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1. INTRODUCTION 

Renormalization group ideas have been extremely important to 
progress in our understanding of gauge field theory. Particularly 
the idea of asymptotic freedom leads us to hope that nonabelian 
gauge theories exist in four dimensions and yet are capable of pro
ducing the physics we observe--quarks confined in meson and baryon 
states. For a thorough understanding of the ultraviolet behavior 
of gauge theories, we need to go beyond the approximation of the 
theory at some momentum scale by theories with one or a small num
ber of coupling constants. In other words, we need a method of 
performing exact renormalization group transformations, keeping 
control of higher order effects, nonlocal effects, and large field 
effects that are usually ignored. 

Rigorous renormalization group methods have been described or 
proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. 
Earlier work of Glimm and Jaffel and Gallavotti et al. 2 on the <jJ 4 
model in three dimensions were quite important to later developments 
in this area. 

We present here a block spin procedure which works for gauge 
theories, at least in the superrenormalizable case. It should be 
enlightening for the reader to compare the various methods described 
in these proceedings--especially from the point of view of how each 
method is suited to the physics of the problem it is used to study. 

*Junior Fellow, Harvard Society of Fellows. +Supported in part by 
the National Science Foundation under grant no. PHY-82-03669. 
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We believe that our approach is advantageous for the study of gauge 
theories. 

The problem we present in some detail is the abelian Higgs 
model in two or three dimensions, with a "wine bottle" potential 
for the Higgs field. The continuum action density is 

1 I ( () -ieA ) cp 1 2 + _4
1 

F2 +A I cp 1 4 
2 � � �v 

... 
...... 

v (cp) 

------------

where cp is a complex scalar field. We use a lattice approxima
tion and renormalization transformations in the form of block spins 
to study two problems. 

1. Ultraviolet stability. This phrase describes the bounds 
necessary to control the continuum limit, i. e. estimates uniform in 
the lattice spacing E for finite volume partition functions and 
correlation functions. 

2. The Higgs mechanism. Here infrared problems complementary 
to ultraviolet stability are considered. We seek bounds on correla
tions that have exponential decay in the separation between 
observables. The rate of decay should be uniform in the lattice 
spacing and in the volume, and it should be independent of the 
observables which are considered. Such a uniform decay rate ensures 
a gap in the mass spectrum of the model, and this gap is also known 
as the Higgs effect. The mass gap at first appears surprising, 
since one might expect a zero-mass scalar boson (Higgs particle) to 
arise from transverse motion in the wine bottle potential. One 
might also expect a massless gauge particle (photon) because the 
gauge field has no explicit mass term. 
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The uniformity of the estimates as E-+ 0 and as the volume 
goes to infinity means that bounds carry over to the corresponding 
limits, if they exist. The exponential decay should allow us to 
take the infinite volume limit, because distant regions contribute 
only exponentially small effects to a given correlation function. 
The E-+0 limit is more difficult, but we expect that our methods 
will apply. 

The standard heuristic physics explanation of the Higgs 
mechanism arises from consideration of the model in the "unitary" 
gauge. In this point of view, the scalar field is written in polar 
form, cjl =rei6, with r;;:,o, and one chooses the gauge 6 =0. In 
this manner, the transvers� (angular) fluctuations of <P are 
eliminated, while radial fluctuations in a ne�ghborhood of the 
potential minimum at r = r0 = m ( 8A) -1/2 are characterized by a 
mass m. (In the semiclassical limit, the mass squared is twice 
the sectional curvature of the potential. ) Hence one expects a 
Higgs particle with a mass � which is close to m. We choose 
m =0(1). 

Furth�rmore, in the unitary gauge 1/21 (d�-ieA�)¢j2 = 
= 1/21 d�cjl 1 2  + 1/2 e2A� I <P J2. Assuming that <P - r0 is small, this 
yields a semiclassical photon mass equal to er0 =me/(8A)l/2. Thus 
in order to obtain semiclassical masses which are 0 (1), we also 
also require that e2 /A = 0 ( 1) . The quantum effects for small e ,A 
will modify the Higgs mass mH and the photon mass mph from 
their classical values, 

mH = m(l +O(e,A)), -1/2 mph = me(8A) (l +O(e,A)) 

2 The modifications are expected to be small for 0 <.e , A << 1, with 
m, e2/A =0(1), and this is the region in which we work. 

What is wrong with this picture of mass generation and the 
Higgs effect? The problem is that the unitary (6 = 0) gauge used 
above is a nonrenormalizable gauge. Propagators which occur in 
perturbati.on theory are very badly behaved for large momenta, i. e. 
they have bad local regularity properties for small E. This points 
to the fact that the 6 = 0 gauge is physically a poor way of under
standing the Higgs model. It intertwines the infrared and the 
ultraviolet problems, making each less clear. Furthermore, there 
are unanswered questions about the role of configurations where 
cp�o, namely singular gauge configurations or vortex configurations. 

Our answer to these difficulties is to treat high-momentum 
degrees of freedom differently from low-momentum degrees of freedom. 
The high-momentum degrees of freedom are studied using gauges which 
have well-behaved ultraviolet properties. The function space 
integral over these degrees of freedom can be carried out and 
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analyzed. The result is an effective low momentum theory. For 
this resulting mode 1 there are no problems with the 8 = 0 gauge, 
and we use this unitary gauge to exhibit the generation of a 
positive mass. 

