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Abstract. We construct the phase diagram of any system which admits a 
low-temperature polymer or cluster expansion. Such an expansion turns the 
system into a hard-core interacting contour model with small, but not necessarily 
positive, activities. The method uses some of Zahradnik's ideas [Zl], but applies 
equally well to systems with complex interactions. We give two applications. 
First, to low-temperature P(¢)2 models with complex couplings; and second, 
to a computation of asymptotics of partition functions in periodic volumes. If 
the index of a supersymmetric field theory is known, the second application 
would help determine the number of phases in infinite volume. 

1. Introduction 

In many systems in statistical mechanics and quantum field theory, the problem 
of competing ground states arises, even when the parameters of the model permit 
weak- or strong-coupling expansions. The standard example of such a system is 
theN -state Ising model at low temperatures (at or near first-order phase transitions.) 
In the absence of a symmetry between the states, one is faced with the problem 
of determining which states are thermodynamically stable. The successful theory 
of Pirogov and Sinai [PS] was developed to determine the stable phases of systems 
such as the N -state Ising model. 

Subsequent authors developed the method for applications in more complicated 
systems. Quantum field theory models involving continuous space-time and 
continuous spins were handled by [I]. Statistical mechanics models with nontrivial 
structure within each phase were treated by [BKL, DZ], and others. In these 
studies, the need to use certain probability arguments from [PS] was a heavy burden. 
Especially in field theory, the combined requirements of decoupling and positive 
probability measures necessitated a very complicated procedure. Complex inter­
actions were not accessible at all. 
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Another important development of the theory was Zahradnik's method [Zl] 
which was conceptually much simpler than that of Pirogov and Sinai. The method 
was extended to systems with unbounded, continuous spins in [BW]. But the need 
for probability arguments still imposed unwanted restrictions on its applicability, 
and only very small complex parts could be permitted in the interactions (not 
uniform in the volume)--see [Z3]. Complex interactions were however permitted 
in the coarse-graining method of [GKK]. 

In the present work we extend Zahradnik's idea with a procedure that avoids 
the probability arguments, and hence applies equally well to complex interactions. 
A nice byproduct of the analysis is that signed contour-activities are allowed, and 
hence the generalizations involving interacting contours (quantum field theory, 
etc.) now fit under the same umbrella. Furthermore, complex couplings and 
nonpositive measures can now be permitted in the field theory models . In Sect. 4 
we show how complex P(¢)2 models fit into the scheme, resulting in an approach 
which is at the same time more powerful and considerably simpler than that of [I]. 

Our starting point is a standard polymer system which arises any time one has 
a cluster expansion in a multiple phase model. We assume the usual estimates on 
such an expansion (small, exponentially decaying activities). The construction then 
produces a set of stable phases. If the model depends on some auxiliary parameters 
{,u1, . . .  ,.UN-d, then the usual phase diagram emerges, with hypersurfaces of 
codimension k on which k + 1 phases coexist. 

Our procedure begins as in [Z1] by dropping all dangerous polymers/contours. 
These are ones for which the bounds needed to formulate a convergent cluster 
expansion fail (due to the formation of bubbles of the wrong phase). There are N 
such truncated models (one for each possible boundary condition). One simply 
selects the phases for which the truncated free energy is minimal (i.e., it is less than 
or equal to all other truncated free energies). One can show that for these phases, 
the truncated model is the same as the original one, and hence its thermodynamic 
stability carries over to the original model. 

To be specific, let Zm{V) denote the partition function in region V with boundary 
condition mE { l, ... ,N}. Let qE {1, ... ,N} be a state whose truncated free energy 
is minimal. Then we show that for any V and any m, 

IZm{V)I < loVI Zq(V) = 

e . (1.1) 

This condition of thermodynamic stability is well known as a sufficient condition 
for the convergence of a cluster expansion for correlation functions in the q1h phase 
[I]. In the course of proving (1.1), we obtain a similar estimate for states with 
non-minimal free energy, but then only for volumes V with diameter less than a 
certain critical length (see Theorem 3. 1 below). 

A nice feature of this method is the fact that one can immediately decide which 
are the stable phases. In contrast, the older methods determine the stable phases 
by a fixed point argument. The present method succeeds because the closer one 
gets to a coexistence of phases, the closer the truncated model comes to the true 
model. Hence it is sufficient to minimize the approximate free energies. To actually 
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prove that the proposed set of stable phases is correct takes more work, and care 
must be taken in the complex case. 

The paper is organized as follows. After defining the contour models in Sect. 
2, we construct the stable phases and prove (1.1) in Sect. 3. Applications to P(¢)z 
models and to periodic partition functions are given in the next two sections. The 
construction of the phase diagram is done in Sect. 6. In the complex case some 
difficulties arise because singularities can appear in the truncated free energies even 
though the initial model depends smoothly on all parameters. Nevertheless, we 
obtain differentiable phase coexistence hypersurfaces. 

Supersymmetric models. One of our motivations for developing this procedure 
was a desire to understand the phase structure of supersymmetric field theory 
models-specifically the Wess-Zumino models studied by [JLW]. In theN = 1 
model the measure is signed, and so the method of [I] could not be used. We 
devote Sect. 5 to a study of the behavior of partition functions in periodic boxes. 
The asymptotics we obtain are especially interesting in the context of the index 
theorems proven by [JLW]. We assume a mean field expansion along the lines of 
[BG] has been constructed for these models. We then prove that the resulting 
polymer partition function on the torus T has the following behavior for a large 
volume ITI : 

lim ZP(T)efiTI = n, (1.2) 
ITI-oo 

where n is the number of stable phases, and where f is the free energy of the stable 
phases. We compare this with the index theorem proven in [JL W]: 

zP(T) = deg v- 1. (1.3) 

Here V is the (polynomial) superpotential, and we consider for simplicity the N = 2 
case. Comparing ( 1.2) and (1.3), one sees immediately that f = 0 (indicating no 
spontaneous supersymmetry breaking) and that n 

= deg V - 1 (which computes 
the number of stable phases). 

We thus have a technique for demonstrating nonperturbatively the vanishing 
of the vacuum energy in each phase of the theory. Furthermore, coexistence of the 
n phases is shown to be a consequence of supersymmetry (and an index theorem). 
This could be compared with using ordinary ¢ -4 - ¢ symmetry to prove 
coexistence of phases. 

We consider also polymer models mimicking the signed N = 1 measure-see 
Corollary 5.2. Then the right-hand side of (1.1) is replaced by a difference, 
with some stable phases contributing positively and some negatively. The sign 
corresponds to the effect we expect from the sign of the fermion mass. The index 
theorem is different in the N = 1 case but some information on the number of 
stable phases can still be obtained. 

We emphasize that these ideas will not come to fruition until the hard analysis 
on the Wess-Zumino models has been carried out. Also, we are necessarily limited • 
to cases with deep, well separated minima. Still, (1.2) is interesting even in statistical 
mechanics, as it shows that each stable phase contributes equally to the periodic 
partition function (up to terms which vanish in the limit of large volume). 
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2. The Contour Models 

In this section we introduce the models for our phase structure analysis. These 
models are formulated slightly differently from the usual ones in order to nicely 
accommodate the case of Euclidean quantum field theory. The field theory models 
can be put into this form after development in a mean field cluster expansion, see 
Sect. 4. 

