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Abstract: A newKAM-style proof of Anderson localization is obtained. A sequence of
local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are
driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential
decay of the eigenfunction correlator (this implies strong dynamical localization). The
method has been used in recent work on many-body localization (Imbrie in On many-
body localization for quantum spin chains, arXiv:1403.7837, 2014).

1. Introduction

This work presents a new proof of localization in the Anderson tight-binding model
at large disorder. In the spirit of KAM, a sequence of local rotations is used to diago-
nalize the Hamiltonian. This contrasts with previous work, which has largely focused
on proving properties of the resolvent. Here we work directly with the eigenfunctions.
We prove exponential decay of the eigenfunction correlator E

∑
α

∣
∣ψα(x)ψα(y)

∣
∣. Then

strong dynamical localization is an immediate consequence. This work was motivated
by a desire to find a procedure that might generalize to many-body Hamiltonians. We
have successfully applied these ideas to a proof of many-body localization for a one-
dimensional spin chain, under a certain assumption on level statistics [26]. The key to
success in themany-body context is exponential bounds on probabilities, for example the
probability that

∑
α

∣
∣ψα(x)ψα(y)

∣
∣ is not exponentially small. Such bounds have been

proven by working with fractional moments of the resolvent [1], but here we present the
first proof using multi-scale analysis. We have avoided using resolvent methods in this
work because they do not seem to generalize to many-body problems.

Consider the random Schrödinger operator on Z
D:

H = J0(−� − 2D) + V . (1.1)
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Working on a rectangular subset � ⊂ Z
D , the Hamiltonian is an operator on C

|�|:

H (�)
xy =

⎧
⎪⎨

⎪⎩

vx , x = y;
−J0, |x − y| = 1;
0, otherwise.

(1.2)

Here we use the L1 distance |x | = ∑D
μ=1 |xμ| for x = (x1, . . . , xD) ∈ Z

D . The
potentials vx are iid random variables with a fixed, continuous distribution having a
bounded density with respect to Lebesgue measure:

dλ(v) = ρ(v)dv, (1.3)

with

sup
v∈R

ρ(v) ≡ ρ0. (1.4)

We prove exponential decay of the eigenfunction correlator for small J0, with bounds
uniform in �.

Theorem 1.1. The eigenvalues of H (�) are nondegenerate, with probability 1. Let {ψα

(x)}α=1,...,|�| denote the associated eigenvectors. There is a κ > 0 such that if J0 is
sufficiently small (depending only on D and ρ0), the following bounds hold for any
rectangle �. The eigenfunction correlator satisfies

E

∑

α

∣
∣ψα(x)ψα(y)

∣
∣ ≤ J κ|x−y|

0 , (1.5)

and consequently,

∑

α

∣
∣ψα(x)ψα(y)

∣
∣ ≤ J κ|x−y|/2

0 with probability 1 − J κ|x−y|/2
0 . (1.6)

Dynamical localization refers to the rapid fall-off of supt
∣
∣(eit H PI )(x, y)

∣
∣with |x−y|,

where PI is the projection onto some energy interval I . In the strong form, one has
rapid decay of E supt

∣
∣(eit H PI )(x, y)

∣
∣. Previous work has followed one of two paths.

The multi-scale analysis program began with proof of absence of diffusion via analy-
sis of resonant regions and associated bounds on the resolvent [20]. Subsequent work
established dynamical localization in various forms by relating properties of the resol-
vent to properties of the eigenfunctions [13,21,28]. The best result was of the form
E supt

∣
∣(eit H PI )(x, y)

∣
∣ ≤ exp(−|x − y|ζ ) for ζ < 1 [22]. The dominant contribu-

tion to these bounds comes from probabilities of resonant regions. The fractional mo-
ment method began with a proof of exponential decay of E|(H − E)−1(x, y)|s for
some s < 1 [3]. Subsequent work used this result to obtain exponential decay of
E supt

∣
∣(eit H PI )(x, y)

∣
∣, thereby obtaining dynamical localization in the strongest form

[1,2,4,25].
Implicit in these results are bounds proving the rapid fall-off of the eigenfunction

correlator E
∑

Eα∈I
∣
∣ψα(x)ψα(y)

∣
∣, from which one obtains dynamical localization by

bounding eit Eα by 1. Chulaevsky has developed a hybrid approach [9,10] with a greater
focus on eigenfunction correlators.
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In this work we focus on the unitary rotations that diagonalize the Hamiltonian. The
columns of these rotations are the eigenfunctions. The rotation matrices are never sin-
gular, unlike the resolvent, which has poles at the eigenvalues. As a result, we are able
to work with very mild separation conditions between resonant regions. This makes it
possible to preserve exponential decay of probabilities of resonant regions. Exponential
decay of probabilities is a critical requirement for progressing to many-body Hamiltoni-
ans, because the number of transitions possible in a region of size n is exponential in n.

We work on a sequence of length scales Lk = ( 158 )k , designing rotations that connect
sites separated by distances of the order of Lk . In nonresonant regions, the rotations are
written as convergent power series based on first-order perturbation theory. In resonant
regions (blocks for quasi-degenerate perturbation theory), exact rotations are used, as
in Jacobi diagonalization [31]. The procedure leads to rapid convergence to a diagonal
Hamiltonian, with off-diagonal matrix elements �J Lk

0 . As the unperturbed eigenstates
are deformed into the exact ones, we obtain a one-to-one mapping of eigenstates to sites
(except in rare resonant regions, where n states map to n sites). The end result is a set
of convergent graphical expansions for the eigenvalues and eigenfunctions, with each
graph depending on the potential only in a neighborhood of its support. The detailed,
local control of eigenvalues and eigenfunctions allows us to prove convergence in the
� → ∞ limit. The expansions should be useful for a more detailed analysis of their
behavior in both energy space and position space.

Previous authors have used KAM-type procedures in the context of quasiperiodic
and deterministic potentials [5,6,11,12,17,18,30]. Other diagonalizing flows have been
discussed in a variety of contexts [7,16,24,32], but perhaps the closest connection to the
present work is the similarity renormalization group [23].

2. First Step

In the first step, we derive an equation for the eigenfunctions of H (�). At this stage,
the expansion is just first-order perturbation theory in J0. In terms of the J0 = 0 eigen-
functions ψ

(0)
x (y) = δxy , the state ψ

(0)
x connects to nearest-neighbor states ψ

(0)
y with

|x − y| = 1. Multistep graphs will result when we orthonormalize the new basis vectors.

2.1. Resonant blocks. We say that a pair sites x and y are resonant in step 1 if |vx −vy | <

ε and |x − y| = 1. Take ε = J δ
0 with δ = 1

20 . Let

S1 = {x ∈ � : x is in a resonant pair}. (2.1)

This set can be decomposed into connected components or blocks B(1)
1 , . . . , B(1)

N based
on the graph of resonant links 〈x, y〉. Each block is treated as a model space in quasi-
degenerate perturbation theory, so we do not perturb with respect to couplings within a
block. Our goal for this step is to find a basis in which H is block diagonal up to terms
of order J 20 .

Let us estimate the probability of Exy , the event that two sites x, y lie in the same
resonant block. If Exy occurs, then there must be a self-avoiding walkω of resonant links
from x to y. We claim that

P
(Exy

) ≤
∑

ω:x→y

∏

〈z,z̃〉∈ω

P
(〈z, z̃〉 is resonant) ≤

∑

ω:x→y

(2ρ0ε)
|ω| ≤ (cDρ0ε)

|x−y|.

(2.2)
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Because ω is loop-free, we can change variables replacing {vz}z∈ω,z 
=x with {vz −
vz̃}〈z,z̃〉∈ω and the Jacobian is ±1. Hence the probability that all the links of ω are
resonant is less than (2ρ0ε)|ω|, where |ω| is the number of links in ω.

2.2. Effective Hamiltonian. Having identified the resonant blocks and having estimated
their probabilities,weproceed to perturb in the nonresonant couplings.Using the notation
〈ψ(0)

x |H |ψ(0)
y 〉 = Hxy , write H as a sum of diagonal and off-diagonal parts: H = H0 + J

with

H0,xy = Hxyδxy = vxδxy ≡ Exδxy, (2.3)

Jxy =
{

−J0, |x − y| = 1;
0, otherwise.

(2.4)

Let us write

J = J per + J res, (2.5)

where J per only contains perturbative links 〈x, y〉 with both endpoints outside S1. Links
with at least one of x, y in S1 are in J res (could be resonant).

First-order Rayleigh–Schrödinger perturbation theory would give

ψ(1)
x = ψ(0)

x +
∑

y 
=x

〈ψ(0)
x |J per|ψ(0)

y 〉ψ(0)
y

Ex − Ey
= ψ(0)

x +
∑

y

J perxy

Ex − Ey
ψ(0)
y . (2.6)

Let us define an antisymmetric operator A with matrix elements

Axy = J perxy

Ex − Ey
. (2.7)

Then, instead of (2.6), we use the orthogonal matrix 
 = e−A for our basis change:

ψ(1)
x =

∑

y


tr
xyψ

(0)
y , (2.8)

with 
tr = eA taking the place of 1 + A, which appears in (2.6). More generally, if J
were self-adjoint rather than symmetric, then
would be unitary. A similar construction
was used in [14,15].

Let us write H in the new basis:

H (1) = 
trH
 = 
∗H
. (2.9)

Then we can define J (1)
xy through

H (1)
xy = E (0)

x δxy + J (1)
xy = H0,xy + J (1)

xy . (2.10)

The matrix J (1) is no longer strictly off-diagonal. However, we will see that J (1)
xx is of

order J 20 /ε, which is natural since energies vary only at the second order of perturbation
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theory when the perturbation is off-diagonal. In later stages we will need to adjust H0,
but here we may use H (1)

0 = H0. Observe that [A, H0] = −J per:

[A, H0]xy = J perxy Ey − Ex J
per
xy

Ex − Ey
= −J perxy . (2.11)

Then, using H = H0 + J , we have [A, H ] = −J per + [A, J ], and so

H (1) = eAHe−A = H + [A, H ] + [A, [A, H ]]
2! + · · ·

= H0 + J res + J per − J per + [A, J ] + [A,−J per + [A, J ]]
2! + · · ·

= H0 + J res +
∞∑

n=1

(ad A)n

n! J −
∞∑

n=1

(ad A)n

(n + 1)! J
per

= H0 + J res +
∞∑

n=1

n

(n + 1)! (ad A)n J per +
∞∑

n=1

(ad A)n

n! J res

= H0 + J res + J (1). (2.12)

Here ad A = [A, ·].
Observe that in the new Hamiltonian, H0 and J res are still present, but J per is gone.

