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In a recent paper we developed a method which allows one to control 
rigorously the finite-size behavior in long cylinders near first-order phase 
transitions at low temperature. Here we apply this method to asymmetric 
transitions with two competing phases, and to the q-state Potts model as a 
typical model of a temperature-driven transition, where q low-temperature 
phases compete with one high-temperature phase. We obtain the finite-size 
scaling of the first N eigenvalues (where N is the number of competing phases) 
of the transfer matrix in a periodic box of volume L x · · · x L x t, and, as a 
corollary, the finite-size scaling of the shape of the order parameter in a hyper
cubic box ( t = L ), the infinite cylinder ( t = CXJ ), and the crossover regime from 
hypercubic to cylindrical scaling. For the two-phase case (N = 2) we find that 
the crossover length �L is given by O(L "' ) exp(f3aL'), where f3 is the inverse 
temperature, a is the surface tension, and w = 1/2 if v + 1 = 2 while w = 0 if 
v + 1 > 2. For the standard Ising model we also consider free boundary 
conditions, showing that �L = exp[f3aU + O(L'-1)] for any dimension 
v + 1 ;;. 2. For v + 1 = 2 we finally discuss a class of boundary conditions which 
interpolate between free (corresponding to the interpolating parameter g = 0) 

and periodic boundary conditions (corresponding to g = 1 ), finding that 
�L = O(L"') exp(f3aL' ) with w = 0 for g = 0 and w = 1/2 for 0 < g:;::; 1. 

KEY WORDS: Finite-size scaling; first-order phase transition; surface 
tension; Potts model; crossover length; energy splitting. 

1. INTR O D U CTIO N 

In recent years, finite-size effects at first-order transitiOns have been 
widely studied. (I l For a wide class of models the finite-size scaling in a 
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cubic box V with periodic boundary conditions can be derived from the 
ansatz 

N 
Z (v Jl)� " e-Pfm(I')IVI per ' = f.... ( 1 . 1 ) 

for the partition function. Here I VI is the volume of the cubic box V, J1 is 
the driving parameter of the transition, N is the number of stable phases 
at the transition point, f3 is the inverse temperature, and fm(Jl) is some sort 
of metastable free energy of the phase m. It is equal to the free energy f(Jl) 
if m is stable, and strictly larger than f(Jl) if m is unstable. 

If the model in consideration allows for a contour representation in 
which the configurations of the system may be described in terms of 
"ground-state regions" separated by energetically unfavorable "contours,"3 
a formula of the form ( 1 . 1 ) can actually be proven, together with a bound 
O(IVIe-bdiamv) for the error term.<2•3l Here diam V is the diameter of the 
cube, and b > 0 is a constant. Actually, these results remain true in the 
more general case where V is a ( v + 1 )-dimensional cylinder with 
L x · · · x L x t points, provided 

I VI e- min(L,t) � 1 ( 1 .2 ) 

For long cylinders, however, the effects neglected in the approximation 
( 1 . 1 ) play an important role. Using a linear scaling ansatz to scale the 
cylinder down to a one-dimensional interval of length t/ L, Blote and 
Nightingale<4J developed a heuristic theory of finite-size scaling in long 
cylinders. A little later, Privman and Fisher<5l developed an alternative 
theory, starting from the observation that the periodic partition function 
may be written as 

00 

zper( V, Jl) = I A;(L)' ( 1 . 3 )  
i�l 

if the model in consideration has a positive transfer matrix (as many 
models of statistical mechanics do). Here A1 (L );?; A-2(L);?; · · · are the eigen
values of the transfer matrix. They then argue, for N = 2 and models with 
a symmetry relating J1 to - Jl, that only A1 and A2 are important for the 
asymptotic behavior of Zper( V, Jl), and that /c1 and A2 may be calculated by 
diagonalizing a certain 2 x 2 matrix. As a consequence, they were able to 
calculate the finite-size scaling of the magnetization from cubic boxes up 
to infinite cylinders, finding a crossover regime when t diverges with L like 

�L = D(L) exp({JaLv )  

3 For the ferromagnetic Ising model, the ground-state regions are the regions where the spin 
is constant, while the contours are just the usual Peierls contours. 
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where u is the surface tension between the two phases and D(L) is a 
"slowly varying function of L." Privman and Fisher predicted D( L) � L t;z 
for v = 1 and Brezin and Zinn-Justin(6) predicted D (L ) � L(Z-v)/2 for v � 1 ;  
see also ref. 7 .  As we will see, this prediction is incorrect for v > 2 and low 
temperature. (As pointed out in ref. 8, the exponent may be different above 
the roughening transition. ) 

Here we continue the rigorous analysis in ref. 9 of finite-size scaling in 
long cylinders at low temperature. Among other results, we will obtain a 
rigorous derivation of the results of Privman and Fisher, a formula for the 
slowly varying function D(L), the generalization of these results to a wide 
class of two-phase systems without any symmetry assumptions, and--as an 
example of a temperature-driven transition�the finite-size scaling for the 
q-state Potts model. 

In order to descrtibe the ideas and results of ref. 9, let us consider a 
perturbed Ising model with Hamiltonian 

x,y X XEX X 
lx-yl � I  

where J x = 0 i f  diam X> r0 (r0 < oo i s  the range of  the interaction), 
Lx3x IJ xl is small, and f3 is large. Note that f1 is f3 times the usual magnetic 
field. This model is a typical example of a model describing an asymmetric 
first-order transition between two different low-temperature phases and 
allows for a Peierls contour expansion with exponentially suppressed 
contours. 

Neglecting for the moment contours which wind around the cyclinder 
in the time direction, we now distinguish two different kinds of contours: 
interfaces which separate two different phases in the lower and upper parts 
of an infinite cylinder, and ordinary contours which do not. Resumming 
the ordinary contours, we get an effective weight K( Y) for the interfaces, a 
"renormalized" ground-state energy f ± (L) for the regions between 
interfaces, and an interaction between interfaces. Using iterative cluster 
expansions to control this interaction (see Section 4 of ref. 9) and a 
variant of Dobrushin's surface expansion (JO) to control the deviation 
from flat interfaces (Section 5 of ref. 9 ), we obtain a system of non
interacting flat interfaces with weight O(L - !12) exp( - f3uV) for v = 1 and 
[ 1 + 0( exp( - bL))] exp( - f3u V) for v > 1 .  Since a system of flat interfaces 
is equivalent to a one-dimensional system, we obtain Theorem A below for 
the perturbed Ising model ( 1 .4 ). 

In fact, Theorem A is proven in a much wider context; see Sections 2 
and 5 of ref. 9 for a description of the class of models to which it applies. 
Essentially we need a contour or cluster representation with a Peierls 
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condition, translation invariance, and invariance under reflection in the t 
direction, together with several assumptions on the structure of interfaces, 
essentially locality and suppression of defects relative to a flat interface. The 
notation is as follows: Zper( V, 11) is the periodic partition function in 
volume V, I VI = L vt, 11 is an (N- 1 )-vector of parameters driving transi
tions among N states, 11 * is the coexistence point, f = f(/1) is the free 
energy density, CJmn is the surface tension between the phases m and n, and 
r is the parameter in the Peierls condition [ r = 0(/3) for the perturbed Ising 
model ( 1.4)]. It is assumed throughout that L, t are positive integers. 

