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Rare regions with weak disorder (Griffiths regions)
have the potential to spoil localization. We describe
a non-perturbative construction of local integrals of
motion (LIOMs) for a weakly interacting spin chain
in one dimension, under a physically reasonable
assumption on the statistics of eigenvalues.
We discuss ideas about the situation in higher
dimensions, where one can no longer ensure that
interactions involving the Griffiths regions are much
smaller than the typical energy-level spacing for
such regions. We argue that ergodicity is restored in
dimension d> 1, although equilibration should be
extremely slow, similar to the dynamics of glasses.

This article is part of the themed issue ‘Breakdown
of ergodicity in quantum systems: from solids to
synthetic matter’.

1. Introduction
In recent years, substantial theoretical, experimental
and numerical work has been underway, with a
goal of understanding the many-body analogue of
Anderson localization [1–3]. It is understood that a
key feature of many-body localization (MBL) is a
failure of thermalization; see [4] for a review. In
this article, we will discuss the status of MBL for
strongly disordered spin systems in dimension 1 and
in higher dimensions. The situation in one dimension
was clarified by Imbrie [5,6] establishing the existence
of the MBL phase, under a physically reasonable
assumption on level statistics. We will review the key
features of this construction to establish a starting
point for a discussion of ideas in higher dimensions.
In recent work by De Roeck & Huveneers [7], it is
argued that MBL breaks down in dimensions d> 1
due to the destabilizing effects of rare regions. Here,

2017 The Author(s) Published by the Royal Society. All rights reserved.
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we give a simplified version of their arguments, emphasizing the percolation perspective, while
making connections to related models that are more analytically tractable. MBL can be understood
in one dimension as a failure of resonant regions to form an infinite cluster (percolate). Therefore,
it is natural to investigate the possible breakdown of MBL in higher dimensions by assessing
whether resonant regions percolate.

MBL can be defined in many different ways, but in general it means a violation of ergodicity.
Loosely speaking, ergodicity entails the spreading of wave packets throughout the system. In
a many-body system, this would mean throughout the configurations of particles or spins,
consistent with a given energy. Thus, in an ergodic system the eigenfunctions take a democratic
sampling of all configurations close to a given energy. Spread-out eigenfunctions go hand in hand
with transport. At the other extreme, if the eigenfunctions are concentrated about one site (in a
single-body system) or about a single configuration (in a many-body system), then this would
constitute a failure of ergodicity.

One way to make the notion of concentration more precise is to define a deformation of
the basis vectors used to define the Hamiltonian into the exact eigenvectors. For a single-body
system such as the Anderson model on Z

d, the basis vectors are labelled by the sites on the
lattice, and with strong disorder (or weak hopping) the Hamiltonian may be diagonalized with
a unitary matrix that maps each basis vector to an eigenfunction localized near the associated
site. This matrix is typically close to the identity and its matrix elements (the eigenfunctions)
decay exponentially with the distance from the site labelling the eigenfunction. We may call such
a transformation quasi-local. In [8], such a quasi-local deformation was constructed explicitly.

As we shall see below, one can also define quasi-local deformations for strongly disordered
many-body Hamiltonians [9–12]. Here, quasi-locality means that a rotation involving degrees of
freedom in a region of size R should be equal to the identity up to terms exponentially small
in R. Suppose one has a quasi-local diagonalization of the Hamiltonian. Then it commutes with
the diagonal operators used to define the system (e.g. spin operators). Therefore, if one applies
the opposite rotation to these operators, one obtains a complete set of conserved quantities,
representing quasi-local deformations of the original operators. This would constitute an extreme
form of non-ergodicity. The existence of these local integrals of motion (LIOMs) is the hallmark
of a fully MBL system. See [13] for a review.

2. Localization in one dimension
Let us consider a specific model as we delve into the construction of quasi-local unitary operators
that diagonalize the Hamiltonian. A key requirement for the success of the method is for
appropriately defined resonances to form a dilute, non-percolating set in Z. We consider an Ising
model with magnetic fields, transverse fields and exchange terms, all random, onΛ= [−K, K] ∩ Z:

H =
K∑

i=−K

hiS
z
i +

K∑
i=−K

γiS
x
i +

K∑
i=−K−1

JiS
z
i Sz

i+1. (2.1)

This operates on the Hilbert space H=⊗
i∈Λ C

2, with

Sz
i =

(
1 0
0 −1

)
and Sx

i =
(

0 1
1 0

)
(2.2)

operating on the ith variable. Assume γi = γΓi with γ small. Random variables hi,Γi, Ji are
independent and bounded, with bounded probability densities.