In its place is a series of terms of the form Ap J perAq or Ap J resAq , with n = p +q ≥ 1.
Since Axy = J perxy /(Ex − Ey), all such terms are of order Jn+10 /εn with n ≥ 1. This

means that the new J (1)
xy is of order J 20 /ε. In particular, the matrix elements of H (1)

satisfy

H (1)
xy = Exδxy + J (1)

xy = Exδxy + O(J 20 /ε). (2.13)

As in Newton’s method, the expansion parameter in each step will be roughly the square
of the previous one.

Wewould like to interpret the above expressions for
tr
xy and J

(1)
xy in terms of graphical

expansions. The matrix products (An)xy or (Ap J Aq)xy have a natural interpretation in
terms of a sum of walks from x to y. At this stage, A and J allow only nearest neighbor
steps. Thus we may write


tr
xy = δxy +

∞∑

n=1

1

n! (A
n)xy = δxy +

∑

G1:x→y


tr
xy(G1), (2.14)

where G1 is a walk (x0 = x, x1, . . . , xn = y) with nearest-neighbor steps, and


tr
xy(G1) = 1

n!
n∏

p=1

Axp−1xp . (2.15)

In view of the antisymmetry of A, the links are oriented, and the walk runs from x to y.
The graphical amplitude obeys a bound

|
tr
xy(G1)| ≤ (J0/ε)

|G1|, (2.16)
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where |G1| = n denotes the number of steps in G1.
In a similar fashion, we may write

J (1)
xy =

∑

g1:x→y

J (1)
xy (g1). (2.17)

A graph of g1 consists of p A-links, followed by one J link (J res or J per), followed by
q A-links, with p + q ≥ 1. Thus g1 specifies the following data: a spatial graph, gs1, of
unit steps in the lattice, and an assignment of J res or J per to one of the steps, with the
rest being A-links. If we consider the set of denominators (Ex − Ey)

−1 associated with
the factors Axy = J perxy /(Ex − Ey), we obtain a denominator graph, gd1 . The amplitude
corresponding to g1 is the product of the specified matrix elements and an overall factor
easily derived from (2.12). For example, there is a term

(−1)n−p n

(n + 1)!
(
n
p

) p∏

m=1

Axm−1xm J
per
xpxp+1

n+1∏

m=p+2

Axm−1xm . (2.18)

(The binomial coefficient arises from expanding out (ad A)n J per and gathering like
terms.) Since the prefactor is bounded by 1, we have an estimate:

|J (1)
xy (g1)| ≤ J0(J0/ε)

|g1|−1, (2.19)

Note that while J (1)
xy (g1) is not symmetric under x ↔ y, the sum over g1 consistent with

a given spatial graph is symmetric (because A is antisymmetric and J is symmetric).

2.3. Small block diagonalization. We have treated the nonresonant links perturbatively
so as to diagonalize the Hamiltonian up to terms of order J 20 . In order to finish the first
step we get rid of as many of the remaining O(J0) terms as possible by diagonalizing
within small blocks. Since there remains O(J0) terms connecting the resonant region
S1 to its complement, we let S1 be a thickened versions of S1, obtained by adding all
first neighbors of S1. Then any term in the Hamiltonian with at least one end point in S

c
1

is necessarily second-order or higher. Components of S1 with volume no greater than
exp(M22/3) will be considered “small” (we take M = 2D). For such components, a
volume factor ≤ exp(M22/3) will be harmless in the second step expansion, which has
couplings O(J 20 ). The volume factor arises from the sum over states in a block. Small

components of S1 will be denoted b
(1)
α .

The remaining large components of S1 will be denoted B
(1′)
α , and their union will be

denoted S1′ . If we remove the one-step collar in each B
(1′)
α , we obtain B(1′)

α = S1 ∩ B
(1)
α .

Likewise, S1′ = S1′ ∩ S1. In this way we may keep track of the “core” resonant set that

produced each large block B
(1)
α (Fig. 1).

It is useful to gather terms that are internal to the collared blocks b
(1)

and B
(1)
. The

sum of such terms will be denoted J intxy ; the sum of the remaining terms will be denoted
J extxy . Thus we write

J (1)int
xy = J resxy +

∑

g1:x→y, g1∩S1 
=∅, g1⊂S1

J (1)
xy (g1) = J (1)sint

xy + J (1)lint
xy ,

J (1)ext
xy =

∑

g1:x→y such that g1∩S1=∅or g1 
⊂S1

J (1)
xy (g1),

(2.20)
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large block B
(1′)
α and its core B(1′)

small blocks b
(1)
α

Fig. 1. The shaded region is S1, the resonant set. S1 includes the collar regions. S1′ includes only large blocks
B(1′), whereas S1′ is the union of the collared blocks B

(1′)

where J (1)sint contains terms of J (1)int whose graph intersects a small block b
(1)
, and

J (1)lint contains terms whose graph intersects a large block B
(1)
. These terms connect a

block b(1) or B(1) to its collar. Then we have

H (1) = H0 + J (1)ext + J (1)sint + J (1)lint. (2.21)

We now diagonalize within small blocks b
(1)
.While we can find an orthogonal matrix

O that accomplishes this, we lose control over decay of eigenfunctions in the block. Let
O diagonalize H0 + J (1)sint. Note that the discriminant of the matrix is analytic in v, so it
cannot vanishon a set of positivemeasurewithout being identically zero.When thev’s are
separated fromeachother byO(J0), it is clear that the eigenvalues are nondegenerate, and
so the discriminant is nonzero. Thus the eigenvalues are nondegenerate and the rotation
uniquely determined, with probability one. Note that each block rotation depends only
on v within the block. Since H0 + J (1)sint is block diagonal, O is also. Let us define

H (1′) = O trH (1)O = O tr(H0 + J (1)ext + J (1)sint + J (1)lint)O

= H (1′)
0 + J (1′) + J (1)lint, (2.22)

where

H (1′)
0 = O tr(H0 + J (1)sint)O (2.23)

is diagonal, and

J (1′) = O tr J (1)extO =
∑

g1

O tr J (1)(g1)O. (2.24)

Note that the rotation does not affect J (1)lint . Although first-order terms remain in J (1)lint,
large blocks have many resonances and so can be considered high order after taking the
expectation.

Observe from (2.17) that J (1)(g1) only has nonzero matrix elements between x and
y, where g1 is a walk from x to y. The rotation matrices extend the range of interaction
for J (1)(g1) to the blocks containing x and y. Let g1′ label the set of terms obtained
from the matrix product in (2.24); it adds at the start and finish of g1 intra-block jumps
associated with matrix elements of O tr or O . Thus g1′ includes these jumps as additional
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data; it represents a generalized walk whose first and last steps represent matrix elements
of O . Then we may write

J (1′)
αβ =

∑

g1′ :α→β

J (1′)
αβ (g1′) =

∑

x,y,g1:x→y

O tr
αx J

(1)ext
xy (g1)Oyβ. (2.25)

Since the matrix elements of O are bounded by 1, (2.19) leads immediately to the bound

|J (1′)
αβ (g1′)| = |O tr

αx J
(1)ext
xy (g1)Oyβ | ≤ J0(J0/ε)

|g1′ |−1, (2.26)

where |g1′ | = |g1|, the length of the walk ignoring intra-block jumps.
Although the eigenfunctions fail to decay in resonant blocks, if we integrate over v

we obtain exponential decay from the probabilities of blocks.

Proposition 2.1. Let ε = J 1/200 be sufficiently small. Then

E

∑

α

|(
O)xα(O tr
tr)αy | ≤ (c3Dρ0ε)
|x−y|/3. (2.27)

We may think of the rows of O tr
tr as the eigenfunctions approximated to first order,
and now including the effects of small blocks. This is another step towards proving (1.6).

Proof. Our constructions depend on the collection of resonant blocks, so (2.27) is best
understood by inserting a partition of unity that specifies the blocks. Schematically, we
may write

E

∑

α

|(
O)xα(O tr
tr)αy | = E

∑

B
χB(v)

∑

α

|(
O)xα(O tr
tr)αy |. (2.28)

Here we sum over all possible collections of resonant blocks B = {b̄(1)
α , B̄(1)

α′ }. The
graphical expansion (2.15) for 
 has to avoid resonant blocks. We insert it into (2.28)
to obtain

E

∑

B
χB(v)

∑

G1,z,z̃,G̃1

|
xz(G1)|
∑

α

|OzαO
tr
αz̃ ||
tr

z̃ y(G̃1)|. (2.29)

We bound 
,
tr using (2.15). We may also bound �α|OzαO tr
αz̃ | by 1 since O is an

orthogonal matrix. Furthermore, if z 
= z̃, and z, z̃ do not belong to the same block, the
sum is zero because the rotations in distinct blocks have non-overlapping supports. In
order for OzαO tr

αz̃ to be nonzero, α must be both in the block of z and in the block of
z̃. Thus, in place of �α|OzαO tr

αz̃| we may insert an indicator 1zz̃(v) for the event that z

and z̃ belong to the same small block b
(1)
. Then (2.29) becomes

E

∑

B
χB(v)

∑

G1,z,z̃,G̃1

(J0/ε)
|G1|+|G̃1|1zz̃(v) ≤

∑

G1,z,z̃,G̃1

(J0/ε)
|G1|+|G̃1|E1zz̃(v),

(2.30)

where we have interchanged the sum over B with the sum over G1, z, z̃, G̃1, and used
the fact that the sum of χB(v) over B compatible with G1, z, z̃, G̃1 is bounded by 1.
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As in (2.2), the expectation on the right can be bounded by a sum of walks from z
to z̃, with resonant conditions on the links. We have to allow for the one-step collar in

b
(1)
, with nonresonant links. Still, there must be a (possibly branching) walk from z to

z̃ with at least 1
3 of the steps resonant. Thus, we have a probability factor (ρ0ε)

1/3 for
each step of ω and a factor J0/ε for each step of G1 and G2. The number of branching
walks of size n is bounded by (cD/4)n , where cD is a constant depending only on the
dimension D. After summing over n ≥ |x − y| and over the choice of factors (ρ0ε)

1/3

or J0/ε for each step of the walk, we obtain (2.27). ��

3. The Second Step

3.1. Resonant blocks. There are some issues that appear for the first time in the second
step. Therefore, it is helpful to discuss them in the simplest case before proceeding to
the general step.