Theo rem A. There are C4 functions fm(/1) � f(fl), m = 1, ... , N, 
agreeing with f(/1) if and only if the corresponding phase is stable, such 
that the following statements are true provided r is sufficiently large and 
111-11*1r:::;;L 

( i )  There exists an N x N symmetric matrix R such that for all 
t � v log L and for 0 :::;; k :::;; 4, 

I :k [Zper(V, /1)- Tr R'] I:::;; e�Jl/IVle�[-r�O(l)Jt (1. 5 )  

(ii ) The following condition holds: 

I :;k [L �v log Rmm + f3fm(/1)] I:::;; e�[-r�O(l)]L 

(iii ) The following condition holds: 

I!!:__ R I :<e�[Jl/+-r�O(l)JU dflk mn '-" if n#m 

( 1.6) 

( 1.7 ) 

(iv) Let N = 2. Then there are constants 0 < b1 < 1 and C + � > 0 
such that the off-diagonal matrix elements R+ � = R� + of R are 

provided 111-11*1 :::;;e�•L/2
. 

v = 1 ,  L� 1 
v�2 

( 1 .8 )  

This theorem reduces the determination of the asymptotics of 
Zper( V, 11) to a calculation of an N x N matrix R. If the original model has 
a positive transfer matrix T, it implies that the first N eigenvalues of T are 
just the eigenvalues of R, and that A;(L):::;; e�O(•lJc1 for the remaining ones. 

In the present paper, we use the results of ref. 9, in particular 
Theorem A above, to derive the explicit scaling form for the magnetization 
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M per( V, J1) and the internal energy Eper( V, [3), respectively, of models like 
the perturbed Ising model ( 1.4) or the q-state Potts model (at low 
temepratures and large q, respectively ). For the perturbed Ising model and 
more generally for any two-phase model satisfying the assumptions 
described before Theorem A, our main results are summarized in the 
following Theorem B. We need the infinite-volume magnetizations of the 
two phases, \Vhich we write as 

( 1.9) 

Theo rem B. Let N = 2, let r be sufficiently large, and let 
Jl*(L) = 11* + e-<•-O(lllL be the point for which the diagonal matrix 
elements R + + and R __ of the matrix R are equal. There exists a �L 
satisfying 

_ {(1/2C+_)L112efla
L[1 + O(L -1)], �L- �efla£'[1 + O(e-bt'L)], 

such that in terms of scaling variables 

and the scaling function 

Ys=tV[Jl-Jl*(L)] LiM 

Yc= �LLv[Jl- Jl*(L)] LiM 

the magnetization obeys the following bound: 

v = 1, L � 1 
v�2 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

for any t, L, J1 which fulfill the conditions Lve-'�1 and IJl-11*1�0(1). 
Here C + _ is the constant from Theorem A. 

Theorem B is the announced generalization of Privman and Fisher's 
results to asymmetric two-phase systems. Note that the formula (1.10) for 
�L [which is the inverse of the smallest splitting of the eigenvalues of log R 
in ( 1. 5 )  as J1 varies near J1 *] agrees with their prediction for v = 1, and 
corrects the prediction of Bn':zin and Zinn-Justin for v > 2. We emphasize 
that (1.10) is a low-temperature result and that �L may behave differently 
above the roughening transition in v + 1 = 3. For v + 1 > 3, however, it is 
not expected that there is a roughening transition. Nevertheless, numerical 
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simulations (ll, 12l of the four-dimensional Ising model near Tc seem to 
support the continuum calculations of ref. 7, which predicts �L = 
C(fJ) L  -I/2 exp(fJoL") with C(/3) given explicitly in terms of the renor
malized mass and coupling constant It is an interesting open problem to 
explain the transition from the apparent continuum behavior near Tc to the 
low-temperature behavior proven in this paper. 

While ( L14 )  holds for all t, L, 11 within the prescribed range, it is 
natural to consider a limit t, 1!1 -f.l*l - 1----+oo fixing Yn.Yc· In this limit 
t � �L• the crossover length scale, [/1-f.l*(L) ] � 1/(V�L), all error terms 
in ( 1 . 14 )  are exponentially small, and 

If one considers, on the other hand, a limit where y B is kept fixed while 
Yc----+ oo, 

Mper( V, f.l)----+ M0 + LJM tanh Yn 

which is the usual scaling form in the block limit Considering finally the 
cylinder limit, where t, L, I 11 - f1 * l - 1 ----+ oo in such a way that y c is kept 
fixed while y B----+ oo, we obtain 

which is the typical form for a one-dimensional system. 
We emphasize that the width of the transition in the crossover and in 

the cylinder regime is of the order 11 - f1 * = 0( 1/ V � L) ), which is (at least 
for v+ 1 �3) much smaller than the shift lf.l* (L) -!1*1 = e-O(rJL allowed 
by the bound (1.6).4 Note, however, that 11* (L) = 11* for a model like the 
ordinary Ising model, where the two phases are related by a symmetry 
!1 - 11*----+ 11* - fl. 

We finally discuss the q-state Potts model, which is a spin model with 
spin variable axE Zq := { 1, e2";1q, ... , e2"i(q-IJ/q } and Hamiltonian 

( 1 . 1 5 )  
x,y 

lx-yl �I 

where b is the Kronecker delta (for a review of the Potts model, see, e.g., 
ref. 13 ). For q large enough (and v + 1 � 2 ) this model undergoes a first
order phase transition as the inverse temperature f3 = 1/kT is varied. At the 

4We expect that the actual shift is Ji.*(L) -Jl.*=O( exp[ -L/max( �+.C)]), where �± are 
the infinite-volume correlation lengths of the two phases. 
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transition point f3, the number of stable phases goes from 1 below [3, to q 
above [3,. Actually, for /3=/3 , , the q ordered low-temperature phases and 
the disordered high-temperature phase coexist and the internal energy E(/3) 
jumps from Ed=E(/3,-0) to E0=E(f3,+0).<14•15l 

The next theorem summarizes our main results concerning the finite
size scaling of this model. The constant () od appearing in ( 1.17) below is the 
surface tension between the disordered and an ordered phase. 

Theorem C. Let q and L be sufficiently large. Then there exists a 
finite-volume transition point f3*(L) and a length scale �L satisfying 

[{3,-f3*(L)i � q- OCI)L 

_ {C(q)Ll/2[1 + O(L - I)JeflaodL, � L- q - 1/2 eflO'odL'[ 1 + O(q-0(1 )L) ], 

for some C(q) such that in terms of scaling variables 

Y B = tL v[/3-[J*(L)] Ed- Eo 
2 

Yc= �LL"[/3-f3*(L)] 
Ed- Eo 

2 

and the scaling function 

the internal energy obeys the following bound: 

v=l 
v�2 

E ( V {3) =Eo+ Ed+ Eo-Ed Y
( 

) + - OCIJL + - 0(1Jt per ' 2 2 Y B• Yc q q 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

+ O(q 1/3-/3,[) + 0(�1.<1- "l) min{ 1 + IYcl, y s!Yc} (1 .21 ) 

for any t, L, f3 which fulfill the conditions L v e- ' � 1 and 1/3-[3* I � 0( 1 ). 
Here e = s(q) is a small positive constant which goes to zero as q-+ oo. 