The construction proceeds through a sequence of steps wherein rotations are performed on
an ever-increasing sequence of length scales. In the first step, we perform rotations on individual
sites. The only off-diagonal term in (2.1) is γiSx

i , which is local. We need to identify resonances
that may get in the way of using perturbation theory to define the proper rotations on this scale.
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For now, we only need to look at single-flip resonances. Let the spin configuration σ (i) be equal to
σ with the spin at i flipped. The associated change in energy is

�Ei ≡ E(σ ) − E(σ (i)) = 2σi(hi + Jiσi+1 + Ji−1σi−1). (2.3)

We say that the site i is resonant if |�Ei|< ε≡ γ 1/20 for at least one choice of σi−1, σi+1. Then, for
non-resonant sites the ratio γi/�Ei is ≤ γ 19/20. (By using a small power of γ for the cut-off on
small denominators, we obtain bounds on nth-order diagrams that are not far off from ‘typical’
values ∼ γ n.) A site is resonant with probability approximately 4ε. Hence resonant sites form a
dilute set where perturbation theory breaks down.

We use first-order perturbation theory to guide our choice of rotation; the goal at this stage is
to diagonalize H up to terms of order γ 2. Let H = H0 + J with H0 diagonal and J off-diagonal.
Put

J = Jres + Jper, (2.4)

where Jres contains terms J(i) ≡ γiSx
i with i resonant (i.e.�Ei < ε). Then Jper contains the remaining

‘perturbative’ terms. Put

A ≡
∑

non-resonant i

A(i) with A(i)σσ (i) = J(i)σσ (i)

Eσ − Eσ (i)
. (2.5)

Then we use e−A for a basis change, leading to a new rotated (or renormalized) Hamiltonian:

H(1) = eAHe−A = H + [A, H] + [A, [A, H]]
2!

+ · · · = H0 + Jres + J(1). (2.6)

After the change of basis, all the perturbative terms Jper have been eliminated. The resonant
terms Jres are untouched. The new interaction J(1) is quadratic and higher order in γ . Note that
A(i) depends on σi−1 and σi+1 (see (2.3)). Thus, it may fail to commute with spin operators on
neighbouring sites. However, A(i) does commute with A(j) or J(j) if |i − j|> 1. Thus, we preserve
quasi-locality of J(1); it can be written as

∑
g J(1)(g), where g is a sum of connected graphs involving

spin flips J(i) and associated energy denominators. Specifically, a graph is determined by a
sequence of sites i0, . . . , in such that dist(ip, {i0, . . . , ip−1}) ≤ 1 for 1 ≤ p ≤ n; thus each site in the
sequence is equal to or adjacent to one of the previous sites, as required for non-commutativity.
We obtain a non-vanishing term in (ad A)nJ ≡ [A, [A, . . . , [A, J] . . .]] operating on the spins at
those sites. A graph involving m spin flips has m − 1 energy denominators and is bounded by
γ (γ /ε)m−1.

Let us define resonant blocks by taking connected components of the set of sites belonging to
resonant graphs. We perform exact rotations O in small, isolated resonant blocks to diagonalize
the Hamiltonian there. This paves the way for reintegrating such regions into the perturbative
framework in subsequent steps.