We define the partition function in region V with boundary condition 
q E Q = { 1, 2, ... , N}. The index q labels the "states" of the system, so that each of 
these N possible boundary conditions has a chance of leading to a different 
thermodynamic pure state. The region V is a finite union of unit cubes in !Rd, with 
d � 2. The presence of boundary condition q on V will be indicated by Vq. 

A configuration in Vq will consist of a collection of contours (polymers, clusters) 
Y�, so we begin by defining these objects. A contour is a pair (Y,q(·)), where Y is 
a connected union of unit cubes (connectedness in the sense of sharing (d- !)­
dimensional faces). The function q( ·) is an assignment q(F)EQ (where F indexes 
the faces in the boundary of Y) which, for any component C of yc = !Rd\ Y, is 
constant on oC. The value of q(·) on the external boundary component of Y plays 
a special role, and we sometimes emphasize this with a superscript q on Y and 
call Y a q-contour. To simplify formulae, we let the symbols Y or ym denote the 
pair (Y,q(·)) as well as the region Y. The finite components of y c  can be grouped 
according to boundary condition. We let Intm Y denote the union of all finite 

N 
components C of y c  for which q(·) takes the value m on oC, and write Int Y = U 

m=l 
Intm Y. Finally, each contour Y has a (possibly complex) translation-invariant 
activity p(Y) satisfying the following bound for some large r: 

(2.1) 

Here I Yl denotes the volume of Y. 
An allowed configuration of our system is a collection of nonoverlapping 

contours (no common cubes) with boundary condition compatibility. Compatibility 
is determined by the requirement that any connected component of V \  U Y� shall 

have constant boundary conditions. In addition, there is agreement on common 
boundaries, including avq 

0 If the complement vc of vis not connected, we do not 
allow contours whose interior intersects vc. With a given collection of contours, 
the final element of the construction is an association of an energy density to 
regions in each of the phases of the model. A connected component of V \  U Y� 

� 
that has boundary condition m is considered to be part of Rm, the region "in the 
m1h phase." Also, each m-contour is part of Rm. Thus we have partitioned V as 
U Rm. We associate an energy density em (which also may be complex) in 
m 
the region Rm, and this yields the expression for the partition function: 

(2.2) 
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The connection between this partition function and the Peierls contour picture 
of spin systems is clear-we have just replaced sites with cubes and thickened 
contours to include neighboring cubes. The connection with field theory may be 
less clear, but we show how to put P( ¢ )2 models into this form in Sect. 4. In brief, 
the cluster expansion converts the field theory partition into a polymer model like 
(2.2) with the multiphase structure reflected in the boundary conditions and the 
variable energy densities in (2.2). For field theory applications, it is important that 
the method be insensitive to the phase of p(Y), since the cluster expansion inevitably 
produces nonpositive activities. 

We introduce additional real parameters {pJ on which the activities p and the 
energies eq may depend. There should be at least N-1 such parameters, and we 
need a degeneracy-breaking condition that the matrix 

(2.3) 

be nonsingular. We assume that p and eq are C1 functions of p = (p1, • • •  ,f1N- 1) 
with bounds 

(2.4) 

(2.5) 

The first condition sets a scale for the Jli, which play the role of generalized magnetic 
fields. 

It is worth noting that the construction of the stable phases at a given set of 
parameter values {pJ does not require adjustments of the p/s. Adjustments are 
needed only to locate those hypersurfaces at which various subsets of Q are stable 
(see Sect. 6). 

For many purposes we will need a second expression for Zq(V) which eliminates 
the compatibility of boundary conditions on contours. We resum (2.9) inside 
Intm (Yq), where P is an external contour of the set { Ya} (i.e . , it is not contained 
in Int Ya for any a). The resummation produces a factor Zm(Intm Yq). (An external 
contour in P must of course have boundary condition q.) This yields the expression 

(2.6) 

where the sum goes over sets { Y�} ext of mutually external contours, i.e., Y au Int Ya 
and Ya. u Int Ya. do not overlap for a' =I= a. 
Also, we have denoted Int = U Intm Y�. We devide each Zm by the corres-

m,a 
ponding Zq and multiply it back again in the form (2.6). Continuing this process, 
we obtain 
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Zq(V) = e-eqiVI L TI [p(Y�) TI 
Zm(Intm Y:)] 

{YiJ a m Zq(Intm Ya) 

= e-eqiVI L TI K(Y�). 
{Y�) a 

(2.7) 

The only conditions on these { Y�} are that the contours do not overlap, and that 
they all have outer boundary q. The expression (2.7) is useful for stable q (defined 
in the next section) while (2.6) is better for unstable q due to the possibility of zeros 
of Zq(Intm Y�). 

3. Determination of the Stable Phases 

In this section we will determine the stable phases of our model and show that 
for each stable phase q (and for r large enough) 

(3.1) 

which implies the convergence of cluster-expansions in the phase q. Since K(P) 
contains also partition functions with possibly unstable boundary conditions, we 
need a tool to deal with unstable partition functions. It is convenient and in fact 
much simpler than the original Pirogov-Sinai approach [PS] to use the notion 
of truncated contour models introduced by Zahradnik [Zl]. The idea is to truncate 
the sum (2.7) in such a way that it can be controlled by convergent cluster 
expansions. One then calculates the corresponding free energies hq, and defines 
those boundary conditions q to be stable, for which the real part of hq is minimal. 
In the last step one then shows that for stable boundary conditions the truncated 
partition function agrees with the untruncated one. 

To motivate the following definitions we recall that K(P) is of the form 

with 

m 

Zm(lntm P) 
f m(Yq) = 

Zq(Intm P)' 

and that lp(Y) I ;£ e-riYI_ We call a contour yq stable, if 

(3.2) 

(3.3) 

(3.4) 

for all mEQ. We define the truncated partition function Z�(V) as the partition 
function obtained from Zq(V) by leaving out the unstable contours: 

Z�(V) = e-eqiVI L' TI K(Y�). 
{Y�) a 

(3.5) 

Here the sum :L' goes over sets { Yn of non overlapping, stable contours with outer 
boundary condition q. 
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Definition 3.1. Let hq be the free energy of the truncated partition functions Z�. Put 

aq = Rehq - minRehm 
meQ 

(3.6) 

(we will sometimes write aq = aq(/1) to denote its dependence on the parameters 
11-J If aq = 0, then the boundary condition q is said to be stable. 

From now on, we will use the letters q, q' for stable boundary conditions only, 
whereas m, m' may be arbitrary (stable or unstable) boundary conditions. Note 
that for an arbitrary contour Y 

(3.7) 
m 

which shows that all stable contours obey the bound (3.1). Therefore, for r large 
enough, the thermodynamic limit of IV 1 - 1log z;,.(V) can be controlled by a 
convergent cluster expansion. We conclude the existence of hm, together with the 
bounds 

1-log Z;,. (V)- hm i V I I  � O(si8VI), 
lhm- eml � O(s), 

(3.8) 

(3.9) 

where we put s= e-'. Here, and elsewher,e, we use O(s) for a bound const·s, with 
a constant that depends only on the number N of possible q and on the dimension d. 

We now prove the following theorem, which implies that for aq = 0 all 
q-contours are stable. Thus Zq and Z� agree for stable boundary conditions. 