Note that the asymptotics ( 1.21) simplify in the block limit where t, L, 
and (/3,-/3) -I -+ oo in such a way that y c-+ oo while y s is kept fixed; in 
this case 
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(in accordance with the results of ref. 3 ). On the other hand, in the cylinder 
limit where t, L, and (/3,- /3) -I � oo in such a way that y B � oo while y c 
is kept fixed, we have that 

Outline. We derive the finite-size scaling for the two-phase system in 
Section 2, where we also state a more precise version of Theorem B. 
Among other things, we eliminate the error term exp [ - 0( r) L] by using 
L-dependent quantities in defining the block and cylinder scaling variables 
y B, y c· In Section 3 we discuss the finite-size scaling of the internal energy 
and the specific heat for the Potts model, and in Section 4 we discuss free 
boundary conditions (and more generally a class of boundary conditions 
interpolating between free and periodic), restricting ourselves to a situation 
where two phases related by a symmetry are coexisting, to avoid technical 
complications. Some of the more technical aspects of Section 4 are dealt 
with in the Appendix. 

2. ASYMMETRIC FIRST- O R D E R  PHAS E TRAN SITIO NS WITH 

TWO C O M P ETIN G PHAS ES 

In this section we consider a larger class of models describing this 
coexistence of two infinite-volume phases, m = ±1, at the value p. = p.* of 
the driving field f.1. We need a contour or cluster representation with a 
Peierls condition, translation invariance, and invariance under reflection in 
the t direction (see Section 2 of ref. 9 for the precise assumptions ), together 
with several assumptions on the structure of interfaces, essentially locality 
and suppression of defects relative to a flat interface (see Section 5, 
Assumptions 5 . 1-5.5, of ref. 9). As a typical example, the reader should 
keep in mind the perturbed Ising model ( 1.4) at low temperatures. We will 
prove Theorem B stated in the introduction, and its more precise version 
Theorem 2. 1 below. 

Recall that we are interested in the behavior of the partition function 
Zper( V, f.1) and the magnetization 

1 d 
M per( V, {l) = 

tL v dp.
log Zper( V, {l) (2. 1 )  

in a cylinder V = A  x T, where A is the v-dimensional torus of side length 
L, and T is the one-dimensional torus of length I Tl = t. Due to Theorem A, 
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I 2 

I tzper(V, Jl)-
i
�

1 
A.;(L)' �e-fl(I1)1VIe-[r-0(1)Jt 

I ::k [ Mper( V, /1)-� M;(L, /1) P;( V, /1) ll � e- [r- 0(1)]r 
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(2.2) 

(2.3) 

if k � 3, t �vlog L, and 1!1-Jl*ILv�l. Here ,UL) are the eigenvalues of 
the 2 x 2 matrix R described in Theorem A, and 

1 d 
M;(L, Jl) =- -d log A.;(L) 

LV J1 
(2.4) 

P;(V,J1)=J.;(L)' [ L )-;(L) 'l-
1 

I 
(2.5) 

As a consequence, the asymptotic behavior of Zper(V, /1) and Mper(V, /1) is 
determined once the asymptotic behavior of the eigenvalues A.u(L) is 
given. 

We start with a heuristic derivation of this behavior in the region 
I 11-J1 *I L" � 1. Let us neglect the L dependence in the diagonal elements of 
R, so that [in the approximation given by (1.6)] 

Now we pull out an overall factor exp { -L" f3 [f + (Jl) + f _ (Jl) ]/2} from this 
matrix, leaving 

Ignoring the J1 dependence of R+_, we haveR + - = R + _ (Jl*). Finally, we 
linearize f±(/1) about Jl*, so that 

with x = iJM(Jl- f.l*)L". The eigenvalues of this matrix are cosh x ± 
(sinh2 x + R� _ )112, which for small x and R+ _ becomes 

1 + (x2 + R2 }112 = 1 + 1;: -1(1 + 4 y2 )1;2 
- +- - 2 "'L C 

where �L = [2R+_(J1*)]-1 and Yc = �LL'' [ Jl- Jl* (L)] iJM is the scaling 
variable defined in (1.12 ). As a consequence, 

).u(L) = exp [ - �L'f3(f+ + f_ )] [1 ± gz1(1 + 4y�) 1;2] 



496 Borgs and Imbrie 

To see the form of the magnetization, differentiate the eigenvalues with 
respect to Jl, as required by (2.4 ) : 

1 d 1 _1 4yc y
� 

M1 2(L, J1) =  
V d11

logA. 1,2�M0±2� L (1+4y�)112 

2yc = Mo ± LJM (1 + 4y�)tl2 

( In the second equality, we have neglected second- and higher-order terms 
in the expansion of the log. ) The relative weightings P 1,2 given by (2.5) are 
determined by 

A-�.2 � exp [ ± 2�L 
(l + 4y�)

t
l2 J = exp [ ± ;;c (l + 4y�)tl2 J 

so that 

Mper = M,Pl + M2P2 = M0 + LJM 
2Yc

2 )112 tanh [� (1 + 4y�1
12] (l + 4yc 2yc 

as in Theorem B. 
In order to obtain the optimal asymptotics for Theorem 2.1 below, we 

now introduce scaling variables y s and y c, where the constant L1 M is 

replaced by an L-dependent constant LJM. Our definitions are based on the 
exact matrix R of Theorem A. We write 

(2.6) 

and recall that 

(2.7) 

provided k � 4 and 1 11 - 11* l  Lv � 1 .  We define 11* (L) by the equation 
]+ (Jl* (L ) ) = ]_ (Jl* (L ) ), and introduce the magnetizations of the two 
phases in !Rv+ 1, and the corresponding L-dependent quantities 

M = _ d(f3f ± ) 
( * )  + d J1 , - J1 

We also define 
M0 =�(M +  +M _ ), 

M0=�(M++M_), - 1 ,._ --LJM = :z(M + - M _ )  
(2.9) 
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Note that the assumption (2.7 ) formulated in ref. 9 implies that L1M, L1M 
are nonzero. Furthermore, Theorem A(ii) implies that 

lfl*(L) -11*1 :( e-[r-O(l)JL 

IL1 M-:1M!:( e-[r-O(l)]L 

IMo-Mol :(e-[r-O(l)JL 

Next, we introduce a characteristic length scale 

(2. 10 )  

(2. 1 1 )  

(2. 1 2 )  

� L = �R+ _ [L ,  11*(L)] -I exp { - �vp [J + ( /l*(L)) + J_ ( /l*(L) )] } 

which governs transitions between phases along the t axis at 11 * ( L ). 
Finally, we introduce block and cylinder scaling parameters: 

y B = tL"[Jl-ll*(L)] L1M 

Yc = �LL"[Jl-ll*(L)] L1 M  

(2.1 3 )  

(2. 14 )  

Remark. I f  the model in consideration has a positive transfer matrix 
T with eigenvalues A1 > A-2?;: · · ·, the correlation length �11 in the time 
direction is just 

Due to Theorem A, A 1 and A2 may be calculated from the matrix R, and 

[ ( 1+(2� )-I)J-1 
�11( 11 = ll*(L)) = log 

1 - (2�:)-1 = �L[1 + O(C:-2 )] 

by the above definition of �L · 
Theo rem 2.1 . Consider a two-phase system satisfying the assump

tions formulated in Sections 2 and 5 of ref. 9, and suppose T is sufficiently 
large. Then ZpeAV, 11 ), the partition function in the periodic cylindrical 
volume V = L"t, obeys the asymptotics (2.2) with 