The first problem is to find an appropriate gauge-invariant 
splitting of the model into its high and low momentum parts. We 
choose a block spin method to achieve this splitting. Thus while 
the Higgs effect is not generally considered as a renormalization 
group problem, we do so and perform the momentum space splitting 
in a series of steps. Each step will transform a model on a 
lattice with spacing 6 into another model on a lattice with 
spacing OL, where u is a small positive integer. After a finite 
number k =k(2) steps, 2Lk =0(1}, we say that we have arrived at 
the "unit lattice" model. We analyze this model using the unitary 
gauge and find a mass gap � > 0. Here � is uniform in 2 and jAJ as 2 -+0 and jAJ -+00• 

In order to control the errors at each stage of renormaliza
tion, it is necessary to eliminate portions of the effective action 
which couple distant space-time regions with very small probabilityi 
in other words we "localize" terms in the effective action. 
Furthermore we stop the renormalization transformation procedure in 
spacial neighborhoods of places where the fields produce a large 
action. In such regions we find it impossible to define a useful 
definition of background field configurations and fluctuations 
about such configurations. However these events have a small 
probability and contribute little to expectations. All these com
plications are handled at each length scale, and hence lead us to 
a "multi-scale cluster expansion." This is the technical tool we 
use for estimates. 

This work on Higgs models is built upon years of experience 
with superrenormalizable quantum field theories--many models with 
bosons and fermions in two and three dimensions have been con
structed and properties such as particle structure and phase struc
ture have been analyzed--see Glimm and Jaffe's book3 for references. 
The most popular approach (which we pursue here) has been to work 
with Euclidean functional integrals, verifying the Osterwalder
Schrader axioms4 which guarantee the existence of a Minkowski theory 
satisfying the basic axioms of quantum field theory. 

The work on gauge theories to date is more limited. The most 
complete construction is of the two dimensional abelian Higgs model 
in two dimensions, by Brydges, Frohlich, and Seiler5. For this 
model all the Osterwalder-Schrader axioms were verified except 
clustering. In particular, the existence of a mass gap is open, 
even for the two dimensional model. More limited results were 
obtained by Challifour and Weingarten6 and by Ito7 for two dimen
sional quantum electrodynamics, see also Seiler.8 
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The work described here is partly published and partly in 
progress. Balaban's papers9 prove ultraviolet stability for the 
somewhat simpler case of the abelian Higgs model with a massive 
vector field. Our work on the Higgs mechanism for the model 
without an explicit mass for the gauge field (Wilson action) is not 
yet complete, but is sufficiently far along for us to present the 
main ideas here. Balaban is extending the stability result to the 
nonabelian case in two and three dimensions--see Ref. 10 and sub
sequent papers in preparation. Readers particularly interested in 
the nonabelian model should consult these papers as they appear, 
see also Ref. 11. However, the overall strategy and many of the 
details are common to the abelian and nonabelian case, so our dis
cussion here of the abelian model should serve as an introduction 
to' the methods used in all-of these works. 

Of course, the most interesting case is four dimensional non
abelian Yang Mills. We are still far from understanding this model 
(we will see below some features of the method which seem to be 
particularly troublesome for four dimensions). However, an under
standing of how to do exact renormalization group theory for non
abelian models in three dimensions is surely a prerequisite to 
results in four dimensions. We refer the reader to the Cargese 
lectures for the year 2003 for a construction of (YM)4. ( We don' t 
know the authors yet)! 

2. BLOCK SPINS FOR GAUGE THEORIES 

2. 1 The Lattice Approximation 

We work with a lattice regularization because it is extremely 
important to preserve gauge invariance--not just at the start but 
also for all effective theories obtained after applying some number 
of renormalization transformations. Of course there are disadvan
tages of the lattice approximation: loss of Euclidean invariance, 
for example, or loss of an obvious geometric interpretation. How
ever, for us (and many other authors) the advantages outweigh the 
disadvantages. 

We also find it convenient to work with a compact action (the 
Wilson action). We hope that noncompact actions, or actions where 
the gauge field has a larger period than the Higgs field can be 
treated with some additional work. One can convert a noncompact 
model to a compact one at the price of introducing vortices. This 
device was used in Ref. 12 to study the noncompact model with a 
fixed (not arbitrarily small) lattice spacing. 

On the E-lattice we use fields ub E U(l), cjl(x) Ea:, where b 
is a bond and x is a site on a periodic lattice TE. If we write 
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ie EA (x) 
u e W then A (x) corresponds to the usual gauge <x ,x+Ee > W 
field fo� continuum formulations. By convention, bonds are oriented, 

-1 and ub =u_b, where -b denotes the reverse o£ b. If r is any 
oriented contour composed of bonds, then we define u (f) = nbEf ub. 
In particular, u (p) is the usual plaquette variable formed by 
taking the product of ub's around the plaquette p. We define 
the covariant derivative of ¢ as (D <jl)b =E-l (�<jlb -<Pb 

) , where 
u + 

are the forward, backward sites of b. 

