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ABSTRACT. We investigate irreduciblr., 0(3) symmetric multiple-meron solutions to the classical 
SU(3) Yang-Mills equations in four-dimensional Euclidean space. The solutions have topological 

charge density equal to a sum of delta-functions with integer coefficients, and correspond to 

solutions of a system of two coupled singular elliptic equat ions . We prove the existence of two

mer on solutions of the coupled system. 

Infinite action solutions to the classical Yang�Mills equations in Euclidean space with topological 

charge density concentrated at points have been used by Glimm and Jaffe [ l J , and Callen et al. 
[2] in models for quark confinement. The first such meron solution was found! by deAlfaro et al. 
[3] and was generalized to multiple merons on a line by Glimm and Jaffe (4]. Merons have only 

been studied in an SU(2) gauge theory, which can, of course, be embedded in the SU(3) theory 

believed to describe strong interactions. ln this paper, we use the 0(3) symmetric ansatz of Bais 

and Weldon [5] to investigate SU(3) merons which do not arise from an embedding of SU(2) in 

SU(3). We call these irreducible. 

We find some new phenomena in SU(3). Finding irreducible meron solutions is reduced to 

solving a pair of coupled elliptic e quations , analogous to the equation r2 1:.1/1 = 1�3 � lJ; in the 

SU(2) case [4]. We prove that the equations have solutions corresponding to two-meron configu

rat ions. The charge density is a sum of unit delta-functions instead of the half delta-functions 

found in the SU(2) case. Although the word me ron originated from fractional charges, we use it 
for integer charges as well because the solutions are similar to fractionally charged merons in other 

respects. They have regular, singular points and nonintegrable action. 

Following Bais and Weldon [5], we define the following Hermitian, traceless matrices (a, b, l, 
m take values 1, 2, 3): 

(La)lm = iEtam, 
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(2) 

Whenever ± appears in an equation, the equation is to be interpreted as two equations: one with ± 
replaced by+, and one with± replaced by-. We denote by f!± the vector whose components are 
K�. The following relations among theM± and .i(± will be needed [5] : 

' --++ ==irXK-, 

= [K+, Ml = [W, M-] = J{+ • 1{- -it· 1(+ = 0, 

-+ �+ r -++ \JXK-= -XK-, 
r 

f! · J{+ == _!_ ( --4M+ + 2111), 
r 

7!. • jf- == _!_ ( --4M- + lW), 
r 

Tr.ifM± =2/3, 

The 0(3) symmetric ansatz for the gauge field [5] is 

(3) 

(4) 
A = w+ra;- if X J{+ [(1 + ¢1)/r] + ilf+Cr/Jo/r) + iM·rar-- ir x K"[(l + 4>1)/r)] + £-(rfo/r), 

where at a�, 4>�, and 4>1 depend only on r = lrl and t. The ansatz is consistent with gauge trans
formations exp(ia+W), exp(iaM") where cl depends on rand t only. This is a natural generaliza-

tion of Witten's ansatz in SU(2) [6]. We can regard?;±= ( :� ) as a two component Higgs field 
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interacting with a U(I) gauge field a± ""a� dt + a�dr in the half plane nU = {(r, t)lr > 0} with 
metric r-2 (dr2 + dt2). The covariant derivatives are defined as D±¢± = d($± +a± e($± where 

e�(�� �). 
The SU(3) field strengths F,uv = a,uAv- 3vAJ.L + [Aw A,] break into an electric part Ei = Fat 

and a magnetic part Bi "'t €ijkFjk [5]: 
,. --)+ 

-+ '" ,... •++ _ r ---++ + + • K + + 
E = LIYI rJ or- l �X K D o<P! + l - Do�o + r r 

' --->_ 

+ ilWrf(,, � t !__ x R-oa¢1 + i !i_ Do.Po, r r 
... ,. .-++ 

iJ = w+ � (zlt+lz -1¢-:z � 1 ) +i !__ x_K+o;¢o + 'K o;rpr � 

r r r 

- illC -� (21\t- 12- l�+ 12 - 1) + i � X K-D;rp(, + J(- o;¢). r r r 

(5) 

Here r = da± are the field strengths defined in IR!, i.e. f�r = a0a:- a,a�. The SU(3) topological 
charge density is 

Here, k± = d.t- in 1R:i-, with/±= tJri-D±rp� � ¢�D±rt>'i, i.e. k'iJr = a0I�- a,I�. The charge density 
is the 4-divergence of the current 

1 

lo 

After integrating over angular variables, the charge density in IR; is 

q(r, t) = _l_ (k�r +tOr+ kor +for). 
1f 

" 
The Yang-Mills equations a.uFilv + [A,u, F,u.v] = 0 become the following in our ansatz: 

(7) 

(8) 

(9) 
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where (*d*f±)o = r2 orfio + 2r[j0, ( *d*f±), = r2 arJ�,, and *D± *D± = r2D;iD!, (a= 0, r). 