Now, we may proceed inductively, defining the rotation that is needed to eliminate interactions
up to a given order in γ . We are in effect using Newton’s method to solve by successive
approximations the problem of diagonalizing H. Let us define a sequence of length scales Lk =
(15/8)k; then, in the kth step, we will eliminate interaction terms up to order γ Lk using operations
like (2.4)–(2.6). (A pure Newton’s method would lead to remainders ∼ γ 2k

; by taking Lk = (15/8)k

we allow for some degeneration of bounds when certain graphs are resummed; see below.) The
new interaction J(k) is a sum of connected graphs J(k)

σ σ̃
(g); quasi-locality is preserved. In general, a

graph of order Lk is defined to be resonant if

A(k)
σ σ̃

(g) ≡ J(k)
σ σ̃

(g)

E(k)
σ − E(k)

σ̃

>
(γ
ε

)Lk
. (2.7)

Then, we may perform rotations in the perturbative region (resonance-free region), using∑
g A(k)

σ σ̃
(g) to generate the correct rotation in this step. The structure of this multi-scale

perturbation theory is indicated schematically in figure 1.
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denominators

Figure 1. Graph contributing to the rotation generator A(k)
σ σ̃
(g).

resonant region

buffer zoneno. states = 2L

L

interaction ~ g L

buffer zone

Figure 2. Interactions traversing the buffer zone are small enough to compensate for energy denominators of order 2−L.

The problem of estimating the probability that g is resonant is less straightforward than in
the first step. The idea is to estimate a fractional moment of the graph; a graph of order Lk in γ
should have size γ Lk , and indeed we obtain such a bound on the sth moment of the graph. In
view of the somewhat larger cut-off for resonance in (2.7), we obtain from a Markov inequality
a correspondingly small bound on the probability that g is resonant. Specifically, the probability
that g is resonant obeys a bound of order εLk . This makes it possible to sum over exp(O(Lk))
graphs in the associated percolation problem. Complications in this picture arise when graphs
visit sites multiple times; this leads to a lack of independence in the denominators, which spoils
the fractional moment bound. However, by resumming graphs with a substantial fraction of
revisits and using previously obtained inductive bounds to cover these cases, one is still able
to obtain the requisite exponential bounds on the probability of resonance. Thus, we are able
to control the ‘forward approximation’, in which it is assumed that each step introduces a fresh
random variable.

(a) Griffiths regions in d = 1
Up to now we have argued why it is likely that the newly generated interaction terms remain
non-resonant. However, we still need to develop a way to handle those low-probability cases
where resonances or near-resonances do occur. For example, the disorder can be anomalously
weak in some region, so that all interactions in this region are resonant. In that case, we need
to consider interaction terms connecting a resonant region to its immediate neighbourhood or to
other resonant regions. Using our assumption on level-spacing statistics, it is possible to show that
energy denominators are typically of order �E ∼ 2−L for a resonant region of length L. However,
this remains under control only for interactions spanning a comparable distance. Thus, for graphs
spanning a distance L we obtain the fundamental requirement for perturbation theory to work:

(matrix element)
(�E)

∼ γ L

2−L � 1. (2.8)

As a consequence, a resonant region of size L needs a buffer zone of size L on either side, and
then only terms extending all the way through the buffer zone are considered part of J per when
designing quasi-local rotations as in (2.4)–(2.6) (figure 2).

Lacking control over what happens in the buffer zone, we are forced to do an uncontrolled
rotation that diagonalizes the Hamiltonian in the fattened resonant region. However, in one
dimension, the buffer zone has volume comparable to that of the resonant region, so the smaller
energy denominators (approximately 2−3L) remain under control.

When this situation is repeated on multiple scales, one is inevitably led to loosely connected
resonant regions, fractal in nature, as indicated in figure 3.
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Figure 3. Buffer zones on multiple scales lead to extended connectivity for resonant regions.

r

g r2rd 0 with r

only if d = 1

interactions ~ g r

level spacing 2–rd

Figure 4. In dimension d> 1, a buffer zone of width r has volume∼ rd , leading to uncontrollable energy denominators.

Still, the resonances do not percolate. The connectivity function for resonant regions no longer
decays exponentially, but it does decay rapidly, faster than any power of the distance. These fractal
arrangements of resonant and insulating regions play a role in theories of the MBL transition
[14–17].

In higher dimensions, the buffer zone can have much larger volume, presumably leading to
level spacings that are too small to continue the procedure (figure 4).