The action on the E-lattice is 

E S (u ,cjl) 
' 

" d 1 l " ,.
d 1 (D

u
E
")b 1 2 

LJE � (1-Re u (p)) + 
2 LJ � � 

p e E b 

+ L Ed (A. I <J> (x) 1 4 - � m21<P (x) 1 2 - � Om21<P (x) 1 2) + E . 
X 

2 2 Here Om =Om (e,A, E) is a mass counterterm for the Higgs field. 
It is given by a diagrammatic expansion to some order in coupling 
constants, and is divergent as E -+0. The constant E contains 
vacuum energy subtractions, including divergent counterterms, again 
given by a diagrammatic expansion. From this action we obtain the 
partition function 

and expectations 

<F> = Z
-lj(dud<jl Fe-SE

(u,<jl) 

We consider only gauge invariant observables. (Non-invariant 
observables like cjl (x) are easily seen to have vanishing expecta
tion--no gauge fix is needed above because of the compactness of 
the u-integration. ) The gauge transformations for these fields are 

cjl (x) -+ <jl (x)e
iA (x) 

� -+ �e 
-i (A (b )-A (b )) 

+ -

where A is a real-valued function on sites. The action is easily 
seen to be invariant, as are observables such as I <P (x) 1 2, 
cjJ (b_)�cjJ (b

+
), u ( p). 
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The goal of this work is to prove bounds on expectation of 
appropriately renormalized observables that are uniform in the 
lattice spacing and in the volume. Furthermore, we wish to take 
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the infinite volume limit and establish exponential clustering of 
truncated correlations <F1F2> -<F1><F2> at a rate uniform in E 
(the Higgs mechanism). The existence and Euclidean in variance of 
the limit E +0 is open for the moment. We expect that our methods 
will eventually be used to understand these questions, thereby 
yielding a complete construction of the model and verification of 
the axioms. Partial results in this direction have been obtained 
by c. King. 

2. 2 Rescaling to the Unit Lattice 

It is convenient to work with unit lattice spacing for each 
effective theory. Thus we rescale the E-lattice to the unit lattice, 
performing canonical scalings on the fields (¢E =E-(d-2)/2¢1, etc. ). 
The partition function becomes 

Jdud¢ e -s (u,¢) 

with 

S(u,¢) 

"" I 1 4 1 2 2 1 12 1 2 2 1 1 2 + L...J C\(E) ¢(x) - 4 m E  ¢(x) - 2 
om E ¢(x) ) +E. 

X 

We are using rescaled coupling constants 

and D u 

( ) (4-d) /2 e E = eE 

is the unit lattice covariant derivative, Du¢=�¢b - ¢b · + 
Note that all nonquadratic pieces of the action have acquired 

coefficients that are positive powers of E, for d < 4. This 
becomes more apparent when we expand u(p) in terms of correctly 
normalized field strength variables. With 

f p 

we have 

1 

e(E) 

1 
ie (E) log u (p) , 

2 
( 1-Re u (p) ) 
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The mass counterterm 6m2 diverges like E-l in three dimensions, 
logarithmically in E in two dimensions. Thus J ¢ J 2 still has a 
positive power of E in its coefficient. The fact that the model 
becomes extremely weakly coupled when viewed on this scale is just 
a manifestation of its superrenormalizability. 

The price we pay for the rescaling, however, is that the model 
appears almost massless. Mass terms in the basic Gaussian have 
acquired powers of E (at any rate they only appear in the Higgs 
part of the action, and then only with the wrong sign). The mass
lessness and the associated long-range correlations are circum
vented by the method of block spin renormalization transformations. 
If we fix the block a�erages of the fields and integrate only over 
the fluctuations, then the gradient terms in the action will act 
like a mass. Thus we will obtain an integral which is a small 
perturbation of a massive Gaussian measure. Such integrals are 
relatively easy to control--they have well behaved perturbative 
expansions with remainder terms which can be controlled by means of 
convergent cluster expansions. 

2.3 Average Fields and the Renormalization Transformation 

We divide the lattice into blocks of Ld sites each, where 
L is a small positive integer like 2 or 3. A naive definition of 

f " ' L-d " ( ) the average o y on a block would be LxEBlock y x . However 

this definition of average is not gauge covariant--each term in the 
sum transforms according to the gauge transformation at a different 
point. In order to have an average that transforms according to 
the gauge function at a single point (say at the corner of the 
block) we use "parallel transport operators" u(fy,x). Here fy,x 
is some contour from y (the corner of the block) to x (an 
arbitrary point in the block. For example we can take f as y,x 
in figure 1. 

r y,x 

!@--..---.--..., 
I I 

xi 
"1---"--"'---"""'---"-..!11 I l I 

e e • i 
I I 
1 y 411 • • I 
'--------_I 

Figure 1. 
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We denote the gauge covariant average of ¢ by 

(Q(u)¢) y � 
xEB(y) 

-d L u(f )¢(x) y,x 
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where B(y) is the block containing y, a point of the L-lattice. 
Under the gauge transformation 

we have 

(Q (u) ¢) -+ (Q (u) ¢) y y e 

�-+ �e 

iA(y) 

-i(A(b )-A(b )) 
+ -

For the gauge field the average should be defined for bonds 
of the block lattice �d, i. e. for b1 = < y,y1>, y,y' corners of 
nearest neighbor blocks. For gauge covariance we consider a 
collection of contours each starting at y and ending at Y1. A 
convenient choice is the following: For each x E B(y) we define 
r 1 = r u <X  1 X 1 > u r 1 f Where X 1 =X + Y 1 - Y and r y,x,y y,x x y  X1,y 
is the reverse of r I "  y,x 

Figure 2. 

r;--.-----.--;1 I I I I : xl •I 

I I 
I I 
I • r �--- I I y ,x,y 
j I � y__.!_ __ 

�.--.-- --., 
I I 
I I I X •I I I I I I • • •I I I I I �z..- !.._ __ !_- _!_j 

We form the collection of group elements {u(fy,x yl)}, as x 
ranges over B(y). An average of these is def1nect as follows. We 
regard the u(f ,x,y1) as points on the unit circle. If all the 
points lie insi�e some half-circle, the average is the point in the 
half-circle such that the sum of the difference angles vanishes. 
In other words, the argument of the average is the average of the 
arguments, as long as the jump in the definition of the argument 
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occurs outside the half-circle. If not all points lie inside a 
half-circle, we add the group elements as complex numbers and 
divide by the modulus of the result to get back to the unit circle. 