In constructing resonant blocks B(2), we will be allowing links of length 2 or 3 in the
perturbation, which means that it is necessary to check for resonances between states up
to 3 steps apart. Also, we must consider resonances between states in different blocks

b
(1)
α and between block states and individual sites.

Notation and terminology.Due to the fact that a block state is potentially spread through-
out its block,we should consider a block as a “supersite”withmultiple states. The rotation
matrix O has one site index and one state index, see for example (2.25). But it would
be too cumbersome to maintain a notational distinction, so we will use x, y, z to denote
both sites and states. If a lattice point x lies within a block, then the index x may refer

to one of the states in b
(1)
. The labeling of states within a block is arbitrary, so we may

choose a one-to-one correspondence between the sites of b
(1)

and the states of b
(1)
, and

use that to assign labels to states. Block states have many neighbors. We let B(x) denote
the block of x . This means that B(x) = x if x is a site; otherwise B(x) is the block that
gave rise to the state x .

For each g1′ corresponding to a term of J (1′) with 2 ≤ |g1′ | ≤ 3, B(x) 
= B(y),
g1′ ∩ S1′ = ∅, let us define

A(2)prov
xy (g1′) =

∣
∣
∣
∣
∣

J (1′)
xy (g1′)

E (1′)
x − E (1′)

y

∣
∣
∣
∣
∣
. (3.1)

Here E (1′)
x denotes a diagonal entry of H (1′)

0 . We call these terms “provisional” A(2)

terms because not all of them will be small enough to include in A(2). We only consider
couplings between blocks or sites, never within a block or between a site and itself.
Furthermore, only terms up to third order are considered in this step.

We say that g1′ from x to y is resonant in step 2 if |g1′ | is 2 or 3, and if either of the
following conditions hold:

I.
∣
∣E (1′)

x − E (1′)
y

∣
∣ < ε|g1′ |;

II. A(2)prov
xy (g1′) > (J0/ε)

|g1′ | with |x − y|(1) ≥ 7
8 |g1′ |.

(3.2)

Here |x − y|(1) is the distance from x to y in the metric where blocks b
(1)

are contracted
to points. Condition II graphs are nearly self-avoiding, which allows for good Markov
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inequality estimates. Graphs with |x − y|(1) < 7
8 |g1′ | do not reach as far, so less decay

is needed, and we can rely more on inductive estimates.
The graphs g1′ that contribute to A(2)prov

xy have the structure AJ , J A, AAJ , AJ A,
J AA where A, J are one-step links from the first step. (Only J per terms contribute,
because J (1)sint is gone and J (1)lint terms connect to some B(1′).) For example, if g1′
specifies an AJ per graph between sites x, y, then

A(2)prov
xy (g1′) =

∣
∣
∣
∣
∣

1
2 Jxz J

per
zy

(
E (1′)
x − E (1′)

y
)
(Ez − Ey)

∣
∣
∣
∣
∣
=

1
2 J

2
0

∣
∣E (1′)

x − E (1′)
y

∣
∣|Ez − Ey |

. (3.3)

More generally, if either x or y is a block state, then the rotation matrix elements must
be inserted as per (2.25). The resonance condition amounts to a condition on products

of 2 or 3 energy denominations—one is E (1′)
x − E (1′)

y , and the others are specified by
g1′ .

We have to consider double- and triple-denominator resonant conditions because if,

say, one had
∣
∣E (1′)

x − E (1′)
y

∣
∣ ≥ ε2 and |Ex − Ez | ≥ ε, then the product would be ≥ε3.

This is insufficient if one seeks a procedure which can be extended to all length scales.
A complication with our definition of resonant events is their degree of correlation. In
the first step, the correlation was mild because probabilities could be estimated in terms
of uncorrelated Lebesgue integrals. In the present case, we use a Markov inequality
argument to estimate each probability by a product of certain Lebesgue integrals. Still,
if a graph g1′ has returns (loops) or if two graphs overlap at more than one vertex, then
the probability estimate weakens due to correlations. This makes it harder to control
event sums.

Asmentioned above, overlapping graphs g1′ are problematic for our estimates. There-
fore,weneed to show that there is a sufficient number of non-overlapping graphs to obtain
the needed decay in probabilities. The following construction generalizes to the kth step,
so one may imagine the graphs g1′ being arbitrarily long.

Let us define the step 2 resonant blocks. Consider the collection of all step 2 resonant
graphs g1′ . Two resonant graphs are considered to be connected if they have any sites
or blocks in common. Then the set of sites/blocks that belong to resonant graphs g1′ are
decomposed into connected components. The result is defined to be the step 2 resonant
blocks B(2)

1 , . . . , B(2)
n . These blocks do not touch large blocks B(1′) because resonant

g1′ do not.

Note that all sites (states) within a small block b
(1)

are considered to be at a distance
0 from each other, hence are automatically connected. In principle, one could explore
connections between states of a block, but it is impractical because we only know how
to vary block energies as a group; we have no control over intra-block resonances. Small

blocks b
(1)

may be extended or linked together, and there may be entirely new blocks.

Unlinked small blocks b
(1)

are not held over as scale 2 blocks (Fig. 2).
Next we add a 3-step collar to all blocks B(2) as well as our leftover large blocks

B(1′). This represents the range of sites reachable by graphs of the order considered in

this step. Since steps may link to small blocks b
(1)
, the collar may extend farther than

3 lattice steps, depending on the configuration of small blocks. We do not expand links
involving blocks B(2), B(1′) at this stage, so the blocks need to expand into the region
they could have linked to. As in the previous step, we define the resonant region S2 to

be the union of the blocks B(2)
α and B(1′)

α′ . Then S2 is the collared version of S2, and its
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large B(1′)

B
(1′)

proximity links

y

x

small blocks b
(1)

level 2
resonances

level 2
resonances

Fig. 2. Large blocks B(1′) and step 2 resonant links form step 2 blocks B(2). Small blocks b
(1)

without level
2 links are treated perturbatively in this step. Perturbations involving blocks B(2) are deferred to later steps

components may be divided in to small blocks b
(2)
α [volume ≤ exp(M42/3)] and large

blocks B
(2′)
α′ [volume > exp(M42/3)]. The union of the B

(2′)
α′ is denoted S2′ , and then

B(2′)
α′ ≡ S2 ∩ B

(2′)
α′ and S2′ = S2′ ∩ S2.

We have constructed resonant blocks as connected components of a generalized
percolation problem. The following proposition establishes exponential decay of the
corresponding connectivity function.

Proposition 3.1. Let E (2)
xy denote the probability that x, y lie in the same block b

(2)
or

B
(2)
, and let ε = J 1/200 be sufficiently small. Then

P(E (2)
xy ) ≤ (c10D ρ1ε)

|x−y|/10. (3.4)

Proof. In the first-step analysis, there had to be an unbroken chain of resonant links

from x to y. Here, we need to consider chains formed by B
(1′)

and by resonant graphs
g1′ , each thickened by three steps. (Let g1′ denote the thickened version of g1′ .) But
when two graphs overlap, we cannot take the product of their probabilities. Correlation
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x1

x = x0

x3

x2 y = y4

Fig. 3. Graphs g1′,1 through g1′,4 form a bridge from x to y. Graph g1′,1 is disjoint from g1′,3, and g1′,2 is
disjoint from g1′,4

is manifested by the lack of independent variables with which to integrate the energy de-

nominators. To overcome this problem,we find a collection of non-overlapping g1′ , B
(1′)

which extend at least half the distance from x to y. In this fashion, we may work with
effectively independent events, while giving up half the decay.

Let Bxy be the resonant block containing x, y. Define a metric on Bxy by letting

ρ(x1, x2) be the smallest number of resonant graphs g1′ or blocks B
(1′)

needed to form
an unbroken chain from x1 to x2. If ρ(x, y) = n, then there is a sequence of sites
x = x0, x1, . . . , xn = y such that ρ(x, x j ) = j for j = 0, 1, . . . , n, with each pair
{x j−1, x j } contained in some resonant graph or block. Note that the odd-numbered
graphs/blocks form a non-overlapping collection of graphs; likewise the even-numbered
ones. See Fig. 3. For if the j th graph/block overlaps with the kth one with k > j + 1,
then one could get from x to y in fewer than n steps. This construction allows us to
bound the probability of the whole collection of graphs/blocks by the geometric mean
of the probabilities of the even and odd subsequences. Thus, we may restrict attention
to non-overlapping collections of resonant graphs, losing no more than half the decay
distance (from the square root in the geometric mean).

We have already proven that the probability that x, y belong to the same block B
(1′)

is bounded by (c3Dρ0ε)
|x−y|/3—see the proof of Proposition 2.1. Let us focus, then, on

a thickened resonant graph g1′ , and prove an analogous estimate.

Take the simplest case, |g1′ | = 2, condition II of (3.2), with A(2)prov
xy given by (3.3).

Then by the Markov inequality, we have

P
(
A(2)prov
xy > (J0/ε)

2
)

≤ E

((
A(2)prov
xy

)s
/(J0/ε)

2s
)

≤ ε2s E
1

∣
∣E (1′)

x − E (1′)
y

∣
∣s

∣
∣Ez − Ey

∣
∣s

≤ (ρ1ε
s)2 (3.5)

for somefixed s < 1, say s = 4/5.Hereρ1 is a bound for supv0

∫
dλ(v−v0)v

−s . This step
involves a simple change of variable from the v’s to differences of v’s. By construction,
the three sites/blocks x, y, z are distinct, so the differences are independent. If x or y is
in a block, we make a change of variables to difference variables on a tree spanning each

block b
(1)
. But there is necessarily one variable left over corresponding to uniform shifts

of the potential on that block. The energies E (1′)
x come from diagonalizing H0 + J sint on

blocks. They move in sync with the variables for block shifts of the potential, since each

block variable multiplies the identity operator on its block. Thus we can use E (1′)
x −E (1′)

y
and Ez − Ey as integration variables, and the Jacobian is 1.