3. Percolation of resonances in higher dimensions
The proof of MBL (summarized above) breaks down in dimension d> 1. Is that just a limitation of
the method, or does MBL actually break down in higher dimensions? We argue that the resonant
regions which proved harmless in d = 1 destabilize the MBL phase in higher dimensions. In a
random system such as we have been considering here, there are inevitably going to be rare
regions of the ‘wrong phase’, otherwise known as Griffiths regions [18]. In such regions, the
disorder is anomalously low, presumably leading to thermalization, at least within the low-
disorder region or ‘bubble’. As we will see, there is a critical bubble size, above which the
dimensional scaling of interactions and level spacings begins to favour resonances. The bubble
can then serve as a seed for a cascade of resonant delocalization.

We begin by discussing how percolation of resonances leads to an expectation of ergodicity
and delocalization in higher dimensions, referencing a number of related models that shed light
on the problem. In subsequent sections, we will review the calculations and numerics of [7], which
solidify the basis for the picture presented here.

 on June 6, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160422

.........................................................
The first issue we would like to explore is the high degree of connectivity that a large

Griffiths bubble enjoys with its immediate neighbourhood. Graphically, it is connected to all of its
neighbour sites by interaction terms. Even though the interactions are small (γ � 1) for the model
(2.1), for a large bubble the number of terms will be much larger than γ−1, so the perturbative
treatment considered above will not lead to small rotation. This is the reason for introducing
buffer zones; but now we are trying to understand what happens within the buffer zone. If we
consider the bubble as a single vertex in the graph, then it follows that the neighbour sites are
only two steps removed from one another. This motivates the consideration of a toy model for
resonant delocalization on the complete graph. Aizenman et al. [19] consider a simple model that
is relevant for this situation,

HM = −|ϕ0〉〈ϕ0| + κMV (3.1)

with

〈ϕ0| = (1, 1, . . . , 1)√
M

and κM = λ√
2 ln M

. (3.2)

Here, V is a random potential, and the kinetic term −|ϕ0〉〈ϕ0| connects all of the M � 1 sites to
one another. They find delocalization occurs as predicted by a heuristic condition for resonant
delocalization (same as the percolation condition considered above),

(tunnelling amplitude)
(level spacing)

� 1. (3.3)

Let us use this criterion for resonant delocalization to examine the status of the graph of
resonant transitions in the region surrounding a Griffiths bubble of diameter L. (Bubbles will come
in all shapes, but let us consider a roughly spherical bubble with volume of the order of Ld.) We
may consider the most basic transitions that flip a particular spin at a distance r from the bubble,
while simultaneously inducing a transition within the Griffiths region. As in the one-dimensional
constructions discussed above, we use a basis of eigenstates in the Griffiths region, and in this
basis the typical matrix element for such a transition would be of size γ rN−1/2, where N = 2Ld

is
the dimension of the space of states in the bubble. The factor of N−1/2 is the appropriate scaling
for a local operator O in the bubble, because the basis change preserves trO∗O =∑

αβ |Oαβ |2.
(Assuming the bubble is thermalized, the matrix elements in the new basis should all be roughly
of the same size.) Thus, the condition for a resonant transition is given by

(tunnelling amplitude)
(level spacing)

= γ rN−1/2

N−1 = γ r2Ld/2 � 1. (3.4)

We see that the resonance condition (3.4) should be satisfied for virtually every spin in a buffer
zone defined as r ≤ r(L) ≈ 1

2 Ld/| log γ |. That is, the energy of flipping the spin can be precisely
matched to the energy of some transition within the bubble. The degree of precision required
for resonance varies with r in proportion to the matrix element, and thus when r increases
past r(L), it becomes smaller than the typical level spacing. Nevertheless, we see that virtually
every spin configuration within the buffer zone of width r(L) can be reached from any other
spin configuration by a sequence of resonant transitions (consistent with conservation of energy,
within the energy window of size ∼ γ r).