We look for solutions to (9) and (1 0) with 

(lO) 

(11) 

t; are the positions of the merons on the t-axis, ( -00 = t0 < t 1 < ··· < tn < tn+l = oo) and Cl'i are 
their charges (allowing Cl'i = 0). Then (8) and k± = dl± imply that (9) and (11) are equivalent to 

the following equations: 

One solution of (12) and (13) is 

+ n + for= � 2n{3jo(r)o(t- tt), 
i� 1 

(12) 

(13) 

(14) 

because for this f±, *d*F = 0 due to the r2 in the metric. In what follows, we assume f�r is 
given by (14), and reduce the remaining Yang-Mills equations (10) to two coupled elliptic equa

tions for two real-valued functions of rand t. We will find that in gauges consistent with (4), f3T 
must be integers in order for A,u. to be regular away from the merons. 

Following Glimm and Jaffe [ 4], we find an a± such that [± = da± where [± is as in (14): 

n 
e±(r, t) = � {3y arg ( -t + ft + ir). 

i� 1 

?;± can be rotated into a single direction by defining 

8± 
= 
(. c��� sin1e:) . 

-sm�± co*' 
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e± rotates the covariant derivative into the ordinary derivative because de± =a± ee± and 
8±e(0±f1 = e, so that El±D(e±rt = e±(d +a± e) (B±f1 = d. Moreover, e±*(E>±f1 =*,and 

-->+ 2 -""-3-+ 2 lrp- I = 11/;- I so that (10) becomes 

(17) 

where *d*d = r2 A The circulation density of :f± is 

(18) 

This implies that f± maintains a constant direction in connected sets where Jf± * 0. If ;f± 
solves (17), it can, at worst, change direction by 1T across curves where f± = 0. This means that 

(17) is equivalent to the following system: 

where 1/J± is the component of If/± along a fixed direction which is one of the two possible 
directions of f±. 

The action density for the SU(3) field is given in [5] : 

-2 (D+ +)z -2 (D- -)2 1 1 r+ )2 1 (f- )z 
t r+ 1-=r �¢t +r u¢i +3 v or +3 or +31or or+ 

(19) 

(20) 

For the case f�r = 0 at r > 0, we integrate L(1, t) over angular variables and express the result in 

terms of 1/J+ and 1/J-: 

The potentialachievesitsminimum V= 0 at the four points 11/;+i = lVI = L Along the line 

1/1+ =X cos w, 1/1- = x sin w, Vis the double-well potential 

1 1 a2 ( 4 2 )2 V(w, X) =2- a2 + 16 a2 -X ' 
where a2 = 5 + 3 cos 4w (Figure 1 ). 

(21) 

(22) 
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Fig. 1. The potential V( lj/. t/1 ). Dots indicate absolute minima. Curve indicates mirtima along 

rays through the origin. 

Fig. 2. A possible set of strings connecting merons. The central two merons have 1/1 + and �/;

changing sign simultaneously. Roman numerals indicate the quadrant of arg(V + ii/J). 

In order that the SU(3) field strengths be regular at r:::;; 0 between the meron s, we must require 

that II/I+ I= 11/;-1 = 1 at r = 0 so that the term in V in the action density (2 1) is not singular. We 

can assume that the set Vt 1 1  ,.;; i,;:,;; n} includes every point where 1/1 + or ljJ- changes sign. The 

condition that A JL in ( 4) be regular at r = 0 is 

lim 1 + cpf = lim ¢� = 0. 
r--+0 r--+0 

{23) 

For each segment (ti, tt+1), it will·be possible to find a gauge such that (23) is satisfied, as long as 

II/;+ I=  I!JI-1 "' 1 at r = 0. However, the charges {Jf can be changed by any amount by gauge trans

formations unless we restrict our attention to gauges (4) which are regular on both Ut-I• ft) and 
(tf, ti+d· By (23), i;jz does not change direction acros� ft in such gauges. According to (16), ;p± 
changes direction by iJ71f for any e± consistent with {14). Therefore, when ,p± is constant acros s 

ti, ,:rj must be an even integer, and when w± changes sign across ti, {3j must be an odd integer. 

Although {3f is still not gauge invariant, f3r mod 2 is invariant. 