),1_2(L)  = exp UVfJ(] + + J_ )] 

X { 1 + 0( 111-Jl*(LW L 2v ) 

± ��Z1(1 + 4y�)11
2 

[1 + 0( 111-ll*(L)I V)J} (2. 1 5) 

provided lll-ll*ILv:(1 and t?;: v log L. Under the same conditions, the 
magnetization is described by 

Mper( V, /1 )  = Mo + L1MY( y B' Yc) 

+ O( �Z 1) + O(e- [r- O(llJ' ) + 0( !--l-Jl*(L)) (2. 16 )  
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Here y8 and Yc are block and cylinder scaling variables defined in (2.13) 
and (2.14) and Y( · , · ) in the scaling function 

Finally, 

( )- 2yc h l�(1 4 2 )1/2] Y Ys, Yc - (1 +4y�)112 
tan 

2Yc + Yc 

v = 1, L � 1 
v)!2 

(2.17) 

(2.18) 

where C + _ is the constant introduced in Theorem A, and CJ is the surface 
tension at the coexistence point Jl*. 

It is interesting to consider three types of scaling limits t, L, 
IJ-1-Jl*l- 1 � oo: the cylinder limit where Yc is fixed while y8 � oo, so that 
tgL=Ys!Yc� oo; the block limit where y8 is fixed and Yc� oo, so that 
t/�L � 0; and the crossover limit where y 8 and y c are fixed in (0, oo ), so 
that t � �L· Note that in any of these cases 

since both t and � L tend to infinity. 

Cylinder Geometry. y c fixed, y 8 � oo. In this case we have 
t � �L � L w exp(fJCJV), 

Y( y  s, Yc) = (1 +
2:
y
c
�)ll2 [1 + O (e -2YB)] 

Since [Jl-Jl*(L )] = O(C:-1) in this geometry, we get 

and 

- � 2yc 
Mper( V, Jl) = Mo + O (�Z 1) +LIM (1 + 4y�)112 [1 + O(e-2 Y0)] (2.20) 

Block Geometry. y8 fixed, Yc� oo. In this case t/�L �o, 

Mper( V, Jl) = M0 + 0( � z 1 ) + O(e-C•- 0<1lJ') 

+ ,dM'[1 + O(yC:2)] tanh Ys + O(Jl-Jl*(L )) (2.21) 
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Block geometry still allows diverging t/ L. If instead we consider fixed 
aspect ratio, then (2.21) simplifies to 

Mper( V, Jl) = M0 + e- O(rL) + L1M tanh YB + O(Jl-fl*) (2.22) 

In this case there is no gain in using quantities defined at Jl*(L) and we 
recover the asymptotics of ref. 2. 

Crossover Geometry. y B, Yc fixed. Recalling that 111 - Jl*(L)I V � 

Yc�Z1 =yBt-1, we can write 

Before proving Theorem 2.1, we note that it is actually possible to 
eliminate the error term O(Jl-fl*(L)) in (2.16) if one introduces 
11-dependent quantities 

M (L )= _ .!!....]+(L,J1)+]_(L,J1) 
0 ' J1 dfl 2 

(2.24) 

ii:f(L ) = _.!!_]+(L, /1)- ]_(L, /1)  
' J1 dfl 2 

(2.25) 

Then 

x= �(]_-]+)V=JM[Jl-Jl*(L)] Lv[l + O(Jl-Jl*(L))] 
(2.26) 

Mper( V, /1 )  = Mo(L, Jl) + iM{L, Jl) 

x y (y B c: �(:;i)ly/2, Yc) + Q(�L 
1) + O(e- [r- 0(1)]') 

(2.27) 

The bound (2.16) is obtained from (2.27) by expanding M0(L, Jl), ------
L1M(L, Jl), and x�L about fl*(L); note that x�L = yc[l + O(Jl-Jl*(L))]. If 
one went further to second derivatives in Jl, one would obtain the more 
detailed shape (involving the susceptibility ) predicted in ref. 16. We will 
prove the bound (2.27) together with Theorem 2.1. 

Proof of Theorem 2.1. Let us write R as 

822(69(3-4-4 

(2.28) 
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where x is defined in (2.26). We have R(I1*(L) ) =� �i_ 1 ,  and we would like 
this equality to hold approximately for 11 i= 11*(L). This is the content of the 
following proposition. 

Proposition 2.2. If Tis large and 111 - 11 * 1  r � 1 ,  then 

R(11 ) = �� Z 1 [ 1 + 0( 1 11 - 11*(L) I  L " )  + 0( 111 - 11 * (LW L 2"e0(Ll)J (2.29) 

The last term in (2.29) may be omitted if v;?: 2. 

The proof is based on the results of Section 5 of ref. 9. We defer it to 
the end of this section. 

If we put C = cosh x, S = sinh x, then the eigenvalues of R are 

A. 1 , 2 = exp[ -�L"(]+ + ]_)]  [C±(S2 +R2) 112 ] (2.30) 

with the plus sign corresponding to the larger eigenvalue )"], the minus sign 
corresponding to A.2 • Proceeding with the proof of Theorem 2.1 , we need to 
approximate C ± (S2 + R2 ) 112 as 1 ± �� z 1 ( 1 + 4y�)112• We have 

C =  1 + 0(x2 ) =  1 + 0( [11-11 *(L)] 2 L2v ) 

and by (2.26), (2.29) we have 

(S2 + R_2 )1!2 

= { x�[ 1 + 0(11 - 11* (L) )  + O(x�) ]  + ±� Z2 [ 1 + O(x0) + O(x�) e0(LJJ} 1/2 

= ��,;:-�(1 + 4y�)ll2 

x ( 1 + 0
(11- 11 *(L))  y� + O(x�) y� + O(x0) + O(x�)e0(LJ) 

1 + 4y� 

= � �  z 1( 1 + 4y�)112 [ 1 + 0( 111 - 11*(L) I  r) J (2.31) 

where x0= ::iM{11 - 11* (L) )L" = Yc�Z 1 . The last term was estimated using 
x0e0(Ll= Yc�z1e0(LJ�Yc� 1 + 4y� . Altogether we find that 

!(A. I + A.2 ) = exp [ - �r(]+ + ]_ )] [ 1 + 0( 1 11 - 11*(L) I  Lv)2 ] 

)"1 - A2 = exp[ -�L''(]+ + ]_ ) ]  

X �Z1(1 + 4y�) 112 [1 + 0( 1 11 - 11*(L) I  LV) ]  

This proves the first part of Theorem 2.1. 
Next we evaluate and approximate 

d 
M 1 2 = L-" -d log A. 1 2 ' 11 ' (2.32) 
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A calculation shows that 
- ( s � RL-v dR/ dl1 ) M1 2 = M0(L , 11) + AM(L ,  11) + _____ _:___:___ __ 

· 
- (S2+R2)t!2 [C± (S2+R2)tf2(S2+R2)tf2 

(2. 33) 
Since we assume 111-11*IL"� 1 ,  x is bounded. Also, R� 1, so the last term 
can be bounded by 

lemma 2.3. lf r is large and 111-11*ILv�1 , then 

I L -vJ?. �� (S2 + J?.2)-l/2 1 � O (�Zl) 

The proof is deferred to the end of this section. 