Figure 3. 

� u(f ,) \/ y,x,y 

The second case only occurs when there are large plaquette variables 
(u(p)-1 not small). As these occurrences are suppressed strongly 
by the action, almost any definition o� average would do. The 
average of {u(f ,)} is denoted �·, and it transforms as 
follows: y,x,y 

e 
-i (/db') -)db')) 

+ -

We now define the renormalization transformation, which is a 
transformation from densities p(u,¢) to densities (Tp) (V1W). 
Here v E U ( l) , \jJ E a: are block fields defined on bonds 1 sites of 
rzd. Let us take p (u, cp) = e-S (u,cp), and define 

where 

p1 (v ,Wl = (Tp) (v ,wl 

--1 
6 (vu ) 

cj(dud¢ o(v�-1
Jexp [- l/2<W-Q(uJ¢,W-Q(u)¢>l e-s(u,¢l 1 

n 
b' 

and 6 is the a-function at the identity of U(l). The constant 
c is chosen so that Tl = l. Of course p1 satisfies the basic 
property 

/dvdW p1 (v,,W) = fiud¢ e -s (u,¢) 
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The transformation for the gauge fields consists sirr�ly of integra
ting out all u with fixed averages u = v. For the scalar field 
there is no a-function but the approximate a-function 
exp [-l/2<�-Q(u)¢,�-Q(u)¢>] makes it highly probable that Q(u)¢ 
is close to �-

2. 4 Gauge Invariance and Gauge Fixing 

It is extremely important that we preserve gauge invariance 
for the block fields v, �- We will exploit this in several ways 
throughout the sequence of renormalization transformations; also 
at the end when we analyze the effective unit lattice theory, we 
need gauge invariance to go to the unitary gauge (8 = 0). Let us 
verify that p1 (v,�) is invariant under 

�(y) + �(y)eiA(y) vb' + vb' e 
-i(A(b' )-A(b' l l + -

Extend A in an arbitrary way to a function on all sites (only 
the values at corners of blocks are used in the above transforma
tion). We can replace u, ¢ by their gauge transforms because 
dud¢ is gauge invariant. The action is unchanged, while the 
gauge transformations of �, Q(u)¢ and v, u match and drop out 
of the integrand, leaving p1 (v,�) in its original form. 

From this calculation we see that the integrand is still 
invariant under gauge transformations A that vanish at corners 
of blocks. We wish to ·calculate the effective action for v, � 
by using a Gaussian approximation for the u,¢ integral, but the 
invariance will lead to zero modes and spoil the approximation. 
Hence we need to fix the gauge for the u,¢ integral. 

We use the simplest possible gauge fix, a kind of axial gauge 
on blocks. The choice of gauge fix is not very important at this 
stage, since we are doing an integral that corresponds to one 
slice of momenta only. We set ub =l for each bond in a maximal 
tree of bonds in each block. The tree (Fig. 4), composed of the 
contours r , is convenient. y,x 

�.--.--.--� I I I I 
I I 
I .. .. •I I I L • • _JI I I : I 
�--� _ _: __ .=J 

Figure 4. 
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We thus define 

6 . 
1

(u) 
axla 

n 
blocks 

n eSC�) 
bE tree 

and insert it under the integral. The density p
1 

(v,�) is 
unchanged, as we take J du = 1 by convention. 

2,5 Effective Masses 

The most important effect of the renormalization transformation 
is to introduce effective masses into the quadratic forms. In the 
density 

1 1 L I 1
4 1 2 2 1 1 2 

- - <D cp D '"> - -
2 

<f,f> - (A(S) tj!(x) --4 m s cjl(x) 2 u ' u'�' 
X 

1 2 2 2 � � (-l)
n

e(s)
2n 

f
2n+2 

2 
Om s j cp(x) I )- LJ LJ (2n+2)! p p n=l 

(1) 

we have quadratic forms * * D D +Q(u) Q(u) 
u u 

for cp, and for A 

(writing 
ie(S)A u =e f = ClA, with (ClA) (p) = L:

bEp �). We can 

prove strictly positive lower bounds on these forms, at least in 
the small field region, where f is not too large (see the next 
section). Thus we have, for example 

<cp (D
* D +Q(u)*Q(u))cp>;;;, L c j cp(x) j 2 

1 u u 
X 

for some c > 0 * and we have a lower bound given by a mass term. 
The term Q(u) Q(u) selects out the "constant" mode which would 
have been a zero mode for D:Du alone• The form a*a has many 
zero modes, but the 6-functions o(vu-1) and 6axial (u} reduce 
the integration over A to a subspace, on which the desired lower 
bound holds. 