If |g1′ | = 3, then an analogous bound

P
(
A(2)prov
xy > (J0/ε)

3
)

< (ρ1ε
s)3 (3.6)
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holds, provided g1′ is “self-avoiding,” i.e. it has no returns to sites or blocks, which
would lead to fewer than three independent integration variables. If g1′ does have a
return, then we have only condition I to worry about, because |x − y|(1) < 7

8 |g1′ |. The
probability for condition I is easily seen to be ≤ (ρ1ε)

|g1′ |, based on the size of the
integration range. If we consider the bound on A(2)

xy (g1′) when |x − y|(1) = 1, |g1′ | = 3,
it is J 30 /ε4 = J 3−4δ

0 ≤ J 20 , because one denominator is ≥ ε3 and the other is ≥ ε. This
will be adequate since we only need decay from x to y.

Let us now consider the bound on P(E (2)
xy ). In order for E (2)

xy to occur, there must be
a (possibly branching) walk from x to y consisting of

1. at most 3 steps at the start and finish of large blocks B(1′) and graphs g1′ . These steps
have no small factor because of the collars employed in the construction of B(2) and
g1′ .

2. Steps in the lattice, not internal to any b
(1)
, coming from resonant graphs g1′ . These

result in a small probability factor (ρ1ε
s)1/2 per (3.5), (3.6), with the square root

coming from the geometric mean as discussed above.

3. Steps in lattice which are internal to large blocks B
(1′)

or to a b
(1)

that is part of a
resonant graph g1′ . These result in a small probability factor (ρ1ε)

1/3. Here we begin
with ρ0ε < ρ1ε, which is the probability of a resonant link at level 1, and add the 1

3
exponent for the 1-step collar which may be present about any such link.

Note that in applying (3.5), (3.6), we are constrained to consider only the even- or
odd-numbered graphs g1′ , because of the potential for shared or looping link variables.
But all of the type (3) steps can be used because they involve difference variables within
each b. TheMarkov inequality bounds (3.5), (3.6) involve differences between block/site
variables, so there is no overlap with the intra-block variables.

For each graph g1′ , there is a minimum of two type 2 steps and a maximum of 6
type 1 steps, see Fig. 4. Therefore, each small factor from a type 2 step will be spread
out over 4 steps by applying an exponent 1

4 . Then every step has a factor no worse than

(ρ1ε
s)1/8 = (ρ1ε)

1/10. Each large block B
(1′)

has volume greater than exp(M22/3),
which implies a diameter greater than exp(M22/3/D). If we take M = 2D, the diameter
is at least 24. Adding 4 type 1 steps to allow for the collar increase from 1 to 3 on each
side, we find that the linear density of resonant linksmay decrease from 1

3 to
1
3 · 24

24+4 = 2
7 .

Combining these facts, we may control the sum over (branching) lattice walks from
x to y and over collections of resonant graphs g1′ along the walk as in the proof of
Proposition 2.1. We obtain

P(E (2)
xy ) ≤ (c10D ρ1ε)

|x−y|/10, (3.7)

x y

1 1 11 1 1 2 3 3 3 2

b̄(1)

Fig. 4. The walk from x to y contains six type 1 steps from the collar around g1′ , two type 2 steps from g1′
itself, and three type 3 steps internal to the block b

(1)
. Type 2 steps are spread out by a factor of 4 to allow for

type 1 steps and a factor of 2 to account for the geometric mean. Type 3 steps are “spread out” by a factor of 3
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which completes the proof of Proposition 3.1.

Remark. The sum over g1′ containing a particular point is straightforward at this stage,

since it contains no more than 3 steps, and the number of states in a block b
(1)

is bounded
by exp(M22/3). We will need to be more careful when we revisit this estimate in the kth
step.

3.2. Perturbation in the nonresonant couplings. Let us begin by making a split analo-
gous to (2.5):

J (1′) = J (1′)per + J (1′)res. (3.8)

Here the perturbation terms are given by

J (1′)per
xy =

∑

g1′ :x→y, 2≤|g1′ |≤3, g1′∩S2=∅, B(x) 
=B(y)

J (1′)
xy (g1′), (3.9)

and the “resonant” part J (1′)res
xy consists of all terms J (1′)

xy with |g1′ | ≥ 4, terms intersecting
S2, and diagonal/intrablock terms for which B(x) (the block of x) is the same as B(y).
Let us put

A(2)
xy =

∑

g1′
A(2)
xy (g1′) = J (1′)per

xy (g1′)

E (1′)
x − E (1′)

y

. (3.10)

We would like to “resum” all terms from long graphs g1′ from x to y, i.e. those with
|g1′ | > 8

7 |x − y|(1). These are small enough, uniformly in v, so there is no need to keep
track of individual graphs and their v-dependence. Let g1′′ denote either a short graph
from x to y or a special jump step from x to y whose length is defined to be 2. The jump
step represents the collection of all long graphs from x to y. We call g1′′ short or long
accordingly. Then put

A(2)
xy (g1′′) =

⎧
⎨

⎩

A(2)
xy (g1′), if g1′′ = g1′, a short graph;

∑

long g1′ :x→y
A(2)
xy (g1′), if g1′′ is long. (3.11)

Now define the basis-change operator


(2) = e−A(2)
, (3.12)

and the new Hamiltonian

H (2) = 
(2)trH (1′)
(2). (3.13)

Recall that H (1′) = H (1′)
0 + J (1′) + J (1)lint with H (1′)

0,xy = E (1′)
x δxy . As in (2.12), we have

H (2) = H (1′)
0 + J (1′)res+ J (1)lint +

∞∑

n=1

n

(n + 1)!
(ad A(2))n

n! J (1′)per +
∞∑

n=1

(ad A(2))n

n! J (1′)res

= H (1′)
0 + J (1′)res + J (1)lint + J (2). (3.14)
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Note that since J (1′) is second order in J0, all commutator terms are fourth-order or
higher.

Let us describe the graphical expansions for 
(2) and J (2). As in (2.14), we may
write


(2)tr
xy = δxy +

∞∑

n=1

1

n! (A
(2)n)xy = δxy +

∑

G2:x→y


(2)tr
xy (G2), (3.15)

where G2 is a walk (x0 = x, x1, . . . , xn = y) consisting of a sequence of n subgraphs
g1′′,p : xp−1 → xp. Then


(2)tr
xy (G2) = 1

n!
n∏

p=1

Axp−1xp (g1′′,p). (3.16)

Note that if we put together all the subgraphs of G2, we get a walk Gs
2 from x to y

consisting of unit steps of short g1′ graphs and jump steps from long g1′′ , in both cases

between sites or blocks b
(1)
. In addition, there are jump steps within blocks b

(1)
from

rotation matrix elements. The length |G2| is the sum of the constituent lengths |g1′′,p|—
and as explained after (2.26), these do not include the intra-block jumps since there is
no decay within blocks. Define the length |Gs

2| of the spatial graph as the sum of the
constituent lengths ignoring long graphs g1′′ . The graph G2 also determines a graph
Gd

2 of energy denominators. Each short g1′′,p has one or two A(1) factors (each with
an energy denominator with an ε cutoff) and an overall energy denominator with cutoff
ε|g1′′ |. The number of denominators always equals the number of steps because each

J (1′)
xy (g1′) is always short one denominator. Hence |Gs

2| = |Gd
2|. (Long graphs g1′′ are

ignored on both sides of this equality.)

Nonresonant conditions (3.2) apply for J (1′)per
xy links, so each A(2)

xy (g1′′) in (3.16) is
bounded by (J0/ε)|g1′′ |. As explained after (3.6), the bound for a long g1′ is J 30 /ε4.
Allowing a constant for the number of long graphs g1′′ from x to y, we find that
|A(2)

xy (g1′′)| ≤ J 20 ≤ (J0/ε)|g1′′ | for long g1′′ . Hence

|
(2)tr
xy (G2)| ≤ 1

n! (J0/ε)
|G2|. (3.17)

We continue with a graphical representation for J (2), derived from (3.14):

J (2)
xy =

∑

g2:x→y

J (2)
xy (g2). (3.18)

Here g2 is a generalized walk from x to y with a structure similar to that ofG2. It consists
of p A(2)-links, followed by one J (1′)-link (J (1′)per or J (1′)res), followed by q A(2)-links,
with p + q ≥ 1. As above, A(2)-links are short or long (resummed) and indexed by g1′′ ;
J (1′)-links are unchanged, indexed by g1′ . Note that in the case of J (1′)res, the subgraph
can have length |g1′′ | ≥ 4. Thus J (2)

xy (g2) has an expression of the form (in the case of
J (1′)per)

(−1)n−p n

(n + 1)!
(
n
p

) p∏

m=1

A(2)
xm−1xm (g1′′,m)J (1′)per

xpxp+1 (g1′,p+1)
n+1∏

m=p+2

A(2)
xm−1xm (g1′′,m).

(3.19)
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As in the case of Gs
2, the spatial graph gs2 formed by uniting all the subgraphs forms a

walk of unit steps and jump steps between blocks/sites, and jump steps within blocks.
The denominator graph gd2 is short one link, compared with the non-jump steps of gs2.

Note that since A(2) and J (1′) are both second-order or higher, all terms J (2)
xy (g2) are of

degree at least 4. If we apply nonresonant conditions (3.2) to A(2) and previous bounds
(2.26) on J (1′), we see that

|J (2)
xy (g2)| ≤ J0(J0/ε)

|g2|−1. (3.20)

3.3. Small block diagonalization. In the last section we divided the current singular re-

gion S2 into largeblocks B
(2)

and small blocksb
(2)

withvolumeboundedbyexp(M42/3).
By construction, any term of theHamiltonianwhose graph does not intersect S2 is fourth-
order or higher. Put

J (2) + J (1′)res + J (1)lint = J (2)ext + J (2)int

= J (2)ext + J (2)sint + J (2)lint. (3.21)

Here J (2)int contains terms whose graph intersects S2 and is contained in S2. Let J (2)lint

include terms of J (2)int that are contained in large blocks B
(2)

. Let J (2)sint include

terms of J (2)int that are contained in small blocks b
(2)

, as well as second- or third-order
diagonal/intrablock terms for sites/blocks in Sc2. All remaining terms of J (2) and J (1′)res

are included in J (2)ext. (There are some terms fourth-order or higher in J (1′)res that are
now in J (2)ext—these were not expanded in (3.8)–(3.14) since they were already of
sufficiently high order, and had too great a range.)