(2.34) 

We expand S(S2+R2)-112 as in (2.31 ), using R/S=[1+0(x0)+ 
O (x6)e0(Ll] j(2y c): 

S 
= 

2yc (1 + O(x0) + O (x6)e0(LJ) (S2+R2)tl2 (1+4y�)tl2 1+4y�  

2yc 1 
(1 + 4y�)tl2 [1 + O (�Z )] 

This leads to the following result: 

Propositi on 2.4. If r is large and 111- 11*1 L v  � 1, then 

M1 +M2 - -1 
2 =Mo(L,I1)+0(�L) (2.35) 

We need to approximate the relative weights 

P1,2=),�jA.� +),�)-t (2.37) 

which determine how M1,2 are represented in the true magnetization Mper· 
We have 

P (t ).1) 1 - P 2 = tanh - log -:-
2 A2 
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and if we define x by the equation 

tanh x = [tanh2 x + (R/C)2 ] 112 
then (2.30) yields 

1 A 1 1 1 + tanh x , og- = og =2x 
A2 1- tanh x 

If we express x2 in terms of x and R and perturb in (RjC)2 , we find 

x2 = x2 + (R/C)2 [1 + O(x2) + O(R2)] 

x=(x2 +R2 )1 /2 {1 +[0(x2)+0(R2 )J lP_} 
x2 +R2 

= (x2 + R2 )112 [1 + O(R2 ) ]  

Then Proposition 2.2 implies that 

x = [x2 + (2�L ) - 2] 1/2 { 1 + [ O(x) + O(x2eO<Ll)] x2 �����; - 2} 
= [x2 + (2� L)-2 ] 1 /2 [ 1 + 0( (Z 1 ) ]  

Since t/�L=Ys!Yc, we obtain the following result. 

Proposition 2.5. If r is large and lp - p* l Lv � 1, then 

and 

(2.38 )  

Using (2.26 ) ,  which implies that x�L=Yc[l + O(p - p* (L) ) ] , we have 

P1 -P2 = tanh {� (1 + 4y�)112 [1 + O(p - p* (L) )  + O(�Z1)] } 
2yc 

Of course P 1 + P 2 = 1. Finally, we put these results together to compute, 
using the bound (2.3 ), 

Mper( V, p) = M1 P1 + M2 P2 + O(e- [r- 0<1lJ1) 

= M1 + M2 + 
M1 -M2 (P1 _ P2 ) + O(e-[r-O(I)JI) 

2 2 
= Mo + O(�Z I ) +  O(e- [r- 0( 1)]1) + O(p - p*(L) )  

+:1Ai lye tanh l� ( 1 + 4y2 )112J ( 2.41 ) 
( 1  + 4y�)l/2 2yc c 
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Here we see the scaling function 

( ) 
2y c h [ YB (1 4 2 )112] Y Ya,Yc = (1 + 4y�)l/2 tan 

2Yc 
+ Yc 
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appear with various corrections to this form displayed. Since 
l.u*(L )- 11*1 � e-[r-O(l)JJL, the bound (2.1 8) follows from Theorem A and 
the definition of �L· This completes the proof of Theorem 2. 1 .  The bound 
(2.27 ) follows from (2.3 ), Proposition 2.4, and Proposition 2.5. I 

Proof of Proposition 2.2. The proof is based on the bounds 

I.:!._ R I <{O(L)R + _ I(l + !If+ - f __ leo(Ll), 
d,u +- '"" O(L v) IR + _ I, 

I!!__ R ( <eo(LJIR I d,uk + 
-· '"" +-

v=l 
v�2 (2.42 ) 

(2.43 ) 

proven in ref. 1 9  under the assumption that r is large, k � 4, and 
l,u-,u*IL v�0(1 ). 

For v � 2 we now replace R + _ with R(Jl) in (2.42 ); the derivatives of 
expO(]+ + ]_ )V] merely contribute to the O(L v) .  Integrating the bound 
from ,u * ( L) to Jl, we obtain 

R(,u) = R(Jl*(£ ) ) [1 + O(Jl- Jl*(L) )L v ] (2 .44 ) 

which is just (2.29 ) without the last term. 
In order to prove (2.29 ) for v = 1 we note that the results of Section 5 

of ref. 9, in particular Proposition 5.2(ii ) and Proposition 5.3, ( 5.6b), imply 
that 

(2.45 ) 

provided l.u- .u*IL�0(1 ). Combined with (2.43 ) (for k = 2 ) and 
rephrased in terms of R, we get 

(2.46 ) 

On the other hand, 

(2.47 ) 

due to (2.42) and the fact that 
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Then, applying the second-order Taylor formula for R(/1) in powers of 
11-11 *(L ) , we obtain (2.29) for v = 1 .  I 

Proof of Lemma 2.3. The best bound on dR/dfl is obtained from 
(2.42) and (2.44) if v>  1, and from (2.46) and (2.47) if v = 1 .  We obtain 

L - v I�� (/1) I :::; 0( 1 ) � L 1 [ 1 + 1!1-fl*(L )I LveO(L)] 

Hence, for 111-fl*(L) I :::; e -rLfl the bound (2.34) holds. For larger values S 
cannot be too small, and so by using (2.29) also we obtain 

I L -vR_ �� (S 2 + R_2) - 1/2 1 :::; e[r/2+ 0(1)]L�L2:::; �L 1 

which completes the proof. I 
In order to prove Theorem B, which covers the whole region 

111-11*l:::; 0( 1 ), we recall the definition of high- and low-energy phases 
introduced in ref. 9. If 111-11*1 is so small that 

(2.48) 

the set Qs(L) of low-energy phases is just the whole set { +, - }, while 
Q,(L) contains only the phase m with 

fm(/1) = f(/1) = minfm(/1) 
m 

if the condition (2.48) is violated. In ref. 9 the concept of high- and low
energy phases was introduced to distinguish between phases which (for a 
given cross section L") are stable against perturbations with bubbles of all 
other phases (and hence may be analyzed .by convergent cluster expan
sions ), and phases which are so heavily suppressed that they do not 
contribute to the leading asymptotics of Zper; see Section 2 of ref. 9 for 
details. As a net result, one obtains the following generalization of 
Theorem A: 

Theorem A'. Let r be sufficiently large, t;;::: v log L,  let N(L) = 
IQ,(L) j, and define 

r* = min { r, mm [fm(/1)- f(/1)]} (2.49) 
E �Q,(L) 

Then there is an N(L) x N(L) matrix R such that the statements (i )-(iv ) of 
Theorem A remain valid with r replaced by r* in the bound ( 1 .5 ). 
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Remark. If the condition (2.48 ) is valid, Qs(L) = { + , - } , r* = r, 
and the bounds of Theorem A' are just the bounds of Theorem A. If, on the 
other hand, (2.48 ) is violated, IQ,(L) I = 1 and Theorem A' states that there 
exists a function ](L, f.l) with 

such that 

I ::k f3 cl(L , f.l) - f(L)) I� O(e- [r- 0(1) ]) (2.50 ) 

I ::k { zper( V, f.l)- exp [ - [3](!1) lVI J} I 
� exp [ - f3 f(L, f.l) I VI] exp {- [ r*- 0(1 ) ] t } (2.5 1 )  

Proof of Theorem B. Since Theorem B covers the whole regwn 
lf.l- f.l*l �0(1 ) ,  we must piece together the cases covered by the theorems 
of this section. 