Theorem 3.1. Assume that I p( Y) I � e- <I Yl for all possible contours Y. Then, for r > r 0, 
where r0 depends only on d and N, the following statements hold: 

i) If am diam V � 1 and aq = 0, then 

I Zq(V) I ::<:;; eamiVI+IOVI 
Zm(V) - ' 

ii) If aq = 0, then Zq(V) i= 0 and 

IZm(V)I ::<:;; eiOVI 
Zq(V) - ' 

iii) If am diam V � 1, then Zm(V) i= 0 and 

for all mEQ = {1, . . . , N}. 

I Zn;(V) I ::-;; e3foVI 
Zm(V) -

(3.1 0) 

(3.11) 

(3.12) 

Proof. To prove the theorem, we introduce the notion of small and large contours. 
We say that a contour ym is small if am diam ym � 1; it is large if am diam ym > 1. 
We also define the partition function z�ma11(V) which is obtained from Z�(V) by 
replacing the sum over stable contours in (3.5) by a sum over small contours. If 
we sum, instead, only over contours which are at the time small and stable, we 
denote the resulting partition function by z�small. 
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We prove the theorem by induction on the diameter of V. So we assume that 
diam V = k and that i)-iii) have already been proven for all volumes W with 
diam W < k. 

Proof ofi)for diam V = k. For any contour Y in V, and any mE{l, . . . , m} ,  we have 
diam Int'" Y � k- 1. We therefore can use the inductive assumptions ii) and iii) 
that all q-contours and all m-contours in V are stable. Therefore 

Zq(V) _Z�(V) 
Zm(V) z;,.(V) 

Using the convergence of the cluster expansion for log Z� one immediately gets i). 

Proof of ii) for diam V = k. By the inductive assumption all q-contours in V are 
stable. Therefore Zq(V) can be controlled by a convergent expansion (in particular 
Zq(V) i= 0). To control Zm(V) we rewrite it using the relation (2.6). Write a set { Y;} 
of external m-contours in V as { x;} u { z; }, where { z;} denotes the small contours 
in { Y;} and {x;} the large contours in { Y;} . Note that for fixed x;'s, 
the sum over { z;} goes over all sets of mutually external small contours in 
Ext = V\U(X,ulntX,), see Fig. 3.1. We therefore obtain, resuming the small 

" 

contours and using the relation (2.6) a second time (this time for z�ma11), 
Zm(V) 

= _
1 - L z�mall(Ext) n[p(X;)e-emrx:;'l n zm' (Intm' x;)J . Zq(V) Zq(V) {x:;'J," 

a m' 

Dividing by TI Zq(Intm. x;) and multiplying it back again we obtain 
a,m' 

Z (V) zsma11(Ext) Z (lnt)e -emi.rx:;'r [ Z .(lnt , Xm)J _
m
_ = L 

m q 
n (Xm) n 

m m a 
Zq(V) {X:;') ox, Zq(V) a p a m' Zq(Intm. X;) ' 

(3.13) 

where the sum goes over sets of mutually external large contours in V and 
Int = U Intx;. 

" 

v 

Ext 

Fig. 3.1 Large and small external contours 
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Note that all q-contours in V and all small m-countours in V are stable by the 
inductive assumptions i) and iii), respectively. Therefore the various partition 
functions in the first factor on the right-hand side of (3.13) are equal to the 
corresponding truncated partition functions, which can be controlled by convergent 
cluster expansions. Extracting the volume dependence and bounding the boundary 
terms, we find 

where h�man is the free energy obtained from z�man. Using the fact that lh�man _ em I � 
O(s) and using (3.7) to bound 1 8 Extl + 1 8 Intl by 1 8 VI + 2diiX:I, we find that 

IX 

(3.14) 

Combining this bound with (3.13), the a priori estimate on p and the inductive 
assumption (3.11) we get /Zm{V) I� eO(e)loVI L e - Re(h!,mall_ hq) I V\Intl n e-(<-2d-l)IX:;'I_ 

Zq{V) - {X:.Jext IX 

At this point we need a technical lemma proved in [Zl] (for the convenience of 
the reader, we give the proof below). 

Lemma 3.2. Consider an arbitrary contour functional K(Ym) � 0, and let Z be the 
partition function 

Z(V) = L n [K(Y:)e2diY:;'I]. 

{Y:;') IX 
Lets be the corresponding free energy and assume that K(Ym) � �Yml, where e is small 
(depending on N and d). Then for any a� -s the following bound is true 

where the sum goes over sets of mutually external m-contours in V. 
To apply this lemma we put 

and 

a= Re(h•man_ h)= a + Re(h•man_ h ) m q m m m' 

-
m 

_ {eiYml if ym is large 
K(Y ) - 0 "f ym · 11 1 IS sma . 

(3.16) 

For r large enough (depending on d and N) the Mayer expansion for logZ(V) is 
convergent. Using the fact that it only contains large polymers (which implies 
I yml � lfam for each polymer contributing to logZ(V)) one obtains that, for r large 
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(depending on N and d) 0 ;£ - s ;£ e-r/Zam. On the other hand, again for 1: large, 

which together with the above bound, implies that 

a + s� am- 2e-rf2am. 

Bounding 

we find that a + s � 0 provided 1: is large enough. This concludes the proof of ii). 

Proof of iii) for diam V = k. By the inductive assumption all m-contours in V are 
stable. Therefore Zm(V) = z;,(V) =f. 0. The inequality (3.12) follows immediately 
from (3.10), (3.11), and the fact that 

amiVI ;£ am diam VloVI ;£ loVI. • 

Proof of Lemma 3.2. Z is the partition function of a polymer model with activities 
K*(Ym) = K(Ym)e2d!Yml. Fore small enough (depending only on d and N), Z can be 
controlled by a convergent expansion and 

l logZ(W) + sl WII ;£ O(e)loWI ;£I oWl. 
Putting W = Int Ya and using (3.7) together with the assumption a� - s, we get 

L e-aiV\IntlfliK(Y:)I;£e'IVI L fliK(Y:)Ie2diY;lz(IntY:) 
a 

• 

Assume now that for J-1. = J-I.<OJ all the energies eq have the same real part. Our 
goal is to show that for some J-1.* near J-I.<OJ all aq are zero, i .e., all b.c. are stable; 
more generally we will construct curves J-l.q(t) going out of J-1.*, on which only q is 
unstable, surfaces J-l.qq(t, s) on which q, ij_ are unstable, etc. In order for this 
construction to work, some control on how quantities change with J-1. is needed. 
Our starting point is the following. 