Let O(2) be the matrix that diagonalizes H (1′)
0 + J (2)sint. It acts nontrivially only

within small blocks. This includes blocks b(1)
α , which need to be “rediagonalized” due

to the presence of intrablock interactions of second and third order. Then put

H (2′) = O(2)trH (2)O(2)

= O(2)tr(H (1′′)
0 + J (2)ext + J (2)sint + J (2)lint)O(2)

= H (2′)
0 + J (2′) + J (2)lint, (3.22)

where

H (2′)
0 = O(2)tr(H (1′)

0 + J (2)sint)O(2) (3.23)

is diagonal, and

J (2′) = O(2)tr J (2)extO(2). (3.24)

Note that J (2)lint is not affected by the rotation.
Recall the graphical expansions (3.18), (2.25),whichdefine the terms from J (2), J (1′)res

that contribute to J (2)ext. These are combined and rotated to produce an analogous graph-
ical expansion for J (2′):

J (2′)
αβ =

∑

g2′ :α→β

J (2′)
αβ (g2′), (3.25)
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where g2′ specifies x, y, a rotation matrix element O(2)tr
αx , followed by a graph g2 or g1′ ,

and then another rotation matrix element O(2)
yβ .

We complete the analysis of the second step by proving an exponential localization
estimate for the rotations so far. Let us introduce cumulative rotation matrices:

R(1) = 
(1),

R(1′) = 
(1)O(1),

R(2) = R(1′)
(2),

R(2′) = R(2)O(2).

(3.26)

Proposition 3.2. Let ε = J 1/200 be sufficiently small. Then

E

∑

α

∣
∣R(2′)

xα R(2′)tr
αy

∣
∣ ≤ (c10D ρ1ε)

|x−y|/10. (3.27)

Proof. Let us write

E

∑

α

∣
∣R(2′)

xα R(2′)tr
αy

∣
∣ = E

∑

α

∣
∣(
(1)O(1)
(2)O(2))xα(O(2)tr
(2)trO(1)tr
(1)tr)αy

∣
∣,

(3.28)

introducing as before a partition of unity for collections of blocks, and graphical expan-
sions for each 
 or 
tr matrix. The graphs combine to form a walk from x to y, with
possible intra-block jumps.

We need to review how the rotations O = O(1) and O(2) fit together. By construction,

(2) is the identity plus a sumof terms involving products of O(1)tr

αx J (1)ext
xy (g1)O

(1)
yβ , along

with energy denominators—c.f. (2.26), (3.10), (3.16). Thus every O(1) matrix element
is followed by a O(1)tr matrix element—except for the last one, which is followed by
an O(2) matrix element. This structure follows naturally from the process of sequential
basis changes. We need to distinguish between the identity matrix term in 
(2) and the
nontrivial terms. If we have the identity matrix, then we may form the matrix product
Õ = O(1)O(2) before taking absolute values; then we may bound

∑
α |Õzα Õ tr

αz̃ | by 1 as
before. For the nontrivial terms, the sum over states in the b(1) blocks as well as the sum
over their sites are compensated by the smallness of A(2)

xy (g1′), which must be present in

this case. (We could also have taken advantage of the inequality
∑

α |O(1)
zα O(1)tr

αz̃ | ≤ 1

at the intermediate blocks b(1); either way those sums are under control.) In step 2, the
size of blocks is limited, so the state sums are of little consequence. But in the kth step
we need to ensure that all state/site sums at blocks match up with appropriately small
factors.

In all cases, intrablock jumps between two sites z, z̃ are controlled by the probability

that z, z̃ belong to the same block b
(2)

or b
(1)
. Each of these probabilities has been

estimated already in terms of a sum over walks from z to z̃ with their associated small
probability factors, c.f. the proofs of (2.2), (3.7). Therefore, we can bound (3.28) in terms
of a sum over walks from x to y with at least a factor of (ρ1ε)

1/10 per step. The bound
(3.27) then follows. ��
Remark. The decay in the nonresonant region is faster, with a rate constant J0/ε, but in
this integrated bound, we have to use the larger rate constant associated with resonant
regions.
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4. The General Step

Let us consider the kth step of the procedure, focusing on uniformity in k. We work on a
length scale Lk ≡ ( 158 )k , which is slightly smaller than the naïve 2k scaling of Newton’s
method. When long graphs are resummed, they are “contracted” to 7

8 of their original
length, and this reduces the length scale that can be treated in the following steps.

4.1. Starting point. After j steps, the structure of the resonant regions extends the picture

in Fig. 1. Small blocks b
( j)

have size up to exp(ML2/3
j ), which is manageable because

couplings in J ( j ′) are at least O(J
L j
0 ) at the conclusion of the j th step. Rotations have

been performed in small blocks b
( j)

, diagonalizing the Hamiltonian there up to terms

of order L j . Rotations are deferred for large blocks B
( j ′)

until j is large enough for the
volume conditions to be satisfied, at which point they may become small blocks. Collar

neighborhoods of width L j −1 are added to large blocks B( j) to form blocks B
( j ′)

. This
is so that no couplings to B( j) are involved in the j th step expansion (the distance to

B
( j ′)c

is greater than L j − 1, the maximum order for the j th step). In effect, the large
blocks B( j ′) grow “hair”—unresolved interaction terms of length up to L j − 1 which
could not be expanded because they are not small enough to beat the volume of the
block. See Fig. 5. We maintain a uniform bound as in (3.7) on P(E ( j)

xy ), the probability

that x, y belong to the same large block B
( j ′)

or small block b
( j)

.
Resonances treated in step j involve graphs with L j−1 ≤ |g| < L j , so the associated

probabilities are of that order in εs . Nonresonant couplings in step j are of the same
order in J/ε. Couplings and resonance probabilities decrease in tandem as j increases,
a key feature of our procedure.

Let us recapitulate the transformations from the j th step. After defining resonant
blocks B( j), the Hamiltonian was rewritten as follows:

H ( j−1)′ = H ( j−1)′
0 + J ( j−1)′ + J ( j−1)int

= H ( j−1)′
0 + J ( j−1)′per + J ( j−1)′res + J ( j−1)lint. (4.1)

B(j′)

B
(j′)

Fig. 5. Leftover interaction terms couple the core B( j ′) to its collar
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The terms in J ( j−1)′per were “rotated away” by conjugating H ( j−1)′ with 
( j). This led
to a new Hamiltonian with smaller interactions and after regrouping terms, it became

H ( j) = H ( j−1)′
0 + J ( j) + J ( j−1)′res + J ( j−1)lint

= H ( j−1)′
0 + J ( j)ext + J ( j)sint + J ( j)lint. (4.2)

Rotations O( j) were performed in small blocks, and low-order diagonal terms were
absorbed into H ( j)

0 , leading to a form like the one we started with:

H ( j ′) = H ( j ′)
0 + J ( j ′) + J ( j)lint. (4.3)

The rotation 
( j) has a graphical expansion



( j)tr
xy = δxy +

∑

G j :x→y



( j)tr
xy (G j ) (4.4)

as in (3.15), and as in (3.17) we have a uniform bound

|
( j)tr
xy (G j )| ≤ 1

n! (J0/ε)
|G j |. (4.5)

This arises from the more basic estimate:

∣
∣A( j)

xy (g( j−1)′′)
∣
∣ ≤

{
(J0/ε)

|g( j−1)′′ |, in general;
J

|g( j−1)′′ |
0 , if g( j−1)′′ is a jump step.

. (4.6)

Here we define for any i and any jump step gi ′′ from x to y:

|gi ′′ | = |x − y|(i) ∨ 7
8 Li+1. (4.7)

Here |x − y|(i) is the distance from x to y in the metric where blocks b
(ĩ)

on scales ĩ ≤ i
are contracted to points. Likewise, the interaction terms J ( j ′) and J ( j)lint have graphical
expansions generalizing (3.25). Thus

J ( j ′)
αβ =

∑

g j ′ :α→β

J ( j ′)
αβ (g j ′), (4.8)

with bounds as in (3.20):
∣
∣J ( j ′)

αβ (g j ′)
∣
∣ ≤ J0(J0/ε)

|g j ′ |−1
. (4.9)

The graphs G j and g j ′ are actually “walks of walks,” with each step representing a
walk from the previous scale.When unwrapped to the first scale, we obtain spatial graphs
Gs

j and gsj ′ , as well as denominator graphs Gd
j and gdj ′ . Resummed sections appear as

jump steps with no denominators. Likewise, rotation matrix elements appear as jump
steps within blocks.

The goal of each step is to prove a bound analogous to (3.27):

E

∑

α

∣
∣R( j ′)

xα R( j ′)tr
αy

∣
∣ ≤ (c50D ρ1ε)

|x−y|/50, (4.10)

where

R( j ′) = R( j)O( j) = R( j−1)′
( j)O( j) (4.11)

is the cumulative rotation matrix, whose columns represent the eigenfunctions approxi-
mated up to scale L j .
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4.2. Resonant blocks. Herewemake straightforward generalizations of definitions from
step 2. Let g j ′ be a graph that does not intersect any B( j ′), with Lk ≤ |g j ′ | < Lk+1 (recall
that k = j + 1). Define

A(k)prov
xy (g j ′) =

∣
∣
∣
∣
∣

J̃ ( j ′)
xy (g j ′)

E ( j ′)
x − E ( j ′)

y

∣
∣
∣
∣
∣
, (4.12)

where J̃ ( j ′)
xy (g j ′) is the same as J ( j ′)

xy (g j ′), except jump steps gi ′′ that are subgraphs of

g j ′ are replaced with their upper bound J
|gi ′′ |
0 from (4.6). We say that g j ′ from x to y is

resonant in step k if either of the following conditions hold:

I.
∣
∣E ( j ′)

x − E ( j ′)
y

∣
∣ < ε

|g j ′ |;
II. A(k)prov

xy (g j ′) > (J0/ε)
|g j ′ | with |x − y|( j) ≥ 7

8 |g j ′ |.
(4.13)

It may be helpful to explain the key ideas behind maintaining uniform exponential
decay in our constructions. A resonant graph can be thought of as an event with a small
probability. In order for a collection of graphs to be rare, we need to be able to sum
the probabilities. In the ideal situation, where there are no repeated sites/blocks in the
graph, the probability is exponentially small, so it can easily be summed. However, when
graphs return to previously visited sites, dependence between denominators develops,
and then theMarkov inequality that is used to estimate probabilities begins to breakdown.
Subgraphs in a neighborhood of sites with multiple visits need to be “erased,” meaning
that inductive bounds are used, and they do not participate in the Markov inequality. (By
this we mean that the bound P(AC > BC) ≤ E(AC)/(BC) = E(A)/B is used when
C is bound for C—so the variation of C is not helping the bound.) When there are a lot
of return visits, a graph’s length |g j ′ | is shortened by at least a factor 7

8 , and it goes into
a jump step, where again we use inductive bounds. In this case, we have more factors
of J0, and hence a more rapid decay, and this provides the needed boost to preserve the
uniformity of decay in the induction. (Fractional moments of denominators are finite,
no matter the scale, which provides uniformity for “straight” graphs with few returns.)
The net result is uniform probability decay, provided we do not sum over unnecessary
structure, i.e. the substructure of jump steps. Note that jump steps represent sums of
long graphs, so when taking absolute values it is best to do it term by term. This is why
we replaced jump steps with their upper bound in (4.12). (The jump step bound (4.6) is
also a bound on the sum of the absolute values of the contributing graphs.)