( i )  lf.l- f.l*ILv�l . We apply Theorem 2. 1 ,  noting the changes 
O(e- [r- O(l)JL) between f±, M0,  L1M, and their £-dependent versions. 
There is a similar change in �L between the two theorems if v � 2. But it 
can be checked that the changes 

Ys-+ Ys[l + O(e- [r- O(l)]L) ] , Yc-+ yc[l + O(e-[r-O(l)]L) ] 

affect the scaling function in  a manner which can be written as 

Y( y8, yc)-+ Y( y8, Yc)[l + O(e- [r- O(l) ]L) ] 
Furthermore, since I Y( y8, yc)l � 1 ,  this change and the other terms m 
(2.27 ) fall within the bound desired in Theorem B: 

Mper( V, m) = M0 + L1MY( y8, yc) + O(e-[r-O(llJL) 
( 1 . 1 4' ) 

( .i i )  1 � lf.l- f.l*l L v � ( 1 3r/32)(L1M) - I. In this case y c � exp [ O(r )L v] 
and 

Y( y 8, Yc) = (tanh y8){ 1 + exp[-O(r)Lv] } (2.52 ) 

We may apply Theorem A' with N( L) = 2, obtaining the following matrix 
for the eigenvalue calculation : 

R=e- fu ( 1 + e- O(r) L  Ro ) 
R0 e- U- -f+l£'( 1 + e- O(r)L) 
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with R0 = exp [ - 0( r) L"]. Here we take the case f + < f _ , in which case 
(f _ - f + )  L" � 0( 1 )  because 111 - 11 *I L" � 1 .  Thus, I R + + - R _ - 1 - 1 � 0( 1 )  
and R0 perturbs the diagonal part of R with no small denominator. Hence 
the eigenvalues are 

Proceeding to M peA V, 11 ), we have 

M (V ) =M+(L,I1)A+(L)' + M_(L,I1 )A_(L)' + O(e-[•-o(IJJt ) per '11 lc+(L )' +L(L)' 

where M ± are defined by (2.4 ). Letting M0(L, 11 ) ± LJM(L, 11 ) = M ± (L, 11 ), 
this becomes 

M0(L, 11 ) + LJM(L, 11 ) tanh H [log A+ (L) - log L(L)] } + e- O(r)t 

= Mo + LJM tanh L� (f+ L" - f_ L") J + e-O(r)L + e-O(r)t + 0(11 -11*) 

= Mo + LJM tanh Ys + e- O(r)L + e- O(r)t + 0(11 -11*) 

Together with (2.5 1 )  we get (1 .14 ). 
(iii ) ( 1 3r/32) (LJM)- 1 � 111-11*IL' � O(l)L'. In this case Yc � 

exp[O(r )L '] and Ys�O(r)t, so 

Y(ys, Yc ) =  1 + exp [ - O(r)L'] +exp[ - O(r)t] (2.53 ) 

Theorem A' applies with N(L )  = 1 and 

R =;"I (L) = e -fL'( 1 + e --O(r)L) 

Taking again the case f + < f _ , we find 

Mper ( V, 11 ) = Mo + LJM + e-O(r)L + e- O(r)l + 0(11 -11*) 

and together with (2.53 ) this completes the proof. I 

3. C R OSSOV E R  FIN ITE-SIZ E SCA LIN G FO R POTTS MO D E LS 

In this section, we consider the q-state Potts model, which is a spin 
model with spin variable 

(J c 7l_ • = { 1 e2ni;q e2ni(q- I )/q} 
X 1:::" q • ' , . . . , 
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and Hamiltonian 

( 3.1 ) 
x,y lx-yl �I 

where b is the Kronecker delta. As the inverse temperature {3 is varied, the 
model undergoes a phase transition from a disordered high-temperature 
region {3 < {3 1 with a unique infinite-volume phase to an ordered region 
{3 > {3 1 where q different low-temperature phases coexist. If q is sufficiently 
large, this transition is first-order, and the model is an example of a 
temperature-driven first-order transition where q ordered low-temperature 
phases and one disordered high-temperature phase coexist at the transition 
point {31• 

For sufficiently large q and cubic boxes V, or more generally for 
cylinders V which obey the condition ( 1.2 ), finite-size scaling of the internal 
energy 

(3.2) 

and of the specific heat 

(3.3) 

can be derived from the ansatz 

zper( V, {3) = e- {![d(fi) lVI + qe-flj�({J) l VI + O(q -h min: I. L)) (3.4) 

for the partition function. (JJ Here I VI is the volume of the box V, {3 is the 
inverse temperature, b > 0 is a constant which depends only on the dimen
sion v + 1, and fm(f3) (m = o, d) is some sort of metastable free energy of 
the phase m. It may be chosen as a C6 function of {3 such that f0({3) is equal 
to the free energy and !Af3) > f(f3) if {3 > {3" while !Af3) is equal to the free 
energy and fo(f3) > f(f3) if {3 > {31• 

Here we derive the finite-size scaling (FSS) of Eper( V, {3)  for cylinders 
which obey a condition 

t � v log L (3.5) 

To this end we need a suitable version of Theorem A for the Potts model. 
Using a combination of the methods of refs. 9 and 3, such a theorem has 
been proven in ref. 17. For the convenience of the reader we restate this 
theorem below as Theorem 3.1. Our notation is as follows: Zper( V, {3) is the 
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periodic partition function in the cylinder V, I V I  = L't, f3 is the inverse 
temperature, {3, is the transition point, (J od is the infinite-volume surface 
tension between the disordered phase and the ordered phases, and fo(/3 ), 
fd(/3 ) are the metastable free energies introduced above. Throughout this 
section we will use b, b0, b1, etc. , for constants b > 0, b0 > 0, b1 > 0 which 
depend on nothing but the dimension v + 1. 

Theorem 3.1 . Let q and L be sufficiently large and assume that 
1 /A/3 )-/,,(/3 ) 1L v�ir 1 , where 

'1 = (2v � 2 - 4v � 2) log q 

Then there are real-valued functions fo(L, /3 ), fd (L, /3 ), roo(L, /3 ), FdAL, /3 ), 
and FoAL, {3 ), forming (q + 1) x (q + 1) symmetric matrices F and r, 
as follows: F is the diagonal matrix with matrix elements F00 = 
exp[-/3/AL, /3 )L'], Fmm = exp[-/3/o(L, {3 )Lv] (m = 1, . . . , q) , and r is the 
matrix with matrix elements F00 = FdAL, /3 ), rom= r mo =FoAL, /3 ), and 
rmn = F00(L, /3) (m, n = 1, . . .  , q). The following statements hold for k �  6 and 
some b >0. 