Theorem 3.3. Assume that in some open set r<OJ t;; IRN- \ em and p( Y) are continu­
ously differentiable functions of J-1., and that lp(Y)I ;£ e-riYI , ldp(Y)/dJ-I.il ;£ e -riYI , and 
ldemfdf-lil ;£ 1 for J-I.E"f/'<

0
J. Then, for J-1.0E"f/'<

0
J and 1: � 1:0, where 1:0 is some constant 

depending only on d and N, the following statements hold. 

i) If aq(J-1.0) = 0 and am(J-1.0) diam V ;£ 1, then 

I!:__ Zq(V) I ;£ 41 Vle"m(l'ollVI+IOVI. 
df-li Zm(V) l'=l'o 

ii) For aq(J-1.0) = 0 and all mEQ = {1, ... , N}, 

I!:__ Zm(V) I ;£ 41 VI eloVI. 
df-li Zq(V) I'=Jlo 
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iii) For am(Jlo) diam V � 1 and VmEQ, /_!:_ Zm(V) I �81VIe31ilVI. 
dJ1; Zm(V) 1'=1'0 

Proof. We again proceed by induction. So we assume that diam V = k and that 
i), ii) and iii) have already been proven for all W with diam W � k - 1. In a 
preliminary step we show that for some open neighborhood "f/ = "f/(V) of Jlo, all 
mEQ = { 1, . . . , N} and all contours ym in V, the condition 

implies that 

a) ym is stable if J1E"Y(V), 
{3) K (Ym) is continuously differentiable in "f/(V), 
y) For JlE"Y(V), the following bounds holds: 

li:___K (Ym) l � e-(r-16dJIYml. 
dJ1; 

(3.17) 

(3.18) 

Proof of (a)--(y). We use the fact that Z,JW) is defined as a finite sum of C1 functions 
(see Equ. (2.2)). Therefore Z'"(W)EC1("f/(0l) for all mEQ and all finite W. Using 
Theorem 3.1 iii), the inductive assumption (3.17) implies that 

(3.19) 

at 11 = Jlo· By continuity (3.19) is true in an open neighborhood -f"1 = -f"1 (Ym) of 
Jlo. Therefore, 

(3.20) 

for all mEQ, which shows in particular that K(Ym) is continuously differentiable 
in 1/" 1 ( ym). 

By Theorem 3.1 iii), 

lfm(Ym)l � exp (3liHntm yml) 

at 11 = Jlo· By continuity ym is stable in a neighborhood 1/" 2(Ym), i.e. 

lfm(Ym)l � exp (41iHntm yml). 

By the inductive assumption, and the continuity of o fm!oJli in 1/"1 (Ym), 

li:___ fm(Ym) l � 81 lntm yml exp (4113 lntm yml) 
dJli 

(3.21) 

(3.22) 

in an open neighborhood 1/" 3(Ym) of Jlo· For JlE-f"(Ym) = -f"1 n 1/" 2 n 1/" 3 we obtain 
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Using (3.7) and the inequality 

1 + 81Int ym l � 1 + 818 Int yml 2 � exp 8d l ym l ,  

we obtain (3.18) for JlE-f"(Ym). Since V contains only finitely many contours, (o:) 
to (y) are proven for 

r(V) = n n r(Ym). 
m yminV 

After these preliminaries, the proof of i) to iii) is essentially the same as that of 
Theorem 3.1. We start with the 

Proof of i) for diam V = k. We rewrite 

and use Theorem 3.1 to bound Zq/Zm . To bound d log Zm(V)/dJ1;, we note that 
Zm(V) = z;,(V) for J1Er(V). Therefore the derivative of log Zm can be bounded 
using the Mayer expansion for logZm - I V l em together with the bound (3.18). One 
obtains 

Since trivially aq(J10)diam V = 0 � 1, the same argument applies for the derivative 
of log Zq(V). Therefore, 

if' is large enough. This bound, together with Theorem 3.1, implies i). 

Proof ofii)for diam V = k. We use Eq. (3.13). By the inductive assumption, Theorem 
3.1 and the a priori bound on the derivative of p(Y), 

I� f1 [p(X;;')fl
zm.(Intm.X:£)] 1 � exp [I(II olntm.X:'I - ciX:'I )] dfl; a m' Zq(Intm.Xa) JL=I'o a m' ·�[ 1 + 4 � l lnt,;;X;;'I J 

� L [ IX:' I +  41IntX;;' I ] fl e-(•-ZdJIX:'I, 
ll ll 

where we used (3.7) in the last step. The derivative of the first factor in (3.13) is 
bounded as in the proof of i). The relevant estimates are 

l�logz�man(Ext) l � [1 + O (e)J I Extl, 
dfl; 
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I d z (V) I 
dfl; 

log 
Zq

q
(lnt) 

� [1 + O(s)] I V\lnt ), 

ldd 
�:>miX;:') I� L )X;:'), 

fli a a 

and (3.14). Putting everything together we obtain 
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· {(1 + O(s) ))Exti + (1 + O(s) )i V\Int) + � (21X� I  + 4)IntX;:' I )} 
Bounding the curly bracket by 41 V I (use that I Ext I + L I X� I = I V\Int I ) and using 

a 
Lemma 3. 2 as in the proof of Theorem 3.1 we get ii). 

Proof of iii) for diam V = k. iii) is an immediate consequence of i), ii), Theorem 3.1 
and the fact that for any q with aq(J10) = 0, 

l_ Z,;;(V) _i_(Z'"(V) Zq(V) ) 
dfl; Zm(V) - dfl; Zq(V) Zm(V) 

(use that 21 oV I + am(flo)l VI � 31 oV I if am(flo) diam V � 1). • 

Corollary 3.4. Let Y be an open set Y <;; IRN-1 such that em and p( Y) are continuously 
differentiable functions of f1 in Y, and such that )p(Y) I � e-•IYI, )dp(Y)/dfl;l � e-•IYI, 
)demfdfl;l � 1 for f1EY. Assume that for a given mEQ, 

am(Jl) diam ym � 1, 'VJ1EY. 

Then K(Ym) is in C1(Y) and 

IK(Ym)l � e-(r-SdJIYml, li_ K(Ym) l � e-(r-16dJIYml. 
dfli 

Proof Fix ym and f1 in such a way that 

am(fl) diam ym � 1. 

(3. 23) 

(3.24) 

(3. 25) 

As shown in the preliminary step of the proof of Theorem 3.3, this implies that 
K(Ym) is continuously differentiable in a neighborhood of fl, together with the 
bounds (3.23) and (3.24). Since the assumption (3. 25) is fulfilled in all of 1/, the 
corollary is proven. • 

4. Application to P(¢)2 Models 

We show here how P(¢)2 models with multiple minima can be put into the 
framework of this paper. We work with the models considered in [I]; a polynomial 
flJ is chosen which has any number of minima but which has positive curvature, 
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or mass-squared, at each minimum. The polynomial is scaled into A -2f7J(A</J), with 
A small, which leads to a weak coupling, mean field regime with large barriers 
between the minima. The coefficients in f7J depend smoothly on parameters Jl, and 
we fix A when mapping out the phase diagram in Jt-space. A detailed description 
of the setup can be found in Sect. 2. 1 of [I]. A degeneracy-removing condition is 
assumed for the values of f!JJ at its minima. 

This paper provides a considerably simpler method of analyzing the phase 
structure of these models. In addition, it allows us to work with complex 
polynomials-the method is insensitive to the phases of the polymer activities. Thus 
starting with a real interaction A-2f!JJ(A</J) as above, we add an imaginary one ifl(A</J ), 
where f2 is any real polynomial. We omit the prefactor A -2 because we wish to 
treat linear and quadratic terms perturbatively. In this case there are no new issues 
in the cluster expansion estimates (which we borrow from [I]. More generally one 
could imagine "rotating the contours of ¢-integration" to follow the critical points 
of the interaction as they move off the real axis . We do not pursue this possibility 
here. 