Now consider the collection of all step k resonant graphs g j ′ . Any two such graphs
are considered to be connected if they have any sites or blocks in common. Decompose
the set of sites/blocks that belong to resonant graphs into connected components. The
result is defined to be the set of step k resonant blocks B(k)

α . By construction, these blocks

do not touch large blocks B( j ′). Small blocks b
(1)

, . . . , b
( j)

can become absorbed into
blocks B(k), but only if they are part of a resonant graph g j ′ .

A collar of width Lk+1 must be added to all blocks B( j ′) and B(k) because we will not
be expanding graphs of that length that touch any of those blocks. Let Sk be the union of
the blocks B(k) and B( j ′). Then Sk is the collared version of Sk , and its components are

divided into small blocks b
(k)
α [volume ≤ exp(ML2/3

k )] and large blocks B
(k)
α [volume

> exp(ML2/3
k )]. The union of the B

(k)
α is denoted Sk′ , and then B(k′)

α ≡ Sk ∩ B
(k′)
α and

Sk′ = Sk′ ∩ Sk .
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As discussed in Sect. 3.1, if x, y belong to the same resonant block B(k), then there
must be a sequence of resonant graphs connecting x to y with the property that the even
and odd subsequences consist of non-overlapping graphs. This allows us to focus on
estimating probabilities associated with individual resonant graphs.

The next three subsections establish key results that will be needed in the proof of
Proposition 4.1, the main “percolation” estimate that is the core of our method. The
final subsection will complete the proof, thereby establishing exponential decay of the
probability that x , y lie in the same resonant block.

4.2.1. Graphical sums Before getting into a discussion of resonance probabilities, we
need to understand more about how to sum over multi-scale graphs g j ′ . The goal is
to replace any sum of graphs with a corresponding supremum, multiplied by a factor

c
|g j ′ |
D . Graphical sums occur both in the ad expansion for the effective Hamiltonian and

in estimates for percolation probabilities.
If a graph executes an ordinary step in the lattice, a factor 2D will account for the

number of choices. If we have a jump step from x to y, a factor (2D)|x−y|( j) can be
used—this overcounts the number of possibilities, but matches against the power of εs

or J0/ε that is available for bounds on resonance probabilities or perturbative expansion
links. We also pick up factors of exp(ML2/3

i ) when the walk passes through a small

block b
(i)
. These arise from the block rotation matrices, which lead to sums over states

in blocks, as well as sums over lattice sites in blocks that may serve as starting points
for walks proceeding onward. In effect, the coordination number of such vertices can

be very large. But by construction, the minimum graph length for any step into a b
(i)

is Li . Of course, exp(ML2/3
i ) ≤ cLi

D , but we need to be cognizant of the fact that in

a multi-scale graph, we cannot get away with repeatedly introducing factors c
|gi ′ |
D . But

with the 2
3 exponent, we see that the combinatoric factor per step from scale i is actually

[exp(ML−1/3
i )]|gi ′ |. Then noting that Li = ( 158 )i , the sum of L−1/3

i converges, and the

overall combinatoric factor from blocks of all scales is bounded by c
|g j ′ |
D .

There are other counting factors that need to be considered. For example, in each
step the expansion of (ad A)n J produces a sum of n + 1 terms as in (2.18). We also
need to sum on n. There is also the choice of whether to take a jump step or a regular
step as we need to consider both alternatives in (3.11). Overall, the number of choices
is bounded by cn . Again, since the minimum graph length for a step on scale i is Li , the

overall combinatoric factor is �i c
|g j ′ |L−1

i ≤ c̃|g j ′ |. We can see the power of quadratic
convergence (or in our case convergence with exponent 15

8 ) in controlling combinatoric
factors. If Li grew only linearly with i , the combinatoric factors would grow without
bound.

4.2.2. The Jacobian Ourmethod for estimating probabilities of resonant graphs involves
aMarkov inequality, taking an expectation of a graph to the s power, andmaking a bound
in terms of a product of one-dimensional integrals. In the first step, we could take the
integration variables to be the energy denominators vi − v j , as long as they form a tree
graph. In the second step, some denominators involved block energies E (i ′), but as these
moved in sync with uniform shifts of v in blocks, they could be used as independent
integration variables as well. To continue this process we have to allow for energy

corrections that were moved into H ( j ′)
0 from J ( j)ext at the end of step j ≥ 2. These
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terms are bounded like any other interaction terms as in (4.9)—they just happen to be
diagonal. However, if energies E (i ′) are to be used as integration variables, we need to
control the Jacobian for the change of variable. Energy correction terms for E (i)

x depend

on energies E (i−1)′
y for y up to Li/2 steps away (the graph g(i−1)′ has to loop back

to x and contain y). So we need to consider the product of Jacobians ∂E (i)
x /∂E (i−1)′

y
over i ≤ j . Here x, y are restricted to the particular graph g j ′ whose expectation we
are trying to bound. As explained above in the case of block energies E (1′), all but

one of the integration variables in a block b
(i)

can be replaced with energy differences,

and the remaining variable can be shifted to the energy E (i ′)
x that appears in gi ′ . The

variable E (i ′)
x then represents constant shifts in energy throughout the block. In this

way, all of the energy denominators in gi ′ can be used as integration variables, with the
Jacobian for each intra-block change of variable equal to 1. Everything is contingent on
the denominator graph gdi ′ being loop free, with any returns to a block counted as a loop.
We can, however, work on a loop-free subgraph of gdi ′ .

We now show how to bound det ∂E (i ′)
x /∂E (i−1)′

y . Here x, y belong to the subgraph of
g j ′ corresponding to the level i steps of g j ′ . (Note that energy denominators produced
in steps 1, . . . , i − 1 retain their step indices—see (3.3) for a simple example. Assume,
for the moment, that x, y are site variables, i.e. they do not belong to blocks. Energy

correction terms in E (i ′)
x are bounded as in (4.9). When differentiated with respect to

E (i−1)′
y , each term is replaced with a sum of terms with one of the denominators con-

taining E (i−1)′
y being duplicated. The extra denominator can be bounded as in (4.13I).

Thus the derivative can be bounded by (cJ0/ε2)
|g(i−1)′ |, where the constant c is inserted

to account for the sum over the denominators containing E (i−1)′
y . Summing over g(i−1)′

that go from x to x via y, we obtain a bound

�xy ≡ ∂E (i ′)
x

∂E (i−1)′
y

− δxy ≤
∑

g(i−1)′ containing x,y

(cJ0
ε2

)|g(i−1)′ |
, (4.14)

which applies as well to |�xy |.
If block variables are involved, then there is a complication because the energies are

determined through a two-step process. First, the graphical expansions determine a shift
in the effective Hamiltonian of the block. Second, the energy shifts are determined by
the change in the eigenvalues when the block is “rediagonalized.” But Weyl’s inequality
implies that the eigenvalues are Lipschitz continuous in the matrix entries. The leading

term in the map from the variables {E (i−1)′
y } to the variables {E (i)′

x } is the identity matrix.
Hence the map is bi-Lipschitz, and by Rademacher’s theorem the Jacobian is well-
defined almost everywhere, and the Lipschitz constant bounds the partial derivatives in
the Jacobianmatrix. The usual change of variable formula holds in this context [19]. Thus
the argument above applies as well to the cases involving block variables. Intuitively,

one needs control of the measure of regions determined by level surfaces of {E (i)′
x } for

the inverse map; Lipschitz continuity is sufficient for this.
Let us assume that the matrix indices x, y run over a set of n sites/states. Normally,

these are the vertices of some graph g j ′ , or a subgraph. From the discussion above on the
combinatorics of graphical sums, we see that row and column sums of �xy are bounded
by (c̃ J0/ε2)Li , because |g(i−1)′ | ≥ Li . Note that all g(i−1)′ contribute here, not just
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subgraphs of g j ′ . We conclude that all eigenvalues of I + � are in a correspondingly
small neighborhood of 1. Therefore,

∣
∣
∣
∣
∣
log det

[
∂E (i ′)

x

∂E (i−1)′
y

]∣
∣
∣
∣
∣
≤ n

(
c̃ J0
ε2

)Li

. (4.15)

Due to the rapid growth of Li , this can be summed on i ≥ 2 to give a bound eJ0n

on the product of all the Jacobian determinants incurred in using energy denominators
as integration variables. This bound can easily be absorbed into probability estimates,
which are exponentially small in n.

4.2.3. Resonant graphs We are now ready to estimate probabilities of resonant graphs
as in (3.5). First, let us consider a graph g j ′ with no returns. Then the denominator graph
likewise has no loops. (In the absence of jump steps it has the same number of links as
the spatial graph, and the same vertices. See below for a general argument.) Then

P
(
A(k)prov
xy (g j ′) > (J0/ε)

|g j ′ |
)

≤ E

(
(A(k)prov

xy (g j ′))
s/(J0/ε)

s|g j ′ |
)

≤ ε
s|g′

j | E
∏

uv∈Gd
k

∣
∣E (i ′)

u − E (i ′)
v

∣
∣−s

. (4.16)

HereGd
k is the denominator graph for A(k)

xy (g j ′), which is gdj ′ plus the denominator for xy.

Note that the power of J0 in A(k)prov
xy (g j ′) equals |g j ′ |, so the J0’s factor out of (4.16). The

second bound of (4.6) ensures that jump steps contribute their share of J0 factors. After

the change of variable discussed above, each E (i ′)
u − E (i ′)

v is an independent variable.
We integrate each link, and find that (4.16) is bounded by (ρ1ε

s)
|g j ′ | (we absorb factors

of eJ0 from the Jacobian into ρ1). The probability for condition I of (4.13) can likewise
be bounded by (ρ1ε

s)|gi ′ | by a similar Markov inequality for the single denominator

E ( j ′)
x − E ( j ′)

y or more simply by noting the length of the integration domain where
(4.13I) holds.