The lower bounds on the quadratic forms allow us to prove 
exponentially decaying bounds on the corresponding inverse operators, 
giving the correlations between fields at different sites in the 
Gaussian approximation. Thus distant fields are almost independent, 
and we can make localized calculations involving only small portions 
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of the lattice. Of course we have not lost the long range correla
tions of the original model--they are carried by the external 
fields v,w. The effective masses also allow us to take advantage 
of the extremely small rescaled coupling constants A(E), e(E) 
describing the corrections to the Gaussian. In what follows we 
show how these simplifying features can be used to compute an 
effective action for v,w. The price to pay for all the simplicity 
is the need to iterate the renormalization transformation many 
times (logL E-1 times). However the main features of the calcula
tion are independent of the iteration step. 

2.6 Large and Small Fields 

As mentioned above, we lack some basic estimates on quadratic 
forms and propagators when the gauge field is rough. In addition, 
the fact that A is really a periodic variable makes the Gaussian 
approximation break down completely wherever there are large 
fields. Therefore we wish to separate large and small field 
regions, do perturbative calculations in the small field region, 
and use only the basic positivity of the action to control the 
large field integrations. 

We define the large field region to be some neighborhood of 
places where any of the following inequalities hold: 

IW-Q(u)¢1 > ! log E I P  
l 

e (E) 

In each case, one of the terms 

l -----2 Re(l-u(p))) in the exponential in (l) is larger than 
e (E) 2 ! log ci P. Thus we can expect to obtain small factors 

(2) 

exp (- ! log E i2P) � EK , I( arbitrary, from integrals in the large 
field region. Thus large field regions are rare, and contribute 
very little to the partition function. 

We implement these ideas in our integral (l) by inserting a 
partition of unity under the integral. Thus we write 
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where XA is an approximate characteristic function restricting 
all fields to be small in A, in the sense of (2), and where s 
forces some fields to be large throughout Ac. AC 

At this point we do almost nothing in Ac except extract the 

factors (EK) 
JAcJ

. Even in later steps, no calculations are per
formed there. We always treat AC as a large field region. Thus 
the flow of information is always along the following lines: 

Large fields 
earlier steps 

1 
Large fields 
later steps 

Small fields 
earlier steps 

1 
Small fields 
later steps 

The missing arrow from large to small fields contrasts the procedure 
described in the lectures of Gawedzki and Kupiainen. 

While ou� treatment seems to be forced by the nonlinearities 
in our model--the action does not split neatly into a Gaussian 
piece plus an interaction piece--it is the source of troubles with 
generalizations to four dimensions. This is seen when we estimate 
the contribution of large field regions to the partition function. 
Taking into account the entropy coming from the sum over A, we 
allow for a factor 1 + E K at each site. At the k-th step, we allow 
for a factor 1 + (LkE)K at each Lk-block. The product over all 
k and all sites or blocks is bounded by 

Here jTEJ is the volume of the lattice, which is E -d times the 
number of sites in the lattice. Then jTEJ (LkE)-d is the number 
of blocks on the scale k. As long as K > d  the sum over k con
verges, yielding a finite contribution to the vacuum energy. The 
method breaks down in four dimensional Yang-Mills theory, because 
the effective coupling constant is expected to be only logarith
mically small in E. This reduces the size of allowable small 
fields, and so yields less convergence from large fields. In 
particular, K is at best a small positive constant, and the sum 
over k would diverge. The basic problem is that we are not 
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cancelling the vacuum energy contribution from large fields at each 
step. This works in the superrenormalizable case but apparently 
not in the borderline case of logarithmically asymptotically free 
models. 

2.7 Translations and the Background Fields 

In the small field region the integral in 

= � cfdud¢ x,s o(�-l)o . 1(u) 
1l 

1l A c ax1a 

is a small perturbation of a Gaussian measure. The best way to 
treat the integral is to translate the fields to the (v,�-dependent) 
minimum of the Gaussian part of the action. The minimum is the 
background field, and we will do perturbation theory and cluster 
expansions about this configuration. 

More precisely, we do this in two steps--one for u and one 
for ¢--since the quadratic form for <P depends on the external 
gauge field. We write u =u1eie(E)A' , where u1 =u1(v) is the 
unique minimum of < f,f> under the constraints O(vU-l)oaxial(u). 
The background field u1 can be written explicitl� in terms of v. 
The fluctuation field A' is small (jA'J <jlog E IP) in the small 
field region, and the integral over u is rewritten as an integral 
over A' . 

At this point we expand all the terms in the exponential in 
powers of A' . This means that the scalar field forms produce new 
interactions: 

1 <�-Q(u)¢,�-Q(u)¢> + l < D  ¢,D ¢> 2 2 u u 

The terms coming from the expansion of <Du¢,Du¢> are the usual 
scalar field-vector field interaction vertices, and the others are 
new vertices from the renormalization transformation. All terms 
are small, as each power of A' comes with a coupling constant 
e (E:) • 

The a-functions, when written in terms of A', become linear 
constraints on the A' -integral: 



94 

--1 
6 (vu ) 6 . 1 (u) axla 6 (QA I ) 6 . 1 (A I) axla 

T. BALABAN ET AL. 

Here Q is a kind of averaging operator for functions on bends: 

I: -d L A (< x,x' >) (QA)b' xEB(b' ) 

We put A(f) = LbEf �, and as in the definition of �·, x-x' 
b�-b'. In 6axial(A'), all Ab are set to zero for b in any of 
the �aximal trees in blocks. The averaging procedure for A' is 
not much different from the simplest procedure for scalar fields 
(averaging over blocks). It yields the same kind of result: The 
form < f,f> under the constraints 6(QA' )6axial(A' )  has an 
effective mass and well-behaved, exponentially decaying propagators. 
Note that under a gauge transformation A' +A' -6A, QA' trans
forms into QA' -X (b �) +X (b �) , where X (y) = LxEB (y) L-d A (x) . 