Note that, for large enough L, we have r(L) � L for d> 1. In one dimension, r(L) is of the
same order as L, as we have discussed already. The dimensional argument drives the whole
analysis; it may be compared with the Imry–Ma argument comparing Ld/2 fluctuations of the
bulk free energy with Ld−1 surface energies for the random-field Ising model [20]. Although the
validity of the Imry–Ma argument was questioned [21], a rigorous analysis [22,23] demonstrated
the validity of the scaling picture, employing the Imry–Ma argument in an induction on length
scales. In assessing the viability of the MBL state in higher dimensions, we do not claim that
the scaling argument is definitive on its own, but when employed in a length-scale induction
and buttressed by further analysis it deserves to be considered the ‘default’ prediction, barring
convincing evidence to the contrary.
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In general, when conditions for resonant tunnelling are satisfied, one should expect that all the

configurations reachable by resonant transitions should be represented approximately equally
in the eigenfunctions. Thus, this picture predicts a sort of ‘thin ergodicity’ out to a distance at
least r(L), meaning that all configurations within an energy window (whose width decreases
exponentially with r) should be roughly equally represented in the eigenfunctions.

In fact, larger neighbourhoods of the Griffiths region should be affected similarly, with ‘thin
ergodicity’ extending to arbitrarily large radii, in the idealized case of a single Griffiths bubble
in the whole of Z

d. To see this, we need a bootstrap (or inductive) argument. To match up the
transition energy to the requisite accuracy for a spin at a large distance r from the bubble, we need
sufficient ‘digits of precision’ to represent the energy difference. Thus, in order to find a transition
that resonates with the distant spin, we need to enlist a comparable number (O(r| log γ |)) of spins
in the vicinity of the bubble. We may choose to organize the induction by considering whether
thin ergodicity out to a distance r/2 from the bubble will thermalize spins out to a distance r.
Repeating the calculation in (3.4) with N → N(r/2) ≡ 2(r/2)d

γ r/2 (to account for the thinness of the
percolation cluster), we obtain the condition

(tunnelling amplitude)
(level spacing)

= γ rN(r/2)−1/2

N(r/2)−1 = γ r/22(r/2)d/2 � 1. (3.5)

Thus, we see that spins at arbitrarily large distances will be active, and consequently the resonant
percolation cluster will include all of the spin configurations within a given radius r whose energy
lies within an exponentially small window of width ∼ γ r. (This narrow window appears in [7] as
the hybridization width.)

A related situation was considered in rigorous work by Aizenman & Warzel [24–26] on
resonant delocalization on the Bethe lattice. They show that long-range tunnelling to distant
resonant sites can lead to delocalization, provided there are sufficiently many paths available,
and hence sufficiently many opportunities for sites to be on-resonance to the requisite accuracy.

4. Numerical verification
The ideas developed above seem amenable to numerical tests, but there are challenges. First of all,
we need a Griffiths region to act as a ‘seed’ of ergodicity. In practice, this means that we need to
engineer weak disorder in one region of the spin system. As it is well accepted [27–30] that ergodic
spin systems can, up to some caveats, be modelled by random matrices, it seems well justified
to replace the Hamiltonian in the Griffiths region by a random matrix of the right symmetry
class Gaussian orthogonal ensemble (GOE) in our case because we have real Hamiltonians).
Hence, the model is H = HGf + Hloc + HGf-loc, where HGf is the GOE random matrix describing
the Griffiths region ‘Gf’, Hloc describes the localized surroundings ‘loc’, where we assume that the
perturbative procedure described in §2 works perfectly, i.e. we never encounter any resonance.
Finally, HGf-loc describes the interaction terms connecting the two regions, i.e. located at ∂Gf.
As said, the perturbative diagonalization can be done for Hloc, which means that there is a
quasi-local transformation matrix U such that UHlocU∗ = D = D(Sz

i , i ∈ loc). The transformation
O �→ UOU∗ transforms local operators at a site i into operators that decay exponentially with
distance from i. In particular, after implementing the transformation, the coupling term HGf-loc
consists of a sum of terms located at sites i ∈ loc and with strength decaying exponentially in
the distance to the boundary ∂Gf. Finally, we introduce another simplification: the system in the
localized region is taken to be non-interacting (Anderson insulator). It is hard to imagine that
this would weaken the tendency of the total system to localization, and hence this simplification
only strengthens our case provided that we still exhibit delocalization. So, finally, we model the
resulting Hamiltonian as

H = HGf +
∑
i∈loc

hiS
z
i + VGf

∑
i∈loc

JiS
x
i , Ji = J0α

dist(∂Gf,i),
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weak disorder strong disorder(a)

(b)

(c)