In summary, finding meron solutions with SU(3) topological charge density Q(f, t)"' 
}';j= 1 (jJ'j + {3i)S(1')D(t- ti) is reduced to solving (19) with boundary conditions 
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k ± 1 + z: i= 1/3. l/J± = {-1) 1 atr= 0, (24) 



The charge is quantized in integers, instead of half-integers as in SU(2), and is defined only 

modulo 2, instead of modulo 1 as in SU(2). The integer charge is not an artifact of a normalization 

convention. SU(2) merons embedded in an SU(3) theory have half-integer charges. For a solution 
to (19) and (24), we introduce strings as the lines for which t/J+ or 1/J is zero. We expect that the 

strings will end at the merons, and divide the plane into disjoin t  regions where w = arg( t/J.,. + i.J; -) 
is within one of the four quadrants of the unit circle (Figure 2). 

If�;= {3i = 0 mod 2 for some i, the boundary conditions (24) are as if there were no meron 

at ti. The action density (21) would also be affected (if solutions to (19) and (24) exist). Such ti 
are artifacts of a singular gauge transformation, not merons. The three other possibilities for {3[ mod 2 

affect the boundary conditions in such a way that the action density is changed on sets of 
positive measure in R4 (if solutions to (19) and (24) exist). For these cases, ft ia a genuine meron, 

not a gauge artifact. This includes the case {3f = �{3/ = 1 mod 2 which has total c:harge fli + {3i = 0 

at lf. 
We now treat the existence of solutions to (19) and (24). Note that (19) are the variational 

equations of (21 ). For the case �i = {3i mod 2 for all i, .;;+ = r.jJ- is a solution, provided 

(25) 

Note (25) is the equation for merons in SU(2) [4]. A proof of existence of solutions to (25) and 
(24) was given by Jonsson et al. [7]. Their proof depended on a knowledge of the behavior of 1V 

in a neighborhood of each meron. This knowledge was provided by a closed-fonn two-meron solu

tion (one meron at t = 0, one at t=- 00). No solution to (19) and,(24) with Pi* Pi mod 2 is known 
in closed form. However, in what follows, we prove that such a solution exists in the two-meron 

case. This leads us to expect that an ex i stence proof for (19) and (24) in the general case could be 

given along the lines of the proof of Jonsson et al. for (25). An alternative proof, using super- and 

sub-solution methods, has been given by Baker and Zirilli [8] and such methods may also be 

applicable here. 

If 1/J+ and 1/J- depend only one "'arg( -t + ir), then (19) becomes 

(26) 

where ' denotes differentiation with respect to e. The two-meron boundary conditions that we 

will study are 

lim �v = lim .JJ+ = 11m .. v = lim (-1/J+) = 1, (27) 
o�o o�o o�� a�� 

corresponding to charges {t1 = I, �1. = 0 mod 2. We note that lJ!+ = 1/1- = cos 8 is a solution of 

(26) with boundary conditions corresponding to�� = {3� = 1 mod 2. 

THEOREM. There exist two bounded, continuous functions .J;+ and r./1- defined in (0, n) satisfying 
(26) and (27). r./1± possesses two bounded, continuous derivatives and lim ( r./1±)' = lim ( r./1±)': 0. 

0-->0 0-->11' 
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The proof adapts a standard method for solving singular boundary value problems to the case of 

a system of equations. See Bailey et al. [9] for the method in the case of a single equation. 

Proof It is sufficient to work in the interval (0, 7T/2] with boundary conditions 1/1+ = ( 1/1-)' = 0 at 

rr/2 because setting tV(TT/2 + (J) = -1/J+(rr/2 - e) and 1/1 -(tr/2 +e)= I{; -(rr/2- 8) will extend a solu

tion and its first two derivatives to continuous functions on (0, rr). 

We define four functions, u 1 < u2 and v 1 < v2 which satisfy the boundary conditions at 0 and 

at TT/2: 

u2 (tl) = 1 - (201TT/, 
(28) 

It will turn out that the solution satisfies u1 < 1/1+ < u2 and v1 < 1/1- < v2 • The following differential 

inequalities hold for() E (0, TT/2): 

. 2 " ( 2 2 )> sm evl -vl 2v 1 -u. -1 0 

(29) 

The third inequality is proved by dividing by 83 and replacing (sin28)/e:z by the smaller function 

1 ��- (40 /1r) ( 1  - 2/rr). The result is a sixth degree polynomial in 8 w hich is everywhere less than 

--(1/4). The other three inequalities are simple to prove . 
We use u1 and vi to defme some regions in [0, TT/2) X IR2 (Figure 3): D = {(8, 1/1+, 1/1")10 <o <1r/l, 

u1(B)< t/1+ <u2(0),v1(8) < iJ!- < v2(8)},S = oD- [ �rr/2} X .lie]. LetD0 be a neighborhood of 

15 and D0 =Do II [ (o, 7T/2] X IR 2] foro > 0. The equations (26) satisfy a Lipshitz condition in 

D0 if o > 0. Therefore, the initial value problem (26) with initial conditions 1/J+ = (1/1-)' "'0, 

( 1/1+)' = b, 1/1- =cat 7r/2 has a unique twice continuously differentiable solution as far as the 

boundary of D0. This solution is a curve 'Ybc in D0, where 'Yb c(O) = (8, 1/1+(0), 1/J -(0)). '"Ybc depends 
continuously on (b, c). 