( i )  Let t � v log L. Then 

I :;k [Zper(V, /3 ) - tr(F +FI12rpi12 )'] I � e- f3f1VIq- b' (3 .6) 

(ii ) Let 

Then 

1 h r = -- log q = (Jod + O(q- ) 2v + 2 

l!!__r (L /3 ) 1 ,::::e-[2r-O(IJJL' df3k 00 ' "' 

l.!!_F (L /3 ) 1 �qe- [2r-O(I)]L' df3k dd ' "' 

I.!!._F (L {3) 1 ,::::e-[r-O(I)]U d{3k od ' "' 

(iii ) We have the condition 

I 
dk I bL df3k [f3f(L, /3 ) - /3/;(/3 )] � q-

(3 .7a) 

(3 .7b) 

(3.7c) 

(3.8 ) 



Finite-Size Scaling 

( iv) There is a (q-dependent ) constant Cod > 0 such that 

r L - {codL - 1!2e -fl"odL[l + O(L -In 
od( ' [3) - e -flO"odL'[l + O(q -bL ) ] ,  

provided 1/.i- /.i,l � q-bL/2. 

v + 1 = 2  
v + 1 � 3  

509 

(3 .9 ) 

Remarks. (i ) The leading contributions to roo and rdd are terms 
involving two interacting interfaces. This explains the fact that roo and rdd 
are roughly given by (rod)2. The additional factor of q in (3.7b) comes from 
the fact that these interfaces enclose an ordered region (which corresponds 
to q different ordered phases ) if the outer region is disordered. 

(ii ) The reader may have noticed that the above condition that L is 
sufficiently large is not present in Theorem A. In ref. 1 7  this restriction is 
used as a technical tool at several places, e.g., in the proof of the decay 
condition (2.7 )  of Section 2 of ref. 1 7. It is clear, however, that this condi
tion is not a purely technical condition because the transfer matrix :Y for 
L = 1 has rank q, which would not be compatible with (3.6 ) if L = 1 were 
an allowed value for Theorem 3 . 1  ( recall that F and r are matrices of rank 
q + 1 ). 

Computation of Eigenvalues. The first step in deriving the scaling 
form for the Potts model is a computation of the eigenvalues of the 
(q + 1 )x(q + l )  matrix 

R = F + p112 rpl/2 

By Theorem 3. 1 ,  Zper( V, [3) is well approximated by tr T'. 
The calculation is simplified by noting that any vector of the form 

(0, v1, ... ,vq) with L: v i = O is an eigenvector with eigenvalue 

A_1_ = exp[ - f3fo(L, {.i)r] ( 3 . 10 )  

Thus A_1_ i s  (q - 1 )-fold degenerate. On the remaining subspace of  vectors 
of the form (v0, v, ... , v ), the eigenvalues are obtained by diagonalizing the 
effective 2 x 2 matrix 

� ( ( 1  + rdd)e-flfd(L,fl )L' 
R =  Jq rode- (fl/2 ) [f0(L,/i ) + /J(L,/i ) ]  U 

If we define 

Jq rode- (fl/2)[/o(L,fl ) + /J(L,fl ) ]U) 
( 1  + qroo)£-flfo(L,{J ) L' 

( 3. 1 1 ) 

f.i]o(L, fJ )  = f3fo(L, f.i)- L - v log( 1 + qr00) ( 3. 1 2a) 
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fJ]AL, (J) = fJJAL, (J) - L -- v log( 1 + qrdd ) (3. 1 2b) 

1 
X= l [{J]d (L, {J )- {J]0(L, {J ) ]  Lv (3. 1 3 ) 

A= exp [- � (]0 (L, (J ) + ]AL, (J) J Lv 

f = rod od 
(1 + rdd) l /2 ( 1  + qroo l l/2 

then R can be written in a form familiar from the two-phase case: 

Thus the remaining two eigenvalues may be computed as 

A±= A [cosh i ± (sinh2 i + ql';y;2 ] 

The degenerate eigenvalue can be rewritten as 

The eigenvalues are plotted in Fig. 1 .  

( 3. 1 4 )  

( 3.1 5 )  

( 3.1 6 )  

( 3. 1 7 )  

( 3. 1 8 )  

Definition of Scaling Variables. We define an L-dependent "transi
tion point" (J*(L) by the equation 

.Jd (L, (J* (L) )  = Jo (L, (J*(L) )  ( 3. 1 9 )  

fJ -{5�( L) 

Fig. 1. The avoiding crossing region for the first three eigenvalues of -log k The eigenvalue 
i.J. is (q -1 )-fold degenerate. To make the figure better readable, we have subtracted a term 

!(/3];, + /3ld)L' from all curves. 
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i.e., where .X = 0. A "correlation length" � L may be defined by the relation 

(3.20 ) 

The true correlation length in the time direction is 

since A+ and A j_ are the two largest eigenvalues. However, at {J*(L ), � 11 1 
and �Z1 differ by only O(ql';d) + O (T"ol=O(�Z(2- 'l) , so that �11 = 
�L[ l  + O (�Z(l-e)) ] . Thus, there is no  harm in  using the more convenient 
definition. 

Next we define the L-dependent internal energies 

- d 
Eo,AL) = d/3 [

f3fo.d(L, {J*(L))] 

and write 

E= HEd(L) + E0(L)] ,  

By (3.7 ), (3.8 ), and (3. 1 2 ), 

__. 1 - -

LIE= 2[EAL)- Eo(L)] 

IE- El, I LIE - LIE I � q- bL 

(3.21 ) 

(3.22 ) 

where E, LIE are the corresponding L = oo quantities. Similarly, we have 
1/3,- {J* (L) I � q-bL, which verifies ( 1 . 1 6 ) of Theorem C. Finally, we define 
scaling variables 

y B = tV[/3- {J*(L)] 3£ 

Yc = �L L" [ /3 - {J*(L)] L1E 

(3.23a) 

(3.23b ) 

Derivation of the Scaling Function. As in two-phase case, 1t 1s 
worthwhile deriving the scaling form heuristically before carefully going 
over the approximations involved. We approximate the eigenvalues for 
small .X, r as 

(3.24 ) 

Theorem 3. 1 (i ) implies that for k �  5 
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where i runs over q + I values corresponding to the q + 1 eigenvalues )" ±, 
A._L, and 

Approximating .X as 

E1 (L , /3 )  = -L ' � log )"1 (L) 

P1( V, /3 )  = A.1 (L)' [2: J)L)'J -I 
J 

(3.26 ) 

(3.27 ) 

[/3 _ fJ*(L) ] L , :!_ (f3Jd- /3]")1 = [/3 _ u*(L) ] L , (Ed- Eo)=: c 

d/3 2 fJ*(L ) 2 r:; L  
we find that 

- _ _,. "�.X' - _ x�u1E 
E±(L, /3 ) = E + L 

(x2 + �£2 )1/2 
= E +

[I+ (x�L ) 2 ]112 

-- YcM = E+ ( 1+ y�)l/2 

E _L(L , /3 )  = E-L1E 

We ignore the [3 dependence in �L and work to first order about f3 = fJ*(L). 
Note that 

)"± (L)'�A'exp { ± L [ (.X�L ) 2 + 1 ] 112} 
A-_L (L)1-A1exp [L (.X�L )J 

and since t /( L = y s! y c, this becomes 

A ± (L)' � A1 exp [ ± �; ( 1  + y�)112J 
)"-L (L)'-A'exp yB 

Putting these computations into (3.25), we obtain 

Eper = E-J:E( { exp [�; ( 1  + y�)112 J- exp [- �; (1 + y�)112 ]} 
x (1 :y

c
�)112 + (exp y sHq -1)) 

x { exp [�; ( 1  + y�)112 J + exp [ _ �; (1 + y�)112 J 
+ ( exp y s )( q- 1)}- 1 
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where 
(q- l )eYB+ Yc(l + y�)-1122 sinh[(y8/Yc)(1 + y�)112] 