Figure 5. (a) A chain of weakly disordered spins, the Griffiths region, is coupled to a chain of strongly disordered spins—the
MBL system. (b) The system ismodelledbyweakly disordered spins coupled to LIOMs (no couplingbetween the LIOMsanymore).
Note that all LIOMs are coupled only to the rightmost spin. (c) The weakly disordered spins are modelled by a randommatrix.

where VGf acts inside the Griffiths region and we see that the couplings Ji decay exponentially
when moving away from the Griffiths region. The absence of terms like Sz

i Sz
j is due to the

restriction to an Anderson insulator. Let us now fix the geometry of the set-up. Inside the Griffiths
region, it does not matter because we are anyhow modelling that by a random matrix. We take the
exterior localized region to be one dimensional, even though the whole point is to substantiate
claims about higher dimensions. The reason for this is that the maximal number of spins that
we can reasonably consider is 14–18 (if we do exact diagonalization, which is the only unbiased
method available), making it hard to imagine arranging this small amount of spins credibly in a
d> 1 set-up. The process leading to our model Hamiltonian is illustrated in figure 5.

To analyse our set-up, the philosophy is to use criterion (3.3) repeatedly. When adding the first
spin, say i = 1, the dimension of the bath is dGf and the tunnelling amplitude due to the term
JiVGfSx

i is Ji/
√

dGf. Here, we used crucially the random matrix structure of the Griffiths region to
estimate a matrix element of the operator VGf between eigenstates. This tunnelling amplitude is
to be compared with the level spacing WGfd

−1
Gf , where WGf is the spectral width. As this grows

typically linearly with the size of the Griffiths region, it is completely irrelevant given that dGf
grows exponentially. Hence, criterion (3.3) teaches us that the first spin is thermalized provided
that

J1dGf

WGf
√

dGf
= J1

WGf

√
dGf � 1. (4.1)

We see that this is obviously satisfied if the Griffiths region is large enough (dGf � 1). What
happens with the next spins? Now, as the bath has been strengthened by the first spin, we have
to update dGf → 2dGf, which makes it easier for the next spin to be thermalized. On the other
hand, the coupling is decreased because J1 → J2 = J1α. Hence, by inspecting (4.1), we arrive at the
following dichotomy:

(i) If α <
√

1/2, then eventually the bath runs out of steam. More precisely, after coupling �
spins with � such that

J�
WGf

√
dGf2� ≈ 1 ⇔ �≈ − 1

log(
√

2α)
log

(
J0
√

dGf

WGf

)

any further spin that is coupled does not get thermalized any more. This value of � is
hence a prediction for the size of the physical buffer region depicted in figure 2.

(ii) If α >
√

1/2, then the bath simply gets stronger the more spins are coupled to it. The
system is delocalized.
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Figure 6. A Griffiths region in d = 2. The distance to the region grows sublinearly with the (somewhat arbitrary) index of the
coupled spins, arranged along the spiral.

If we would now arrange the spins in a higher-dimensional geometry and the index i would spiral
away from the Griffiths region, then clearly the couplings Ji decay slower than exponentially in i
(figure 6).

This falls hence automatically in case 2 above, in line with the discussion of §3.
The next question is how to diagnose the delocalization of the whole system. We distinguish

three possible tests of the above theory, as follows.

(i) Global characteristics. In general, to distinguish between a localized and an ergodic
system, we can rely on spectral statistics: we expect level repulsion and random matrix
statistics for an ergodic system and absence of level repulsion and Poissonian statistics
for a localized system.

(ii) Characteristics of the added spins. We can test whether these extremely weakly coupled
spins indeed get thermalized by the Griffiths region. This can, for example, be done
by looking at the distribution of values of local observables located at those spins over
distinct eigenvectors. The eigenstate thermalization hypothesis (ETH) predicts that all
eigenvectors should have similar values.

(iii) Characteristics of the Griffiths region itself. We can test the effective dimension of the
ergodic region by determining what random matrix dimension deff matches best its
behaviour. The most natural way to do this seems to be by looking at off-diagonal matrix
elements of local operators, leading to a many-body notion of IPRs explained below.

