This
is the critical value of the killing rate: for larger a the decay will be shown to be at
the rate |x|−6, which is the analog for the hierarchical model of exponential decay.
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(The long tail in the jump distribution prevents true exponential decay.) We shift to
coordinates in C centered at ac(d) by putting

β = a− ac(λ),

and writing Gλ(β, x) instead of Gλ(β + ac(λ), x).
The proof of the above theorem breaks into two parts: First, to determine the

behavior of Gλ(β, x), and second, to recover Pλ(T, x) from Gλ(β, x).

2 Behavior of Gλ(β, x).

We need the behavior of Gλ(β, x) for |arg β| < 3π
4
−2b for some b > 0. The free Green’s

function G(β, x) has poles on the negative β axis but is analytic in the above pie-shaped
region. In this region it behaves as

G(β, x) ∼ 1

(1 + |x|2)(1 + |β| |x|2)2
,

which shows the |x|−2 behavior for β = 0 and the |x|−6 behavior for β 6= 0. The

crossover from one behavior to the other takes place when |x| is of the order β−
1
2 , so

G has “range” β−
1
2 just like the Green’s function of the nonhierarchical walk.

Proposition 2. (Field-theoretic representation of Gλ.) The interacting Green’s func-
tion may be represented as

Gλ(β, x) =

∫
dµG(β)(Φ)e−A(Φ)φ̄0φx,

where Φ = (φ, φ̄, ψ, ψ̄) is a vector consisting of a pair of conjugate complex fields and a
pair of Grassmann fields, and where dµG(β)(Φ) is the Gaussian measure with covariance
G(β) (both for φ, φ̄ and for ψ, ψ̄. The action is

A(Φ) =
∑
x

[λΦ4(x) + ac(λ)Φ2(x)],

where Φ2 = φφ̄+ ψψ̄ and Φ4 = (Φ2)2.

This representation was used extensively in [BEI] and corresponds to the N = 0
component quartic field theory. The right-hand side needs to be defined as a limit
of volume cut-off quantities. Proving this proposition would take this lecture too far
afield, but is is worth mentioning that it follows from the general fact∫

dµG(0)(Φ)F (Φ2)φ̄0φx =

∫
dTE

(
F (τ (T ))11w(T )=x

)
.
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Taking F (Φ2) = e−A(Φ) we obtain the interaction τ 2(G) defined earlier, plus ac(λ)τ(G) =
ac(λ)T . When the Laplace transform is taken on the RHS instead of

∫
dT , the addi-

tional term changes the covariance on the left to G(β).
We analyze the quartic field theory using renormalization group methods. The first

step is to write

G(β, x) = L−2G
(
L2β,

x

L

)
+ Γ

(
β,
x

L

)
,

and integrate out the Γ covariance. After rescaling and rewriting of the interaction, we
find that the quadratic and quartic coefficients have changed via the following recursion:

λj+1 = λj − 8Bλ2
j

1 + 2βj
(1 + βj)2

+O

(
λ3
j

(1 + βj)2

)
βj+1 = L2βj

(
1− 2B

λj
1 + βj

+O

(
λ2
j

1 + βj

))
.

Note that the first recursion is effectively the familiar β = 0 recursion, at least until
β has grown to be O(1). The coefficient β blows up by a factor L2 per iteration
with a slight retardation due to λ. This retardation is responsible for the logarithmic
corrections to the noninteracting model.

The coupling constant recursion can be solved, leading to accurate upper and lower
bounds on λj and βj. We find that

|λj| ∼
λ

1 + 8Bλmin{j, log(1 + |β|−1)}
,

which means that λj decreases as (8Bj)−1 until βj has grown to be O(1). Now define

β̂j = L−2jβj,

to cancel out the trivial expansion of βj with each step. Then

β̂j
β
∼

j∏
i=1

(1− 2Bλj) ∼ exp

(
−

j∑
i=1

1

4j

)

∼ exp

(
−1

4
log j

)
= j−

1
4 .

We may put β̂∞ = lim
j→∞

β̂j, since after j ∼ log(1 + |β|−1) both recursions settle down to

fixed points. From the above we find

|β̂∞| ∼ log

(
1 +

1

|β|

)− 1
4

|β|,

and the exponent of the log traces to the ratio of the two coefficients 2B, 8B in the
recursion relation.
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If we define

`−
1
4 (β) =

β̂∞
β
,

then
`(β) = C(L, λ) log |β|−1 + ε(β),

with ε(β) = O(log log |β|−1) as per our main theorem.
The renormalization group analysis may be extended to the Green’s function, with

the result that Gλ(β, x) is well approximated by G0(β̂N(x), x) where β̂N(x) is the effective
killing rate after N(x) RG steps. Here N(x) = logL |x| is the number of steps needed
to bring 0, x to the same point.

Proposition 3. Let N(x) = logL |x|. Then

|Gλ(β, x)− (1 + δ(λ))G0(β̂N(x), x)| ≤ O(λN(x))|G0(β̂N(x), x)|.

Remark. The reader will recall that arg β may be larger than π
2
, and so in the course

of proving these estimates on Gλ and on the recursion there will be stability problems.
These are sidestepped by rotating Φ → Φe−i arg β/6. Since | arg β| < 3π

4
we preserve

positivity of the measure (Φ, G−1
0 Φ) and of λΦ4, which pick up phases less than π

4
, π

2
,

respectively. The mass term, βΦ2, however, is rotated back to the right half-plane and
we have a single-minimum φ4 potential to work with. One can consider the broken
phase of this model by putting β on the negative axis and working carefully with the
infinite volume limit. This leads to a new set of phenomena relating to the collapse of
the polymer, see [GI].

3 Recovering Pλ(T, x) from Gλ(β, x)

We wish to see how in writing the inverse Laplace transform

Pλ(T, x) =

∫
dβ

2πi
eβTGλ(β, x),

the logarithmic behavior in β becomes the desired logarithm in T . By Proposition
3, we can replace Gλ(β, x) with G0(β̂N(x), x), up to a small error. Now we wish to

make a further replacement of G0(β̂N(x), x) with G0(β`−
1
4 (T−1), x). Allowing this for

the moment, we find that

Pλ(T, x) =
1 + δ(λ)

`−
1
4

P0

(
T

`−
1
4

, x

)
,
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since rescaling β is equivalent to rescaling T in
∫

dβ
2πi
eβTG0(β`−

1
4 , x). (We write ` =

`(T−1).) After normalization, the width of Pλ(T, x) is seen to be (T`
1
4 )

1
2 = T

1
2 `

1
8 , and

this leads to the behavior of ET
λ (ω(T )α)

1
α claimed in the theorem.

Going back to the replacement of β̂N(x) with β`−
1
4 , we analyze the error term on

the keyhole-shaped contour

{β : |β| = T−1 and | arg β| ≤ 3π

4
− 2b}

∪ {β : |β| > T−1 and | arg β| = 3π

4
− 2b}.

For large values of β, the exponential decay of eβT suppresses the contribution. For
moderate values of β, the replacement is valid except for the N -dependence of β̂N . But
the N -dependent part contains an extra 1

log T
from differentiating `−

1
4 . Similarly, the

error term in Proposition 3 contains a factor λN which leads to an extra 1
log T

.
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