For (b, c) E r = ( -(6/1r)' -J) X (1/2, 1), we have '"Ybc(1r/2) E aD and "fbc(rr-/2) ED. For each 

(b, c) E r there is associated a unique point T(b, c) where 'Yb c first intersects S. In the case 
'Ybc(8) ED for all e E (0, rr/2), we define T(b, c) = (0, 1, l) = l'bc(O). As long as 'Ybc(tJ) ED, we 

can divide (26) by sin28 to obtain a uniform bound on (lJ;±)" of order unity. Since u/(0) = vj(O) = 0, 
such a bound implies that lim ( 1/1±)'"' 0. Therefore 'Ybc is a solution to our problem if T(b, c) = 

(0, l, 1). 
li->0 

We prove that the map T:I'-+ Sis continuous. Since 'Ybc depends continuously on (b, c), the 

only way T could fail to be continuous is if 'Ybc were tangent to Sat T(b, c). For example, 

suppose 1/J+ = u 1 and ( 1/J+)' = u'1 at e 0 > 0. Since 1/J-;;,. Vt ana u 1 ;;,. 0, (29) implies that 

u;' ';?- (sin200F1 V(2(1/1)2 - (iJI-)2 - 1) = (1/J+)" (strict inequality if 80 < 7T/2). Therefore, iJI+ < u1 
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for 0 * e 0 in some neighborhood of e 0. This contradicts the definition of T(b, c) as the first point 

where 'Yb c intersects S. The case where 'Ybc is tangent to one of the other three faces of S are 

handled in the same fashion. Since T(b, c) cannot be a point of tangency, T must be continuous. 

1 
c 

Fig. 3. The surfaceS, its faces 811• and Sv. and the curves that define them. 
l I 

Fig. 4. A numerical solution of the two-meron equation. 

In order to conclude that there is a (b, c) E r such that T(b, c)-= (0, I, 1 ), we must show 

that there is a curve C <;:;;, r such that T( C) surrounds the point (0, I, 1) inS. We outline a proof 

here. The face of S consisting of points (8, 1/l+, 1/l) with l];+-= ui(O) will be denoted by Sur The 
face consisting of points (fJ, if;+, if;-) with 1/1- = vi(O) will be denoted by Svi (Figure 3). Tf 
(bo' Co) Ear, then 'Yb 0 Co is tangent to (JD at n/2. The remarks in the above paragraph on solutions 

tangent to aD apply, and we conclude that 'Yb c is outside D for e near 11/2. Since the differential 0 0 
equations satisfy a Lipshitz condition, the curve {be and it s derivative converge uniformly to 

'Yb c and its derivative as (b, c) approaches (b0, c0). Therefore, there is a o suclil that for • • 

(b, c) EBs((bo, co)) r1 r the point T(b, c) has tl-coordinate close to n/2. Tf b0 '" -6/rr there is 

a 6' � 8 such that for (b, c) E Bf,, ((b0, c0)) n r the curve 'I be does not reach S until it exits by 

Su or at a point no more than one-third of the way from Su to Su on Sv or Sv . Similarly, Z l I I 1 
if b0 = -1, {be does not reach S until it exits by Su or at a point no more than one-third of I 
the way frum Su, to Su :l • Here, we have usee unif::Jrm convecge:1ce c: the deriva�ive. If c0 = 1/2, 
1bc exits by Sv or close to it, and if c0 = 1, 'Ybc exits by Sv or close to it (for (b, c) in an I :l 
appropriate neighborhood of (ho, Co)). These neighborhoods of the points of ar form an open 

cover which admits a finite sub cover by the compactness of ar. Thus there is a 611 such that every 
point of r within 6 II of or is covered. Let Cbe a rectangle in r closer to ar than o". By construc

tion, the four sides of Care mapped by T into four regions which surround the point (0, 1, 1) in 
S. Since Tis continuous, T(C) must surround the point (0, 1, 1 ). If T(I') did not include (0, 1, 1 ), 
then T(C) would have to jump as Cis contracted to a point. Since Tis continuous, we conclude 

that there is a (b, c) such that T(b, c)= (0, I, 1 ), and the theorem is pwved. 
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In the above proof, we found that the solution to (26) and (27) lies in a domain which does 
not include the function lJ;-::; 1. Thus , both V;+ and lJ;- exhibit singular behavior at the origin of 

lR!, even though V;- obeys constant boundary conditions. This can also be seen in Figure 4, which 
displays a numerical solution of (26) and (27). 
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