This contrasts with the transformation law for u, which involved 
A restricted to corners of blocks. Of course the axial gauge 
conditions broke the invariance under transformations A that are 
not constant on blocks, and the two laws are equivalent if A is 
constant on blocks. 

We next compute the minimum of the quadratic action for � 
(external field u1). It is a linear function of �, and we denote 
it �1 =K1(u1)�. Thus we write � =�1 +�' , with �l the background 
field, �· the fluctuation field. The fluctuation field is small: 
I � ' I � c I log E I P. 

2.8 Calculation of the Effective Action 

To simplify the discussion, let us consider only the term 
A =TE:, i.e. , the whole lattice is the small field region. The effect 
of the translations on the quadratic terms in the action is to split 
each quadratic form into two forms, one for the block field and one 
for the fluctuation field. So we write 

where 

f(l) 
p' 

1 
ie(E:) log v(p' ) 
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and where o
1

, 6
1 

(u
1

) are the resulting block field forms. 

The block field terms <f(l) ,o f(l)> and <w,61(u1)w> are 
the quadratic terms of the effectiv� action for v,w. If we 
rescale the L-lattice to the 1-lattice, they have properties 
analogous to the original quadratic terms for u,¢: <f,f> and 
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* <¢,DuDu¢>. The forms are massless, gauge-invariant, and obey lower 
bounds which have a local form: 

<f(l) 0 f(l)
> ::;, <f(l) f(l)

> f 1 p C I 

<w,6
1

<u
1lw>;;;,: c E �u (<b' ,b'>)W(b') -\)!(b') 12 

b' 1 - + + -

The forms are no longer local, however--they have exponential tails. 
The terms can be expressed simply as the original quadratic terms 
evaluated on the configurations u1 and ¢1· 

The scalar field self-interaction gives rise to some ¢'-inde
pendent terms when we expand ¢ = ¢

1 +¢'. These are just 

X 
I 14 1 2 21' 12 1 2 21 12 

(A (s) ¢1 (x) - - 4 m s cp
1 

(x) - 2 om s ¢
1 

(x) ) 

and the other terms are small, having one power of A(E) and three 
or less powers of ¢

1
, with l ¢

11 � A(s)-l/4 l log s i P. 

After the translations and expansions, the term A 
our original density (1) becomes 

c exp [- l <f(l) o f(l)> - l <'1',6 (u )'1'> 2 ' 1  2 't' l l 'V 

X 
I 14 1 2 21 12 1 2 21 12 (A (E) ¢1 {x) -4 m s ¢

1 
(x) -2 om s ¢

1 (x) ) -

· (dA'd¢' o(QA')o . (A')X exp [- l <CJA' ,CIA'> J< axlal A 2 
- � <¢�<o* D + Q(u

1
)*Q(u

1
))¢'> - v] ul ul 

Here V contains the ¢' ,A'-dependent terms, all of which are 
bounded by some power of coupling constants A(E), e(s) for all 
values of ¢',A' permitted by X

A· We introduce the Gaussian 
normalization 
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fdA'd¢' O(QA')O . (A')exp [-! <()A' ClA'> aJ{lal 2 ' 

-%- <¢' ,(n* D +Q(u1)*Q(u1))<jl'>] , ul ul 

and the corresponding normalized measure <•>. Thus we have the 
remaining terms in the effective action for v,�: log z(O) (u1) 
and log<xfle-v>. 

-v We need to give a very precise expansion for log<xhe > 
because renormalization cancellations must be exhibited. This is 
especially important a�er many steps of the iteration have been 
performed and the divexgences in perturbation theory start to 
manifest themselves. We have found it most convenient to exhibit 
cancellations on a purely perturbative level, as the cancellations 
or finiteness properties due to gauge invariance are fairly subtle. 
Thus we extract a few orders of perturbation theory using the 
cumulant expansion, 

1 
-<V> + 

2
1 <V;V> - · · ·  

where 
<v;v> = <v2> - <v>2 

The restrictions in Xh --A', ¢' smaller than jlog EjP --produce a 
change which is smaller than any power of E, and hence is not seen 
in the perturbation expansion in E. If we extract n orders of 
perturbation theory, for some sufficiently large n, then the 
remainder wi 11 be of the order of E K, with K >d.  As in our large 
field estimate, this is small enough to be ignored henceforth. 
However, in order to address the question of whether there is a 
mass gap, we must exhibit the locality properties of the remainder. 
This is done with a cluster expansion. The result is 

where <(·;)j> 
depends only on 

EKe-cJxJ with 

n L 
j=l 

1 <(-V;)j> + j! L W(X) 
X 

denotes tne j-th-truncated �orrelation. Here 
v,� in the connected set X, and jw(X) J � 

JxJ denoting the number of sites in X. 