Numerical tests of type 1, 2 above are currently underway [31] and they seem to confirm the
phase transition at α = √

1/2. Numerical tests of type 3 have been done in [7], so let us discuss
them. Let O be an operator in the Griffiths region with O = O∗. Then ETH predicts that, for
eigenstates ψ ,ψ ′ sufficiently close in energy (more precisely, |E(ψ) − E(ψ ′)| should be no bigger
than the Thouless energy), one has

|〈ψ , Oψ ′〉| ∼ 1√
deff

= e−S/2; (4.2)

in particular, the left-hand side is roughly independent of the precise eigenstates, and S is the
entropy at energy E(ψ) ≈ E(ψ ′). Of course, the off-diagonal elements satisfy a sum-rule because∑

ψ ,ψ ′
|〈ψ , Oψ ′〉|2 = Tr(OO∗).
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Figure 7. On the vertical axis we plotD(OB)= 〈ln(IPRO(ψ ))〉 (average over states near themiddle of the spectrum, and over
disorder realization). On the horizontal axis, we indicate the number of previously localized spins coupled to the Griffiths region.
The blue curve corresponds to a Griffiths region consisting of six spins (modelled by GOE), whereas the red curve corresponds to
a powerless Griffiths region of just one spin. A close look reveals that the blue curve increases nearly ln 2 with each added spin,
corresponding to a doubling of the IPR, as described above. If one were to plot the same curve in a set-up whereα <

√
1/2,

one would see the curve level off and become flat after a few added spins; see [31].

Therefore, averaging the square of matrix elements brings no information and instead we look at
a higher moment, defining the ψ-dependent inverse participation ratio

(IPRO(ψ))−1 :=
∑
ψ ′

|〈ψ , Oψ ′〉|4.

From (4.2) we get the interpretation of IPRO(ψ) as

IPRO(ψ) ≈ deff.

This interpretation as an effective dimension ultimately justifies the name ‘IPR’ as an analogous
quantity to the inverse of

∑
x |ψ(x)|4 for single-particle wave functions. Just like in the single-

particle case, the IPR could be energy dependent (or even ψ dependent) and we always choose ψ
in the middle of the spectrum.

In the scenario α >
√

1/2 discussed above, we expect that IPRO(ψ) increases by a factor of 2 for
each spin that is coupled to the Griffiths region (at least if O itself is in the Griffiths region). This
is indeed confirmed almost perfectly by the numerics (figure 7) for the case α = 3

4 >
√

1/2.

5. Critiques
Finally, let us comment on weaknesses of the above arguments. Regardless of the form in which
the ‘bootstrap’ argument is phrased, it inevitably relies on the fact that thermalized regions exhibit
some chaotic behaviour towards the distant LIOMs that are coupled to it. In the present §4, this
was apparent in the fact that matrix elements were computed by a random matrix ansatz. One
can certainly imagine scenarios in which the coupling of the first LIOMs would ‘kill’ the bath,
so that it would become unable to thermalize more LIOMs. Such scenarios go under the name
‘proximity effects’ (see [32,33], also explored in [34]). The easiest way for this to happen is if
the system localizes in the basis of the bath–LIOM coupling HGf-loc. However, this requires that
HGf-loc dominates the term HGf. For a realistic model of a Griffiths region, this is not the case, but
it can definitely happen in toy models. For example, this will occur if the parameter α introduced
above is taken too close to 1 without reducing J0, because ‖HGf-loc‖ ∝ J0/(1 − α) (by summing a
geometric series).
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.........................................................
Another, perhaps not entirely unrelated, concern is the following: if a random matrix

assumption is made at each point of the ‘bootstrap’ argument, does that not ignore the
increasingly long time scales that are present in the system, thus suggesting that the whole
procedure is inconsistent? The time scale for thermalization may be equated with the inverse of
the hybridization width, which, as discussed above, decreases exponentially with the distance
from the bubble. But the level spacing decreases more rapidly for d> 1, so (3.5) indicates
that thermalization extends to all distances, albeit at exponentially small rates. However, this
argument ignores any potential back-reaction of the spins on the bath. Indeed, if a system is very
weakly coupled to an external spin, then the back-reaction should be visible in structure factors of
all local operators as follows: these spectral factors should have a peak at the precession frequency
of the spin, with a very narrow width that depends on the coupling of that spin to the system.
After all, the spectral factors are related by Fourier transform to two-time correlation functions
(see [30] for a detailed discussion of such matters) so that slow degrees of freedom leave their
fingerprint on the spectral factors. Hence, a theory is surely not completely accurate if it does not
allow for any back-reaction of the weakly coupled spins on the bath. Now, the theory developed in
[7] does include back-reaction effects and, in particular, narrow peaks and troughs in the structure
factors of local operators do appear. Yet, the total structure factor still has a dominant continuous
background whose weight is larger than that of the fractal part. Of course, the analysis of [7]
ultimately relies on a model to characterize the new eigenfunctions and hence it cannot claim to
settle the issue conclusively.