Nowwe need to consider the general case for (4.13II), with g j ′ “nearly self-avoiding,”
i.e. |x − y|( j) ≥ 7

8 |g j ′ |. Any return to a site or block will necessarily shorten the total
distance |x − y|( j), because of the “wasted” steps. We can make this quantitative by
drawing a timeline for the walk (graph) g j ′ , with ordinary steps counting as one time
unit, and jump steps of length m counting as m time steps. Any time the walk returns to
a site/block, we draw an “arch” connecting the return time to the time of the first visit.
The arch graph breaks into connected components, with all sites/blocks on the graph
between the components being visited exactly once. This is similar to the lace expansion
for self-avoiding walks [8]. Each component represents a time interval during which the
walk is executing loops (Fig. 6).

A simple loop/arch of length �will cut back the distance traveled by �.More generally,
a looping segment of length � will cut back the distance traveled by at least 2

3�. This is
because the spatial graph of the looping portion of the walk is triply connected. That is,
any surface separating u (the starting point of the looping section) from v (the final point)
will be crossed at least three times by the walk. (Topologically, the number of crossing
must be odd, and a singlet crossing would disconnect the segment.) As a result, the
length of the graph within the looping segment must be at least three times the distance
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looping segments

Fig. 6. Timeline of the walk. Arches connect pairs of times where the walk is at the same site/block

Fig. 7. A walk executing loops exhibits triple connectivity

from u to v, so 2
3 of the steps are “wasted”. We can conclude that the sum of the lengths

of the looping segments cannot be greater than 3
2 · 1

8 |g j ′ | = 3
16 |g j ′ | (Fig. 7).

The next step is to identify certain time intervals containing the looping segments
where inductive bounds (non-probabilistic) will be used in place of Markov inequality
bounds. We will need to keep a reasonable fraction of the timeline out of the covering
intervals, otherwise we will not get the needed probability decay with |g j ′ |. The denom-
inator graph has long-range links, so looping segments will affect the character of the
denominator graph in some neighborhood.

If we consider the denominator graph prior to the identification of vertices on the
timeline, it is devoid of loops. This is because each time a denominator is produced, it
connects one or more loop-free graphs A to a disconnected, loop-free graph J . (More
precisely, for a graph g j ′ of J that goes from x to y, gdj ′ does not connect x to y, so the
new denominator cannot create a loop.) Some denominators are dropped when they are
incorporated into jump steps, but this does not spoil the loop-free property. [It is useful
to keep in mind the “nested” character of the denominator links. Graphs are constructed
as “walks of walks,” so the denominator xy in A(i+1)

xy (gi ′) encompasses all the previous
ones in gdi ′ on the timeline of gi ′ .] Let Iα be the αth looping segment of the timeline,
and let |Iα| be its length. Let � = maxα Iα and let i be such that � ∈ [Li−1, Li ). Let
us consider the denominator subgraph Di formed by the links introduced in step i and
afterwards, with timeline length in the range [Li , Li+1). As a subgraph of a loop-free
graph,Di is of course loop free. Furthermore, even after the identification of sites within
looping intervals, it remains loop-free. This is because each denominator connects sites
at least Li apart on the timeline, while identifications only occur within disjoint intervals
of length ≤ � < Li (Fig. 8).

Next, consider what happens when we add denominators from the (i − 1)st step,
connecting points with timeline separations in [Li−1, Li ). Some of these may be internal
to one of the looping segments, and we will have to replace the corresponding A’s by
uniform bounds (J0/ε)|g| from (4.6). The denominator is effectively erased from the
denominator graph, along with all denominators nested inside. A denominator with
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looping segment with |Iα| ∈ [Li−1, Li)

a denominator of Di−1 that can create a loop

Fig. 8. The looping segment is too short to spoil the loop-free property of the denominator graph Di (solid
arches). When denominators inDi−1 are added (dashed arches), one is dangerous because it can form a loop
after identifying the sites of Iα

only one endpoint in a segment Iα is dangerous if |Iα| ≥ Li−1 because it could link
back indirectly to another point in the segment through denominators on scales ≥ i −
1. Therefore, for such a denominator, we replace the corresponding A by its bound
(J0/ε)|g|. It is not necessary to erase denominators on both sides of Iα , because Iα
can produce at most one identification of sites in the denominator graph at this stage.
(The interval Iα cannot contain more than two vertices of Di−1, because a third would
force it to have length ≥ 2Li−1 > Li .) Hence the removal of one denominator link
is sufficient to restore the loop-free property. Through this construction, we obtain a
loop-free denominator graph Di−1, consisting of non-erased denominators on scales
≥ i − 1. We continue the process to smaller length scales i − 2, i − 3, . . ., and the
scale of the “erased” denominators never exceeds the scale of the looping segment
it originates from. When the process concludes, we obtain a loop-free denominator
graph D1. Each looping segment has a collar of erased sections of width ≤ Li on one
side, and ≤ Li−1 on the other, for |Iα| ∈ [Li−1, Li ). The looping interval “spoils” a
neighborhood of size no larger than |Iα| + Li + Li−1 ≤ (2 + 15

8 )|Iα| = 31
8 |Iα|. The

total length of the “spoiled” intervals where non-probabilistic bounds are employed is
≤ 31

8

∑

α

|Iα| ≤ 31
8 · 3

16 |g j ′ | < 3
4 |g j ′ |.

We return to the probability bound as in (4.16), only now we allow any graph with
|x − y|( j) ≥ 7

8 |g j ′ |. We obtain

P
(
A(k)prov
xy (g j ′) > (J0/ε)

|g j ′ |
)

≤ (ρ1ε
s)

|g j ′ |/4. (4.17)

The “erased” sections of g j ′ contribute factors of J0/ε instead of J0 in the expectation,
so they contribute no smallness to the probability estimate. But at least 1

4 of g j ′ is clear
of looping problems, and so we are able to glean |g j ′ |/4 factors of εs in the Markov
inequality.

4.2.4. Block probabilities The basic resonance probability bound (4.17) ensures a pos-
itive density of factors of ε on the walk from x to y used to estimate P(E (k)

xy ), the
probability that x , y belong to the same resonant block b(k) or B(k). Following the proof
of the analogous bound (3.7) for k = 2, we pick up powers of ε as the walk traverses
resonant blocks on different scales, and resonant graphs on the current scale. Each step
of a resonant graph produces a factor εs/4 from (4.17), but this becomes εs/8 because
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of the square root in the non-overlapping graph construction. There is a further degra-
dation of decay due to the kth scale collar, which has width Lk+1. The minimum length
of a resonant graph g j ′ is Lk , so the density of factors of εs/8 is reduced by a factor
Lk/(Lk + 2Lk+1) = 8

38 , leaving a residual factor εs/38 per link. This would be the uni-
form rate of probability decay, except for the fact that large resonant blocks from earlier
scales have their collars increased to Lk+1. The increase in the i th step is from Li to
Li+1, for a total increase along the walk of 2(Li+1 − Li ) < 2Li . The diameter of the
block is at least di = exp(2L2/3

i ), so the density of factors of εs/38 is reduced slightly
by a factor of di/(di + 2Li ) in the i th step. The rapid growth of di with i ensures that
the density of factors of ε does not drop below s

40 = 1
50 . (We treated step 2 explicitly

in step 2, and subsequent steps have a minor effect due to the large volumes involved.)
After summing over the graphs in the walk from x to y with the combinatoric bounds
established above, we obtain the following result:

Proposition 4.1. Let ε = J 1/200 be sufficiently small. Then

P(E (k)
xy ) ≤ (c50D ρ1ε)

|x−y|/50. (4.18)

4.3. Perturbation step and proof of inductive bounds. Let us repeat the analysis of Sect.
3.2, writing

J ( j ′) = J ( j ′)per + J ( j ′)res, (4.19)

J ( j ′)per
xy =

∑

g j ′ :x→y, Lk≤|g j ′ |<Lk+1, g j ′ ∩Sk=∅, B(x) 
=B(y)

J ( j ′)
xy (g j ′), (4.20)

A(k)
xy (g j ′) = J ( j ′)per

xy

E ( j ′)
x − E ( j ′)

y

=
∑

g j ′
A(k)
xy (g j ′). (4.21)

As before, we resum all terms from long graphs with |g j ′ | > 8
7 |x − y|( j). Let g j ′′ denote

either a short graph or a jump step representing all resummed terms. Then let

A(k)
xy (g j ′′) =

⎧
⎪⎨

⎪⎩

A(k)
xy (g j ′), if g j ′′ = g j ′, a short graph;

∑

long g j ′ :x→y
A(k)
xy (g j ′), if g j ′′ is long.

(4.22)

With 
(k) = e−A(k)
, we obtain

H (k) = H ( j ′)
0 + J ( j ′)res + J ( j)lint + J (k). (4.23)

We prove our inductive bounds (4.6), (4.9) for k = j + 1. For short graphs, we claim
that

|A(k)
xy (g j ′)| ≤ (J0/ε)

|g j ′ |. (4.24)

To see this, replace jump step subgraphs with their upper bounds from (4.6). This trans-
forms |A(k)

xy (g j ′)| into A(k)prov
xy (g j ′)—see definition (4.12). Then A(k)prov

xy (g j ′) is bounded
because g j ′ is nonresonant, c.f. condition (4.13II). For long graphs, we bound numerator
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and denominator separately in (4.21). The inductive bound (4.9) applies to the numera-
tor, and the resonant condition (4.13I) bounds the denominator from below. As a result,
we have

|A(k)
xy (g j ′)| ≤ (J0/ε

2)
|g j ′ |. (4.25)

After summing over long graphs from x to y, we obtain

|A(k)
xy (g j ′′)| ≤ (cD J0/ε

2)
8
7 |x−y|( j)∨Lk , (4.26)

because all long graphs have |g j ′ | ≥ 8
7 |x − y|( j) ∨ Lk = 8

7 |g j ′′ |, see (4.7). Recall that
ε = J δ

0 with δ = 1
20 . So c8/7D J 1/70 ε−16/7 < 1, and we obtain

|A(k)
xy (g j ′′)| ≤ J

|g j ′′ |
0 , (4.27)

which completes the induction for A(k). Note that this proof and bound applies also to
the sum of the absolute values of long graphs. [Since (4.27) is a stronger estimate, we
have |A(k)

xy (g j ′′)| ≤ (J0/ε)
|g j ′′ | for all g j ′′ .] Let us now examine J (k), which involves

terms with a J ( j ′) and one or more A(k) factors. Combining (4.9) with the bounds just
proven for A(k), we obtain the estimate

|J (k)
xy (gk)| ≤ J0(J0/ε)

|gk |−1, (4.28)

which will lead to a proof of (4.9) for k = j + 1 after the block rotations are performed.
Note that by (4.7), the minimum size of g j ′′ in an A(k) term is 7

8 Lk . The minimum size

of a J ( j ′) graph is Lk . Combining these, we obtain a minimum size of 15
8 Lk = Lk+1 for

graphs gk .