W(X) 

In the general case, with nonempty large field region, the 
small field calculations are performed with the values of the fields 
fixed in a neighborhood of the large field region (conditional 
integration) . 
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After dropping or expanding out the W(X) terms, we have the 
following form of the effective action= 

t <f(l) ,olf(l)> + t <1/J,L'Il (ul)\jJ> + y(l) (v,\jJ) 

( 0) - log z (u1) + E 

Here P(l) (v,\jJ) contains the terms A(E) / � (x) / 4 
+ ··· as well as 

the truncated correlations of V. A final �tep is to rescale all 
exp:tessi.ons and fields from the L-lattice to the 1-lattice. 
Relabeling v,\jJ by u,�, we are in a position to repeat the 
process. 

2.9 The Effective Action After k Steps 

Rather than describe the general step of the procedure, let us 
simply examine the k-th effective action to get some feel for the 
behavior of the model under iterated application of renormalization 
transformations. We stick to the small field region, and use block 
fields u,� defined on the unit lattice, which is the k-times 
decimated version of the original lattice rescaled to spacing L-k. 

We have background fields uk (u) and �k =Kk (uk) ¢ defined on 
the L-k-lattice. These fields represent the fields u,� on the 
original lattice in a smooth way. (Note that as k increases, the 
L-k-lattice becomes finer; eventually it is the E-lattice and the 
procedure stops.) The background fields are the minimum energy L-k_ 
lattice configurations, given u,¢ and taking into account only 
quadratic terms. 

As before, the leading terms in the effective action are just 
the original action evaluated on the configurations uk,¢k· Thus 
we have, for example, Lx L-dk A(LkE) / �k(x) / 4. The coupling 
constants are partially rescaled back to their original values--we 
have A (LkE) = A• (LkE) 4-d with LkE increasing towards 1. The 
basic picture is that the renormalization transformation is driving 
the model away from a trivial fixed point, so the coupling constants 
are growing. It is convenient to introduce a diagrammatic representa
tion for terms in the effective action. The above quadratic term 
is represented by 

with a standard �
4 -k vertex summed over the L -lattice. The 
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external lines in all diagrams are background fields �k or 
fk(p) = (ie(LkE)L-k)-1 log uk(p). 

When �k and fk are substituted into the quadratic terms 
of the original action, we obtain the main quadratic forms for the 
block fields �(y) and f(k) (p') = (ie(LkE))-I log u(p'). We denote 

these by �k(�) and ok, and prove the basic stability bounds 
for them: 

c I u. ( <b I ,b '>) � (b' ) - � (b_' ) 12 .K. - + + 

We also have a sequence of Gaussian normalization factors, 
z(O: (�) ···z(k-l) (uk), whose logarithms contribute to the effective 
actlon. 

Finally we have the higher-order terms in A(LkE) and e(LkE), 
which are given by diagrams with internal as well as external_k lines. The vertices in these diagrams are derived from the L 
lattice action, but there are some new vertices arising from the 
expansion of Q(u) in the renormalization transformation. The 
propagators are derived from the original action also, but with the 
quadratic terms or a-functions from the renormalization transforma
tions included as well. Thus the scalar field propagator is 

L-k* L-k * -1 (D� D� + Qk(�) Qk(�)) 

with Qk(uk) being the k-th iterate of the averaging operation for 
scalar fields. The term Qk(uk)*Qk(uk) provides an effective mass 
for this L-k-lattice propagator; thus we can prove its exponential 
decay. The short-distance behavior of Gk(uk) is also important 
for the analysis of ultraviolet divergences. 

It is worth noting that our effective action is a purely per
turbative one; it is given by the sum of diagrams of order less 
than some fixed n. The higher order and nonperturbative effects 
have been expanded out of the action and treated like large field 
regions. Thus the task of providing uniform bounds on the effective 
action is reduced to that of controlling the perturbation expansion. 
Renormalization cancellations are built into the perturbation 
expansion through the definition of counterterms. 

We must consider effective observables as well as effective 
actions, since the original fields have been integrated out. The 
situation is quite analogous to that of the action--there are 
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perturbative terms as well as nonperturbative or high-order terms. 
The latter can be estimated and essentially neglected, while the 
former generates diagrams like those considered for the action, 
except for new vertices coming from the observables on the L-k 
lattice. 

2. 10 Changes in Gauge 

In the k-th renormalization transformation we perform the same 
basic steps that were outlined for the first step. However there 
is one new operation, the change of gauge, that is worth describing. 
The purpose is to improve the ultraviolet behavior of gauge field 
propagators in the effective action. This is accomplished by 
modifying the gauge fix for the fluctuation fields already 
integrated out. 

Since we have been imposing axial gauge conditions each time 
we integrated out a fluctuation field, the gauge that would 
naturally occur in the vector field propagators in the k-th 
effective action is an axial-type gauge, with Ab = 0 for b ir. a 
maximal tree on each block of Lk sites. For large k these 
propagators are poorly behaved in the ultraviolet, and we are 
unable to prove the needed bounds on the perturbation expansion. 
To obtain better propagators, we need to change the background 
field uk by a gauge transformation before expanding in the 
fluctuation field A'. Note that we have invariance of the 
effective action under the full group of L-k-lattice gauge trans
formations of uk even though that gauge freedom was broken when 
we integrated out the fluctuation fields. (When we transform uk, 
the current fields u,¢ must also be transformed by the restriction 
of the gauge function to the unit lattice.) 