We recall a few notations from [I]. Let us define P (</J) = r2f!JJ(A</J) + ifl(A</J). 
The basic vacuum energy estimates in the vicinity of each minimum are governed 
by Re P. In particular, we use masses mq computed from the curvature of ReP at 
its minima �q· We use the approximation P (�q + </J) � tm� ¢2 near each minimum 
and expand in terms of the corresponding Gaussian measure. We put E� = P( �q), 
which is the dominant term in the vacuum energy estimates, with real part 
proportional to A -2• The complex part can be preserved in the estimates since it 
is a constant independent of </J. After E� there is an 0(1 )  contribution to the vacuum 
energies arising from the differing values of mq. The shifted energy is denoted E'f.,. 

The P(</J)z expectation in a volume A with boundary condition q is defined as 

< " ) A.q = � J -exp( � [ :P(</J(x)):- �m�:(</J(x)- �qf: Jdx )dflm:(<P- �q), 

where dJtmz is the Gaussian measure with covariance ( - L1 + m�)- 1. We prove the 
following theorem describing the phase diagram of this system. 

Theorem 4.1. Given real polynomials .o/J, f2 as above, depending on {Jt1, . . . , llN- t}, 
let P( </J) = A-2f7J(A</J) + ifl(}.</J) and let A be sufficiently small. There exists a continuous 
map from a neighborhood of the origin in the boundary of the positive octant in IRN 

onto a neighborhood of the origin in parameter space IRN -1. The map is differentiable 
on each j-dimensional face, 1 � j � N-1 .  If Jl is the image of a point whose q1h 

coordinate is zero, then the q1h 
phase is stable. At Jl, the iriflnite volume limit of the 

Schwinger functions < </J(x1) · · · </J(xn)) A,q exists with exponential clustering and 

asymptotically of the perturbation theory in ). around <jJ = �q. There are (;) 
hypersurfaces of codimension k- 1 in parameter space at which k distinct phase 
coexist. 

The cluster expansion of [I] used squares of side length l » 1 in the decoupling, 
so that each polymer is a union of such square. The larger l is, the stronger the 
decay in the number of squares in a polymer. Each /-square is a unit square for 
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the purposes of Sects. 2, 3, 5. The coupling A has to be chosen small enough, 
depending on l. The partition function for the qth phase in one of these squares is 
denoted Z M. Here the field is encouraged to lie near �q by factors inserted by 
hand into the measure. (These factors are a part of a partition of unity employed 
throughout the expansion.) We have a bound 

IZ LI•/E�I±1 ;;=; eaJ.I2, (4.1) 
2 2 

see Proposition 2.5.2 of [I]. Also, ,u-derivative of log (ZLI.e1 Ew ) are of order A1i2 
or so, so each log Z M follows closely the behavior of E� 12. 

It is simplest to describe the expansion in the form where powers of Z M have 
been factored out of the clusters making up the expansion. Consider the partition 
function Zm(V) (  = Z(W), with W = (V, m) in the notation of [I]). Let 1: be an 
association of a phase q to each unit square of V, and let Ri be the union of the 
squares in the phase m. We denote by IRil the area of this region, in units of f. 
The expansion is 

Zm(V) =I I n p(Vk) n Z1�:1• 
E {'\" k) compatible withE k q 

(4.2) 

Here V specifies a region Y as well as 1: t Y, so the clusters of [I] contain more 
structure than is needed for our present analysis. We will sum over the unnecessary 
structure shortly. The cluster functional p(V) is taken directly from [I] and obeys 
a bound 

(4.3) 

where r 1, r 2 are positive constants, IV I is the area of Y in units of F, and ll:y I is 
the length of the "contour" separating subsets of Y with constant phase [see [I], 
(2.5.1 1)]. Also, p(V) = 1 if IV I= 1, since the entire contribution from such V is in 
the Z Ll• factors. Thus the regions V k fill all of V. The expansion ( 4.2) follows, with 
a little bookkeeping, from [1], (2.4.22) and (2.5.12). 

To put (4.2) into a form like (2.2), we need to sum over all V's compatible with 
a given region Y and with some assignment q(·) of phases for each boundary 
component of Y. This will not lead to exponentially decaying activities as in (2.1) 
unless we take care of the very high energy phases properly. Define 

eq= - log ZM. (4.4) 

By (4.1) and the discussion there, we see that eq is close to 12 E� (also the ,u-derivatives 
are close). Therefore for small A the degeneracy-removing condition (2.3) holds for 
{eq} if it holds for E� . (To normalize the matrix oeq/o,u; properly for (2.4) we would 
rescale {,u;} by a factor O(A-2 f2 ).) Let us assume the energies eq are increasing in 
q, i .e. e1 ;;=; e2 ;;=; ···;;=;eM. Then any phase p with eP � e1 + h1l is clearly out of 
contention for stability. (We shall see that corrections to the approximate free 
energies em are e-o(r,ll.) Let e1, ... ,eN be the low energies, and eN+l•···•eM be the 
higher energies, with N chosen so that eN+ 1 � e 1 + !r 11, eN ;;=; e 1 + r 11, and 
eN+ 1 �eN+ (1/2M)r J (To simplify the subsequent analysis we make the division 
at a point where a gap occurs.) 

Now let Y be a contour as in Sects. 2, 3 (that is, a region, together with an 
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assignment of boundary conditions mE {l, ... , N} to boundary components). We 
sum over all ways of paving Y with collections of clusters {V a} which could have 
arisen in the expansion (4.2) and which agree with the given boundary condition 
assignments. We restrict the sum to collections such that any part of a av a not 
already present in aY has a high-energy boundary condition pE { N + 1, . . .  }. The 
point is to make all high-energy phases internal to the contour Y, so that they are 
not seen in subsequent analysis. Any loss of exponential decay in p(V a ), say 
from a single-square cluster IVai= 1, is made up by the smallness of Z.1"' 
smce 

for p � N + 1. Thus we define 

p(Y) = I TI p(V a) TI zl;tl TI eemiRml. 
{Val a m 

(4.5) 

(4.6) 

We use a convention that q runs over all phases (low or high energy), while m runs 
from 1 to N and p � N + 1 labels the high energy phases. The regions R; and Rm 
are what appear in expansions (4.2), (2.2), respectively, although they are restricted 
to the set Y. It should be evident that the desired form of the expansion (2.2) holds 
now with this prescription for p(Y). We drop any Y with I Yl = 1 since in that case 
p(Y) = 1. 

We verify that p(Y) decays exponentially as in (2.1). The decay of p(V) specified 
by (4.3) permits us to sum over I in Y. The remaining combinatorics, including 
the sum over pavings of Y by clusters V a' produce a factor ciYI in the estimate on 
p(Y). The other large factors arise from factors Z.1m·e-em, which can be as large as 
e"'1• Both of these effects are controlled by e-512"111v1 wherever lVI > 1. If lVI = 1, 
then Iv = p � N + 1 and by (4.5) we have Z .1Pe-em :;=; e-r,l/ZM, and we still have a 
good decay in I Yl. Thus (2.1) holds with r = r 1l/ 2M, which can be made as large 
as desired by increasing l (and decreasing A.). The corresponding bound on ap(Y)fafl; 
follows in a similar fashion. The needed bound on ap;afl; is the same as (4.3) and 
is also proven in [I]. 