Another scenario that is sometimes brought forward (see [35]) is that the system would
undergo a phase transition when the number of LIOMs becomes comparable to the number
of degrees of freedom in the bath. The microscopic mechanism for such a scenario is not clear
to us. However, the analysis in [7] gives support to the idea that large numbers of LIOMs (or
even infinitely many) can be treated perturbatively if the interaction strengths are small in an �2

sense. Indeed, as discussed above, the critical value αc = √
1/2 is the point at which the effects of

decaying interaction strengths balance the effects of increasing numbers of degrees of freedom.

6. Non-ergodicity or quasi-localization?
Several authors have speculated that, for certain delocalized systems, the wavefunctions could
yet fail to be non-ergodic, as they are effectively supported on a Hilbert space of much smaller
dimension than the full space; see, for example, [36] and references therein. In particular, Altshuler
et al. [37] provided numerical evidence for this scenario on random regular graphs. However,
other authors [38] classified this as a finite-size effect, and it seems fair to say that this issue has not
been conclusively resolved yet. One could try to draw parallels with the many-body problem we
have been considering as the network of resonances that eventually delocalizes the system is very
sparse. Therefore, the question arises whether our case matches the ‘non-ergodic delocalization’
label, at least in the case where there is a single Griffiths region for the entire system. Let us
stress that it is certainly clear that thermalization in such systems will occur exceedingly slowly.
The thermalization time for a system located at distance r from the Griffiths region will grow
exponentially with r, and hence, when r is of the order of the volume itself, one can consider this
system localized for all practical purposes, just as the systems considered in [39]. Whether one
calls such a system ergodic or not is largely a matter of convention. It could be ergodic in the
sense that it probably follows random matrix statistics (unpublished numerics [31] seem to point
in that direction), but it is non-ergodic in the same sense as finite systems having Ising symmetry
breaking, where one has to wait a time of order exp(volume) before seeing the ‘other phase’. If
we restore a finite density of Griffiths regions, as in real materials, then the picture changes: now
we expect the thermalization time to be independent of volume, though still ridiculously large.
This fits well with all the previous work on ‘quasi-localization’ (e.g. [40,41]), where one expects
systems to exhibit very slow dynamics, not unlike the dynamics in glasses. The extremely long
time scales required for thermalization are presumably not accessible experimentally. Thus, there
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Figure 8. Same set-up as in figure 7, but nowD is computed for an operator located at distance i from the Griffiths region. The
theory predicts that, from i = 1 onwards,D decreases with slope−2 log(α), which in the case at hand equals−0.58. This
seems in reasonable agreement with the slope−0.5 seen in the plot. (Online version in colour.)

is no contradiction with experiments on two-dimensional optical glasses indicating a transition
to a non-thermalizing MBL phase [42–44].

However, what comes very close to a picture of non-ergodicity is the fact that the IPR as
defined above, depending on a local operator Oi, does decrease when one moves away from
the Griffiths region. Roughly, one finds

IPROi (ψ) ≈ α2rIPROGf (ψ),

where r is the distance of Oi to the Griffiths region, where OGf is located. This exponential
dependence has been predicted by the theory of [7] and confirmed numerically (figure 8).
Standard ETH reasoning allows one to translate the factor α2r into a decrease of a local
thermalization time; see, for example, [7,30]. However, as the same wave function ψ is concerned
on the left and the right side, the straightforward interpretation as an effective dimension is no
longer tenable literally and therefore it is not quite clear how to precisely rephrase these findings
in terms of the support of typical wave functions.
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