4.4. Diagonalization and conclusion of proof. As in Sect. 3.3, we reorganize terms,
putting

J (k) + J ( j ′)res + J ( j)lint = J (k)ext + J (k)sint + J (k)lint. (4.29)

Terms whose graph intersects Sk and is contained in Sk are put in J (k)sint (small block
terms) or J (k)lint(large block terms). Diagonal/intrablock terms for sites/blocks in Sck are
included in J (k)sint if they are of order less than Lk+1. This is so that in the next step,
commutators will not produce terms whose order is less than what is required.

Let O(k) be the matrix that diagonalizes small blocks. Then

H (k′)
0 = O(k)tr(H ( j ′)

0 + J (k)sint)O(k) (4.30)

is the new diagonal part of the Hamiltonian. Then put

H (k′) = O(k)trH (k)O(k) = H (k′)
0 + J (k′) + J (k)lint. (4.31)

Here J (k′) is the rotated version of J (k)ext; it has a graphical expansion with bounds as
in (4.8), (4.9).

Let us examine the cumulative rotation R(k′) = R( j ′)
(k)O(k) and prove the “eigen-
function correlator” estimate, as claimed in (4.10):
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Proposition 4.2. Let ε = J 1/200 be sufficiently small. Then

E

∑

α

|R(k′)
xα R(k′)

αy | ≤ (c50D ρ1ε)
|x−y|/50. (4.32)

Proof. We proceed as in the proof of Proposition 3.2. The graphical expansions for the
matrices 
(i), i ≤ k, lead to walks that extend from x to y with decay constant J0/ε.
With a partition of unity argument as in (2.28)–(2.30), the gaps in this walk due to
blocks can be filled in with “probability walks” along resonant graphs, as in the proof of
Proposition 4.1. As discussed in the proof of Proposition 3.2, small block rotations O( j)

are combined when not separated by perturbative graphs. The net result is a combination
walk from x to y with a minimum density 1

50 of factors of ε. All of the walks and state
sums are under control, from the discussion on graphical sums in Sect. 4.2.1. ��
Proof of Theorem 1.1. If we let the procedure run to k = ∞, off-diagonal matrix ele-
ments vanish in the limit. Then the eigenvalues of the starting Hamiltonian H (�) are

given by the diagonal elements of H∞
0 ≡ limk→∞ H (k′)

0 . They are almost surely non-
degenerate, by the argument given in Sect. 2.3. Note that block formation has to stop
eventually in a finite volume �, and after that, the effective Hamiltonian H (k′) con-
verges rapidly with k. Indeed, the off-diagonal entries of H (k) decay exponentially with

Lk = (15/8)k . By Weyl’s inequality, changes in the diagonal entries of H (k′)
0 are cor-

respondingly small. Hence they converge rapidly to the eigenvalues of H (�), which are
nondegenerate. Once the off-diagonal entries are much smaller than differences in the
diagonal entries, the rotation matrices used in our procedure are correspondingly close
to the identity. Hence we can define R(∞) ≡ limk→∞ R(k′), and the eigenfunctions of
H (�) are given by the columns of this limiting rotation. By bounded convergence, (4.32)
remains true in the limit. This completes the proof of Theorem 1.1. ��

One could improve considerably on the rate of decay proven here, butwe have focused
on constructing the simplest exposition of the method, rather than optimizing estimates.

4.5. Labeling of eigenfunctions and infinite volume limit. Each eigenstate has an abstract
label α. However, working pointwise in the probability space, one finds that outside of
blocks, there is a one-to-one correspondence between states and sites of the lattice,
because each eigenstate has an expansion exhibiting the predominance of amplitude at
a particular site. In blocks, there are potentially some choices that need to be made in
assigning labels to states. Labels are assigned when a diagonalization step is performed
in a block. As explained earlier, the eigenvalues are nondegenerate, with probability
1. Therefore, except for a set of measure zero, one can label block states in order of
increasing energy. The percolation estimate (4.18) establishes the diluteness of blocks,
without which the labeling system would lose its significance. From the estimate (1.6)
on the eigenfunction correlator, we see that eigenfunctions are exponentially small in
the distance from the site that they are associated with, except for a set of exponentially
small probability.

As discussed in Sect. 4.2.2, eigenvalues have been given convergent graphical ex-
pansions, with exponential decay in the size of the graph, c.f. (4.9). Eigenfunctions
likewise have a local graphical expansions. Let us use these expansions to demonstrate
almost sure convergence of eigenvalues and eigenfunctions as � increases to Z

D . Let
�K = ([−K , K ] ∩ Z)D . When considering the K → ∞ limit, it is convenient to use
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a K -independent definition of resonant blocks. In each step of our procedure, a graph
will be considered resonant if it is resonant for any value of K . Then, in addition to
the usual graphical sums for estimating probabilities of resonances, there is a sum over
values of K that lead to distinct resonant conditions for a given graph. The sum over
K can be handled in the same manner as the volume factors exp(ML2/3

i ) already taken
into account in our estimates (c.f. Sect. 4.2.1). (We need to sum over the different ways
�K can intersect the graph and all the sites/blocks that affect it—even indirectly through
graphical expansions of the energies of the graph.) Thus wemaintain bounds as in (4.17)
on the probabilities of these generalized resonant graphs.

With this modified procedure, we may work with a fixed configuration of resonant
blocks for all values of K . For each block B, we choose a canonicalmethod of associating
sites of B ∩ �K with the states of that block, for example by using lexicographic order
on the sites of B ∩ �K and matching them to states in order of increasing energy. We
may consider, then, the question of convergence of the eigenvalues and eigenfunctions
associated with a particular site x ∈ Z

D .

Theorem 4.3. Let J0 be sufficiently small, and assume that the probability distribu-
tion of the potentials {vx }x∈ZD has bounded support. Let {E (K )

x , ϕ
(K )
x }x∈�K denote the

eigenvalues and eigenfunctions of H (�K ), labeled according to the system described
above. Then E (K )

x → Ex and ϕ
(K )
x → ϕx exponentially almost surely as K → ∞, with

the limits satisfying (H − Ex )ϕx = 0. Furthermore,
∑

x∈�M
|ϕx (y)ϕx (z)| converges

exponentially almost surely as M → ∞ for each y, z, and the limit satisfies

E

∑

x∈ZD

∣
∣ϕx (y)ϕx (z)

∣
∣ ≤ J κ|y−z|

0 , (4.33)

for some κ > 0 chosen independently of J0.

Proof. Compare the graphical expansions of the eigenvalues associated with B(x) in
two different boxes, �K1 and �K2 , with K1 < K2. The difference involves graphs that
extend to �c

K1
. (Jump steps need to be rewritten as sums of constituent graphs so as to

isolate the ones extending to �c
K1
.) Consider the event EK (x) in which there exists a

path from x to �c
K with length less than dist(x,�c

K ), in the metric where blocks are
contracted to points. By summing over paths and over configurations of blocks along

each path, it should be clear that P(EK (x)) decays exponentially like J
κdist(x,�c

K )

0 for
some κ > 0. By Borel–Cantelli, there is almost surely a K0 > 2|x | such that EK (x)
fails for all K > K0. Bounds on a given graph are governed by the distance it covers
between blocks. Hence, as long as K1 > K0, we obtain bounds that decay exponentially
in dist(x,�c

K1
). This means that differences between effective Hamiltonians of the block

B(x) from the change K1 → K2 are exponentially small, once K1 > K0. By Weyl’s
inequality, the same is true for the eigenvalues associated with B(x), in particular for
E (K )
x , the eigenvalue of H (�k ) that is associated with x .
In order to get a similar statement for the corresponding eigenfunction ϕ

(K )
x , we need

some quantitative control on the gaps between the eigenvalues associated with B(x). For
simplicity, we have assumed that the probability distribution of the potentials {vx }x∈ZD

is supported on a bounded interval. Consider the spectrum of H (�K ), which is then also
supported on a bounded interval. Let FK be the event that there is a gap smaller than
K−q . FromMinami’s estimate [29], one can show that P(FK ) is bounded by a constant
times ρ0K−q+2D , for q > 2D—see [27], eq. 8. Taking q = 2D + 2, the probabilities
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are summable, so by Borel–Cantelli there is almost surely a K̃0 > K0 such that FK

fails for all K > K̃0. As explained above, differences between corresponding effective
Hamiltonians of the block B(x) from the change K1 → K2 are exponentially small, so
for K1 > K̃0 they are much smaller than the gaps between eigenvalues associated with
B(x). (Here we use the fact that these eigenvalues agree with those of H (�K1 ) within an
exponentially small error, as explained in the proof of Theorem 1.1.) This implies that
the mixing of ϕ

(K1)
x with the other eigenfunctions associated with B(x) are similarly

small. Thus we obtain almost sure exponential convergence of both E (K )
x and ϕ

(K )
x as

K → ∞. Observe that (H − E (K )
x )ϕ

(K )
x → 0 as K → ∞ because H − H (�K ) only

affects ϕ
(K )
x at the boundary of �K , and the relevant graphs are exponentially small in

dist(x,�c
K ). Hence (H − Ex )ϕx = 0 almost surely.

The same arguments can be used to demonstrate almost sure exponential convergence
of

∑
x∈�M

|ϕx (y)ϕx (z)| as M → ∞ for each y, z, because the graphs involved extend
from {y, z} to �c

M . By bounded convergence, the eigenfunction correlator estimate of
Theorem 1.1 extends to the limits K , M → ∞, completing the proof. ��
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