Having put the expansion in the form (2.2), the constructions of Sect. 3 lead 
to a determination of the stable phases and to a proof of ratio of the partition 
function bound 

(see (3.11 ). The phase diagram is obtained by adjusting the parameters fl for 
coexistence-see Sect. 6. The intricate iteration of Chap. 3 of [I] is avoided. Also 
the "bounded-spin approximation" estimate is no longer needed-differentiability 
of the contour activities is sufficient for our analysis. 

To obtain the infinite volume Schwinger functions for the stable phases and 
prove Theorem 4.1, it is necessary to have estimates on ratios of "constrained 
partition functions" in V. Here we mean that interiors of contours may not intersect 
vc. Such estimates were used in Sect. 4.3 of [I] to control the cluster expansion 
for the Schwinger functions. (A similar procedure is used in [BW].) These 
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constraints were built into the partition functions defined in Sect. 2. Thus the· 
estimates of Sect. 3 apply already to the constrained case, and no additional 
arguments (cf. Sect. 4.2 of [I]) are needed. 

5. Periodic Partition Functions 

We apply the theory developed so far to partition functions on the d-dimensional 
torus T. We expect that these results will be useful in supersymmetric field theory 
models, especially the two-dimensional Wess-Zumino models considered in [JL W]. 
There an index theorem was proven which computes the value of the partition 
function in a periodic box (equivalently, the supertrace of e-PH). The value is an 
integer index which is independent of the dimensions of the torus. When the integer 
is nonzero, the phase structure analysis developed here should imply that the 
vacuum energy of the model vanishes, and hence the usual criterion for absence 
of spontaneous supersymmetry breaking holds. Furthermore, when the vacuum 
energy is zero, some information on the number of stable phases can be extracted 
from the index-see Corollary 5.2 below. At present, these statements must be 
made contingent on a construction of a mean field expansion for the Wess-Zumino 
models (analogous to the one considered in Sect. 4 for P(cp)z). In view of the 
two-phase expansion for Yukawa [BG] and the single-phase expansion for the 
N = 1 model [W], we believe that this is an accessible problem. 

We define the periodic partition functions with additional factors CJ(m)EC 
multiplying the "measure" for configurations predominantly in the m1h phase. These 
factors seem artificial from the point of view of the contour models but in fact 
arise naturally in the N = 1 Wess-Zumino models. There we expect CJ(m) = ± 1, 
depending on the sign of the fermion mass. Here we assume only that I CJ(m) l � 1. 

For simplicity, we let T be a torus with length LE7l. in each direction. We seek 
upper and lower bounds of the forme-fL• (A + e-BtL), where the free energy f and 
the constants A, Bare independent of L, and where L is sufficiently large, depending 
on' and on 

ii= min am. (5.1) 
m:am*O 

We define ZP(T), the periodic partition function, by grouping together 
configurations which we wish to treat together in the estimates. This way we avoid 
having to introduce unneeded definitions. If the partition function so constructed 
seems unnatural, the reader should think about an example such as the Peierls 
expansion for the Ising model on a torus. It should be clear that the type of object 
we define is exactly what arises in that context. 

Let V be a subset ofT, as usual built of unit cubes. We define restricted partition 
functions z�·(V) by considering only contours Y in V with diam Y < L/2. For 
such contours it is clear which component of V\ Y is the exterior, and which ones 
are interior. Thus we can unambiguously say which are the external contours, and 
we require all of these to be m-contours. If V #-T, then oV #-� and we are assuming 
oV is at boundary condition m. The regions Rm' in (2.2) are defined as before, with 
the exterior region considered as part of Rm. It may happen that {Y} =�, in which 
case Rm = V. As always we assume Yu Int Y £;; V. With these definitions we have 



322 C. Borgs and J. Z. Imbrie 

as in (2.2), 

z:;::s(V) = L TI p(Ya) TI e-em·IRm·!. 
{Y"}.diamY"<L/2 a m' 

(5.2) 

These contour activities are assumed to be equal to the corresponding ones in !Rd. 
Of course the alternative representations (2.6), (2.7) hold for Z:;:'5(V) as well, and 
for any Y that appears, the diameter restriction is irrelevant in Int Y. 

There remain the configurations where at least one contour is large, for example 
there may be contours wrapping around the torus. In this case, interior and 
exterior are ill-defined, so we slightly modify the construction in (2.2). We only 
need the full partition function zP for the entire torus, so we restrict attention to 
this case. The remaining configurations are grouped into zbig(T). We join all large 
contours into a single contour ybig, each connected component of which has 
diameter at least L/2. As usual each component of T\ ybig\ U Ya has a constant 

a 
boundary condition. Each such component contributes to the appropriate Rm. 
Also, the small m-contours Y� are part of Rm, as before. But ybig is not assigned 
to any Rm; any free energy associated to it is built into p(Ybig). With these definitions 
we put 

zbig(T) = L p(Ybig) L TI p(Ya) TI e-emiRml. 

Finally, we define 
Ybig {Y").diamY"<L/2 a m 

N 
zP(T) = zbig(T) + L a(m)Z:;:'5(T). 

m�l 

(5.3) 

(5.4) 

The absence of factors u(m) in zbig(T) means only that they are built into the 
activities there. Likewise, any departures from a simple factor u(m) in z;:s(T) are 
built into the activities in that partition function. To state our main result on zP(T) 
we let 

m 
Theorem 5.1. Assume that ip(Y) I ;:=:; e-riYI for all Y with diam Y < L/2 and that 
lp(Ybig)leeoiYbigl;:::; e-riYbigl for all ybig. Then, for r > ro(d, N) and L '?;, Lo(r, a), the 
following bound holds: 

I zP(T)- � a(q)e - hqLd l ;:::; e- BtL e- JL". (5 .5) 

Here f = min Re hm and B > 0 is a fixed constant. Then sum in (5.5) goes only over 
m 

stable q, i .e. q such that Re hq = f.  
The theorem can be written concisely in the case of real (not necessarily positive) 

activities and energies. 

Corollary 5.2. Under the assumptions of Theorem 5.1, let us suppose that p(Y), 
p(Ybig), and em are all real, and that a(m) = ± 1. Then 

lim ZP(T)efLd = n+- n_, 
L-oo 
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where n+ is the number of stable phases with cr(m) = 1 and n_ is the number with 
cr(m) = - 1. 

The physical content of these estimates is that each stable phase contributes 
equally to zP(T), while the unstable phases are negligible for large L. Corrections 
to thermodynamic behavior are exponentially small in diam T = L. Note that we 
had to assume a different bound on lp(Ybig)l because the free energy associated 
to yhig was built into p(Ybis). 

Theorem 5.1 follows from the following three lemmas, which are proven in the 
remaining part of this section. 

Lemma 5.3. There are constants b1 > 0, r 1 < oo such that the following statements 
hold for r � r 1 and q stable: 

i) 

ii) 
IZ�es(T)ehqLd- 11 � e-httL/2. 