Unfortunately the required gauge transformation depends non
locally on the current field u. This introduces nonlocal effects 
that have to be controlled with additional expansions. After the 
gauge transformation we have the background field written as 

k -k � = �+l exp(ie(L C)L HkA') 

w�th Hk a regular, exponentially decaying kernel. Like uk, the 
L k-lattice configuration HkA' is of minimal energy under certain 
constraints, but with a Feynman-like gauge fix used to measure 
energy instead of axial gauge restrictions. With the above form 
for uk, we can expand the action with respect to A' as before. 
The next background field �+l remains in all expressions. 

After integrating out 
(and of earlie� Hj, j < k) 
gators. In thls way we see 

A', we find that the regularity of Hk yields well-behaved gauge field propa
that it is possible to use one gauge for 
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integrating a field out, and another for representing the trace of 
that field in the effective action. 

3. THE HIGGS MECHANISM 

The renormalization transformations are continued until 
gets close to unity. The estimates begin to break down when 
approaches the smaller of m-1 (the inverse of the classical 
scalar field mass), and (8A/e2)1/2m-l (the inverse of the 
classical vector field mass) . At this point the payoff comes--we 
have a gauge invariant effective action for unit lattice fields 
with properties expected from perturbation theory. In particular, 
if we are interested in ultraviolet stability, the bounds on the 
effective action are independent of s, and simple estimates for 
the last integration over u,¢ suffices to prove s-independent 
bounds on the original functional integrals. If we are interested 
in the mass generation and the infinite volume limit, we must 
extract mass terms from the effective action in order to integrate 
over u,¢--we can no longer rely on effective masses from renorm
alization transformations. We can extract mass terms by going to 
the unitary gauge for u,¢. The ultraviolet problem has already 
been treated; there are no difficulties associated with choosing 
8 = 0 at each point of the unit lattice. 

We conclude with a brief outline of the steps performed in 
integrating out the last fields and exhibiting the Higgs mechanism. 
The negative mass-squared term in the scalar potential has become 
significant, so we can use the "wine bottle" shape of the potential 
to introduce restrictions on ¢. The small field region is defined 
to be where ¢ lies the annulus I I ¢ I - (m2 /SA) 1121 ,;; I log e I P and 
where I D- ¢ I I( I log eiP. [We define 'l\:(b') = �(<b>b�>) .] The 

large fie� region has suppression factors coming from the 
corresponding terms in the action. For simplicity, we put LkS = 1. 

It turns out that the analogous stability bound for the gauge 
field is best seen in axial gauge. Thus we again use our freedom 
to change uk by a gauge transformation and put it in axial gauge 
(uk (b) = 1 for b in maximal trees in Lk-blocks). The 
corresponding form of the action is almost like the standard unit 
lattice Wilson action because uk takes the following simple form: 

�(b) = u(b') for b touching both neighboring blocks 
corresponding to the endpoints of b' 

otherwise. 

Actually, uk(b) differs from 
difference is of the order of 

u(b') or 1 by a small field; the 
ellog eiP. 
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For d = 3, these corridors become one higher dimensional. Of 
course this is a very singular gauge; when written in terms of 
Lie algebra elements, the concentrations at the corridors between 
blocks are almost a-functions. 

We recall the basic stability bound for the scalar field 
quadratic form: 

In axial gauge we have 

to a small neighborhood 
us to restrict u to a 
if we write 

i8 
cp = r e 

then we have 

uk(<b' ,b'>) � u(b). Since cp is limited - + 
Of 1�1 = (m2;s')112 h' · t 11 � - A , t lS est1ma e a ows 
small neighborhood of a pure gauge. Thus 

r > 0 

u = exp(ie(A- 88)] 1�1 � cllog elp 

in the small field region. In the large field region we have 
convergence from the term 

2 
luk(<b�,b�>)¢(b�) 12 ��A lexp(ie�] -1j2 
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Now that we have the restrictions on 
gauge in which the dependence of uk on 

A, we can change to a 
A is regular. We have 

8 '  (x) 

with �(x,b) bounded; y(x) is the corner of the block containing 
x. The term 3E8' is removed from uk by a gauge transformation. 
The phase of ¢ is canceled--there is no longer any dependence on 
8 ,  and it can be integrated out trivially. This leaves us in uni
tary gauge ¢ = r > 0. However, there is a small residual phase 
exp [ie (DJ<_A) yl multiplying each r (y). This cannot be gauged away 
and is a new interaction. 

We expand the action with respect to HkA and �A. A shift 
r =r0 +r', r0 = (m2/BA) 1/2 to the minimum 'of the scalar potential 
allows us to extract an explicit mass term for the scalar field. 
The gauge field mass term is also extracted at this point. The 
quadratic form resulting from perturbing <r0,�k(uk)r0> with 
respect to HkA and �A contains terms like Figure 6. 

Figure 6. 
mb. h" f . h h k" . f(k) f(k) We co lne t lS orm Wlt t e lnetlc energy term < ,ok > 

<3A,ok3A>
2 

to obtain a quadratic form wi1h a strictly positive lower 
bound �r0e2<A,A>. The coefficient r�e =m2e2/BA is the square of 
the semiclassical gauge field mass. 

A cluster expansion can now be performed, since the mass terms 
lead to exponentially decaying propagators for r' and A, and 
since all interaction terms are small in the small field region. 
A convergent cluster expansion yields exponentially decaying 
correlations and the existence of the infinite volume limit. 
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