Lemma 5.4. There are constants b2 > 0, r 2 < oo, and K 2 < oo, such that for r � r 2 
the following statements hold: 

i) 
IZ:;:'.(V)e11V1i � exp {e-httL/2 +leVI}, 

where b1 is the constant from Lemma 3.1, 
ii) 

provided m is unstable and 

Lemma 5.5. There are constants b3 > 0, r3 < oo such that 

IZbig(T)efLdi � e-h,<L, 

provided r � r 3 • 

(5.6) 

Proof of Lemma 5.3. Comparing the convergent cluster expansions for hq and 
log z�es(V) or log z�es(T), respectively, one immediately obtains Lemma 5.3. The 
constant b1 can be chosen arbitrarily close to 1 if r1 i s  chosen large enough. • 

Proof of Lemma 5.4. We proceed as in the proof of Theorem 3.1 ii) in Sect. 3 to 
bound 

IZ:;:'•(V)efiVII � exp {i8Vie-h" + e-ht<L/2} 

I' etf-Reh;,mall)IV\Intl n e-(t-2d-l)IX:'I, 
{X:'Joxt " 

where the sum goes over sets {X:;'} of mutually external m-contours which are all 
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large (i.e. am diam X:'> 1) and obey a bound diam X:'< L/2. Extracting a factor 

max e-(am/2)1V\Intl n e-(r/2)1X�I 

{X�Jext <X 
and continuing as before we obtain, for a suitable choice of r2 < oo and r � r2, 

IZ;;:'.(V)efiVII � exp { loVI + e-b,rL/2} max e-<am/2)1V\lntl n e-(t/2)1X�1
. 

{X�Jext <X 
Bounding the second factor on the right-hand side by 1 we obtain i). To prove ii) 
we set V = T and use the isoperimetric inequality to bound 

I V\Intl = I!-llntl � Ld- Klolntld/(d-1), 
Where K is a constant depending only on d. Bounding l olnt l by 2d.EIX:'I we get 

IZ;;:'•(T)efLdl � exp { e-b,rL/2} sup exp (- rX- max {o, am(Ld-K(2dX)df(d-1)) }) . 
x�O 2 2 1 

The supremum is obtained either for X= 0 or for Ld- K(2dX)df(d -1) = 0 which 
proves that 

I z;:•(T)efLdl � exp { e-b,rL/2} max { e-(amf2)Ld, e-(r/2)K2Ld- 1 }, 

with K2 = (2dK<d-1)fd)-1• This proves ii) with, for example, b2 = K2j4. • 

Proof of Lemma 5.5. Given a configuration {Ybig, Y,.} contributing to zbig(T) we 
let Vm be the union of those components C of T\ ybig which have boundary 
condition m. Resumming all small contours Y,. in the representation (5.3) for zbig(T) 
we obtain 

zbig(T) = L p(Ybig) n z;:•(V m). 
ybig m 

Using Lemma 5.3 i) and Lemma 5.4 i) together with the fact that leh•IV•II = efiV.I 
if q is stable, we bound 

IZbig(T)efLdl � L lp(Ybig)lexp [ (f + 2d + e-bttL/2)1 ybigl]. yblg 

Next we use the bound (3.9) to conclude that for all m = 1, . . . , N, 

f � Re hm � Re em+ O(e-"). 
This shows that 

lp(Ybig)lexp [ (f + 2d + e-b,rL/2)1 ybigiJ � n e-(r-O(l))IX.I
, 

" 
where {X ,.} are the (large) connected subcontours of ybig. Bounding the sum over 
a connected contour X with fixed size I XI = s by Ld K•, where K is a constant 
depending only on N and d, we get for r large, 

= exp { Lde-rL/4(1 - e-r/2)-1} -1 
� e-rL/8. • 
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6. The Phase Diagram 

We consider now the question of constructing the phase diagram of the contour 
model. First, we wish to find a point ,u(O) in parameter space where aq = 0 for all 
qEQ. From this point we construct N curves at which all but one aq = 0, and so 
on to hypersurfaces of higher dimension at which various subsets of Q satisfy 
aq = 0. As we have seen, the vanishing of aq is sufficient for the construction of the 
infinite volume state. 

While this is a standard question in Pirogov-Sinai theory, the present situation 
with complex activities is more sutable because the aq are not necessarily continuous 
functions of the parameters. This appears to be an inevitable consequence of the 
presence of partition function zeros. Nevertheless, the closer aq is to zero, the better 
it can be approximated by a differentiable function. This allows us to construct 
differentiable curves at which some aq's are zero. Higher order differentiability 
could be obtained with a corresponding strengthening of assumptions on the 
activities p. 

The setup is as follows. We assume there is a bounded open set ill! c �N-1 in 
which p(Y), em are C1 functions satisfying the bounds 

lp(Y) I , /a�i p(Y) I � e-•IYI, (6.1) 

I�:: I� 1. (6.2) 

This assumption allows us to use the basic estimates of Theorems 3.1 and 3.3. In 
addition, we assume a degeneracy-removing condition throughout ill!. To be specific, 
with i, m = 1, . .. , N- 1, we assume that the matrix a Re (em- eN)/o,u; is invertible 
and its inverse is bounded (as an operator on [00 (1, . .. , N- 1)) by M for some fixed 
M < oo. We assume that ill! contains a point ,u<0> = (,u�0>, • • •  , ,u�� t) at which 
Re em= Re em' for all m, m'; ill! should even contain a neighborhood of size � e-•!Z 
about ,u<0>. It will be understood in the following that any statement shall be 
restricted to ill!. 

In order to avoid inessential details in the construction, let us consider the 
representative case where N = 3 and we are searching for a curve ,u(t)E�2 on which 
a 1 = a2 = 0. Here t � 0 and we wish further that a3(,u(O)) = 0 and a3(,u(t)) > 0 if 
t > 0. Thus ,u(O) is the point of maximal coexistence. 

We first construct ,u(O) as a limit of approximation coexistence points 
,u<0>, ,u<1l, .... The strategy is to consider neighborhoods 

.#"(j) = {.UE�2: I.U- ,U(j)l � (8dj+ t)-1} 

(di is defined below and 1·1 denotes the maximum norm 1·1 oo ) and to construct 
,u<i+ 1>E.K<i> in such a way that .K<i+ 1> c .K<i>. We introduce distance scales 

do= 1, dl = e<do/2 = e•f2, . • .  ' di+ 1 = e•d,/2, 

and contour functionals 

K<il(Ym
) = 

{K(Ym) if diam
. 
ym < di

. 
0 otherwise 

(6.3) 
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(Recall from Sect. 2 that K is p times a ratio of partition functions.) Our main 
assumption (to be proven inductively) is that 

am(Jl.)di � 1 in .,vU- 1 l (6.4) 

for all m = 1, 2, 3. Then we have good control over the activities K <il (Ym), by 
Corollary 3 .4. In particular, all ym with diam ym � di are stable, KUl (Ym) is C1 and 

I KUl (Ym) l ,  Ia:; K<il (Ym ) l � e - ( 1 - <ll< I Ym l .  

Here � =  1/10 is fixed. These bounds imply that the free energies s�l of  the contour 
functionals KUl (Ym ) are C1 functions of J1. in .,vu- 1 l, satisfying bounds 

Finally, we introduce 

l s<il l �� s<il l < e - < 1 - 2<ll< m ' OJl.; 
m = ' 

l s�l - s�- 1 l l  � e - < 1 - 2o)<dr '
, 

l s�l - sm l � e - ( 1 - 2<l)<dj. 

(6. 5a) 

(6.5b) 

(6.5c) 

(6.6) 

Let Jl.(OJ be the point where Re e 1 = Re e 2 = Re e 3 ,  or equivalently h}0l = h�0l = h�0l .  
I t  i s  unique, by  the degeneracy-removing condition. Let .,v<oJ b e  the neighborhood 
of Jl.<Ol of radius (8d 1 )- 1 . In .,v<oJ we have by (6.2), (3.9) that 

am � max { l h�l - h�l l  + I sm I + I sm • I} 
m' 
1 1 

:<::;; - + O(e - " ) :<::;; -.  - 2d1 - d 1 
(6.7) 

Hence amd1 � 1 and we can consider h� l .  Note that Re s� l = h�l - Re em is 
controlled by (6.5a), so nondegeneracy holds for h� l ,  with a constant slightly larger 
than M. Note that by (6.5b) l h� l (J1.<0l ) - h�l (J1.<0l ) I = O(e - < 1 - 20l" ) « Radius .K<0l. 
Hence there is a point f1.< 1 l in .,v<ol, where hl1 l = h�1 l = h�1 l .  Even the neighborhood 
.ff< 1 l of J1.< 1 l of radius (8d2 )- 1  is contained in .,v<ol. 

It is clear now how to proceed to construct the fl.Ul and the corresponding 
neighborhoods .ffUl of fl.Ul of radius (8di + 1 )- 1 . It is important to check the condition 
(6.4) that amdi+ 1 � 1 in .ffUl. In .,vu- l l  the free energies h�l were considered by 
truncation at contour diameter di , with amdi � 1. Therefore, by (6. 5), 

am � max { I h�l - h�l l + I hm - h�l I + I hm' - h�l l} 
m' 

:<::;; -3 - + 2e - << 1 - 2o)dj :-:;; _1 __  (6.8) 
- 4dj + 1 - dj+ 1 

The first term was estimated from the uniform bound l oh�lfoJJ.d � � and the fact 
that h�1 = h�1 at the center of .,vw. Finally, 

(6.9) 
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so it is possible to find the point p,U + 1 J at which W_+ 1 J = hY+ 1 J = h�+ 1 J and such 
that JVU+ 1 ) c .ffUl , 

It is clear that the sequence p,W converges very rapidly and that at the limit 
[defined to be p,(O)] we have a 1 = a2 = a 3 = 0. 

We consider now the curve p,(t). At the beginning we can solve for a curve 
p,<0l (t) starting at p,<OJ and such that 

h\0) = h�O) = h�O) - t. 

This is a C1 curve, by the implicit function theorem. We restrict attention to the 
strip g<oJ, neighborhood of the curve of radius (8 11 ) - I , with 1 1 � d1 to be chosen 
in a moment. In g<oJ we can estimate a1 and a2 by 1/d1 as in (6.7), but not a 3 • To 
be more precise, we first note that for 11 = p,<0l(t) ¢ff<0l, h�0J > h�0l + 1/8Md1 by the 
degeneracy-removing condition. Therefore, by (6.2) and for a suitable choice 
of l 1 (e.g. l 1 = 1 6Mdd, we have then h�0J > h�0J + 0( 1 /dd in g<Ol\ff<0J . Since 
Re hm - h�) = O(e - ' )  « 1/d1 in the whole region OZt, we conclude that 

Re h3 > Re h2 + 0(1/dd in g<0\ff<0>. 

So state 3 is well out of contention for the smallest h in !f'<0l\ff<0>. Thus we restrict 
m' in (6.7) to { 1 , 2} .  

Since we have no bound on a 3  in g<oJ, we may not consider h�1 l ;  it does not 
provide a parametrization for p,( l l (t). Instead we solve for the curve p,< 1 > (t) such that 

h\1 ) = h�1 ) = h�O) - h�0) (/1( 1 ) ) + W>(p,( 1 ) ) - t. (6. 10) 

When t = 0, this equation is satisfied by p,< l l (O) = p,< l l .  Note that nondegeneracy 
holds for {h\l l , h�l l , h�0l } ,  so we can use the implicit function theorem to solve this 
equation, obtaining a differentiable p,< 1 > ( t). We only have to check that p,<0>(t) solves 
(6. 1 0) sufficiently accurately so that p,< 1 > (t) can be found in g<o>. The errors are 
O(e - r( 1 - ZJJ ) « Radius g<oJ, so we have p,( l > (t). 

The general step works as in the construction of p,u+ l l, only we solve Eq. (6. 10) 
with 1 replaced by j + 1 .  This can be written as 

hy+ 1 > = hY + 1 > = h�0> + Re s� + 1 > (p,u + 1 > ) - t, 

and we look for the solution curve p,U+ l l (t). We first check that 

Re h3 > Re h2 + 0(1/di + d in !f'W\ffUl, 

(6. 1 1) 

(6. 1 2) 

where the strip !f'Ul is a neighborhood of the curve p,U> (t) of radius (81i + 1 ) - l , with 
1i + 1 = 1 6Mdi

+ 1
. Since (6. 1 2) has been checked in the previous step for j - 1 instead 

of j, and gw c gu - l l, we only have to consider p,E!f'Ul n JVU- 1\JVW. As 
above we first consider 11 = p,U> (t) EffU- 1\ffU>. We use the degeneracy-removing 
condition for (hyl, hYl, h�0 l )  and the fact that 

I s�l (p,) - s�l (p,<il )  I ;;:; l p, - p,Ul I O(e - r( 1 - 2J)) 

if p,Eff(i - 1 J. As a consequence we have for 11 = p,U> (t) EffU- 1\ffUl that 

hY> (p,U> (t) ) < h�l (p,U> (t) ) -
1 

1 6Mdi+ 1 
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Using the uniform bound I oh�> /of:l; i � 3/2 and the bound (6.5) for Re hm - h�> we 
obtain (6. 1 2) in the region g>Ul n .AfU- 1 >\.AfUl. 

Due to (6. 1 2), a 1 and a2 can be estimated by restricting m' in (6.8) to { 1 ,  2} 
[in .AfUl, the necessary bound on a 1 , a2 has already been verified in the construction 
of f:l(O)] .  The curve f:lU> (t) solves (6. 1 1 )  up to errors O (e - < 1 - 2"l•di ) because 
l hV + 1 > - hV> I , l hY + 1 > - hy> l ,  l s� + l l (f:lU> ) - s�> (f:lU> ) I ,  and l f:lu + t ) _ f:lu> l are all 
O(e-<1-2"l•di ). Thus we can continue inductively, obtaining a sequence of curves 
f:lW(t), which are C1 uniformly in j. Equation (6. 1 1 )  tends to a limit, so the curves 
converge for each t to a limit f:l(t), which moreover is differentiable. (To get a C1 
limit curve, we naturally have to assume uniform continuity of derivatives 
throughout.) 

On the limit curve, the statement that state 3 is out of contention in each 
9"U\.AfUl translates into a statement that a3 > 0 for t > 0. Of course a1 = a2 = 0 
on the curve f:l(t). Thus we have produced the desired portion of the phase diagram. 
It should be clear now how to proceed to obtain any portion of the diagram for 
the N-state problem. 
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