Y(y 8' Yc) = (q- 1 )eYB + 2 cosh[(y 8/Yc)(1 + Y�)112] 
The following theorem, analogous to Theorem 2. 1 in the two-phase 

case, gives a precise picture (without errors q- bL) near {J*(L). 
Theorem 3.2. Let q and L be sufficiently large and assume that 

1 /3- /311 V � 1. The eigenvalues of the matrix F + F112 rF112 obey the 
following estimates: 

;_ ± (L) =A exp( 0( ¢ Z2) ± ¢ z 1 { 1 + y�[ 1 + 0 ({3- {J*(L))] } 112) (3.28a) 

A1.(L) =A exp { O(¢Zc2- ">) + (Z1Yc[1 + 0({3 - {J*(L))] } (3.28b ) 

Furthermore, in the cylindrical volume V = Lvt with t � v log L , the inter
nal energy is described by 

- --.... -bt Eper(V, f3)=E- L1EY(yB, yc)+ O(q ) 

Finally, 

+ 0( ¢ z(l-e)) min { 1 +I ycl, y 8/yc} + O (q 1/3- f3*(L)/) (3.29) 

c = {C(q)L112etl"odL[ l  + O (L -1 )] , 
-L q-112 etl"odL'[ 1  + O (q-bL)] , 

v = 1 
v�2 

(3.30 )  

Proof. We shall need estimates analogous to  Proposition 2.2 and 
Lemma 2.3 on the variation of rod as a function of {3. The situation here is 
somewhat simpler due to the fact that bounds on the logarithmic derivative 
of rod are available. In ref. 17 it is shown (Theorems 2.1 and 2.2) that 

l.:!._r 1 / .:!._r I :o::e-[2r-0(1JJV d{Jk 00 ' d{Jk 
dd "'"" (3.3 1a )  

I :;k rod/� O(Lkv)rod (3.3 lb )  

provided k�6 and a:=f3 1fo(f3)-fAf3)1 �(7j8)r1L-v. With rod= 
roA1 + rdd)-112(1 + qrod)- 112, it is immediate that jdroid/31 � O(V)rod· 
Hence, for 1/3 - {J*(L)I V � 1 we have 

JqroA/3) = Jqrod({J*(L)) exp [O(I/3- {J*(L))I L v)] 
= ¢Z 1[1 + 0(1/3- {J*(L)I LV)] 

L - v ldrod/ :0::: 0(�'-1) 
I df3 "'"" <, L 

(3.32 ) 

(3.33 ) 
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Rather than expand Ai in terms of f3 � [J*(L ) to produce a result like (2. 1 5  ), 
we analyze log Ai. With C = cosh x, S = sinh x we have 

so by ( 3.32) it follows that 

(}.+ L ) 1 12 = A  exp [O(�Z 2 ) ]  (3.34) 

Proceeding as in the proof of Proposition 2.5, we find that 

! log(). +/L) = (x 2 + qt;d)112 [1 + O(�Z 2 )] 
= (xz + �Zz[1 + O(x )]} 1/2 [1 + O(�Z 2 )] 

= (x 2 + �Z 2 ) 1 / 2 l1 + O(�Z 2 )  + �2
(:�En 

=(x 2 + �Z 2 ) + 0(�Z 2 )  (3.35 ) 

Recall that 

X= HfJ]AL, fJ ) � /3]0(L, fJ )]L" 

= AE(/3 � [J*(L ) )  L''[l + 0([3 � [J*(L ))] (3.36 ) 

___.. 

so in terms of the scaling variable Yc = �LL '[/3 � fJ*(L )] AE, 

Taken together with (3.34), this proves (3.28a ). The bound (3.28b ) on)._]_ 
follows immediately from (3. 1 8 ); we can bound qraa by a power of �Z 2 
using Theorem 3. 1 .  

In order t o  compute £per( V, [3 ), we follow the prescription given in 
(3.25 )-(3.27 ). The calculation of E±(L, [3 )  is virtually the same as the one 
for Mu in the proof of Proposition 2.4. We state the result: 

E + � E _ � Yc ("-1 ) 
2 = �AE(L, [3)  

( 1  + y� ) 112 + 0 c, L 

(3.37a) 

(3.37b) 
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Here 

E(L , {J) = � ( {J]d(L , Jl); /3]0(£ , Jl)) 

L1E(L {3) = !!_ ({J]d(L, Jl)-f3])L, Jl)) = L - v  dx ' � 2 � 

The remaining internal energy is 

d 
EdL, {3) = -L -v df3 1og A-j_(L) 

- d --
= E(L , {3)- L -v 

d{J
log(l +q roo)-L1E(L, {3) 

= E(L, {3)- LJE(L, {3) + 0( � L (2- c)) 

51 5 

(3. 37c) 

The other part of the formula for Eper( V, {3) is the relative weightings 
P1• Using (3.18), (3.34), and (3.35), we obtain 

P -P = 2sinh { t[(iz+�Zz) t;z+O(�Z2)] } 
+ - 2cosh { t [(i2+�Z2)112+0(�Z2)] }+(q-l)exp[t(i-x0)] 

(3.38a) 

p ---
----------

��
e_x�p � [�t(_i�

-- x�0� )]�-------------
j_ - 2 cosh { t[ (i2 + � z 2 ) 11 2 + 0( � z 2)] } + (q- 1) exp[t(i-x0)] 

(3.38b) 

where 

We would like to pull out x0 and O(�Z2) as additive corrections to 
P + - P _ and P j_. To this end , we rewrite 

P+-P-=1 ( " ; · )' ( " ;· )' + ). _ ).+ + )._]_ ).+ 
(). j_;;. + )' 

Pj_=l ( " ; · )' ( " ; · )' + I. _ 1.+ + )._!_I.+ 

and prove the following result. 

822/69/3·4·5 
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lemma 3.3. Let q and L be sufficiently large and assume that 
1/3-/3,1 L' :( 1 .  Then 

(3.39a) 

and 

I(Aj_/A+ )' - exp[-t(x 2 + �Z2)112- _xJI:::; 0(� z(l-e> ) min { 1 + lyc l, �;} 
(3.39b ) 

Proof. The bound (3.39a ) is trivial. In order to prove (3.39b ) ,  we 
may assume without loss of generality that 

(3.40a) 

or 

(3.40b) 

because the rhs of (3.39b ) is just 0(1 ) if both (3.40a) and (3.40b ) are 
violated. We then use the bound e3- 1 :( 6e3 [with 6 = O(t�Z 2 )  + tx0 = 
o(t�z( 2-">)] to bound the lhs of (3.39b ) by 

If the bound (3.40a ) is fulfilled, we conclude that the lhs of (3.39b ) is 
bounded by 

O(t� z( 2 -el ) exp{ - t[(x 2 + � z 2 )1; 2- .X]} 

= 0 G; � z(l -e)) exp{ - O(ys) [(1 + y c 2 )1/ 2 - 1 J} 

� 0(;:-( 1 -e)) . {Ys 1 } "" .., L mm 
y c' I y cl [ ( 1 + Y c 2 )  1 / 2 - 1 ] 

:::; O(�Z(l-el) min {�; . 1 + IYcl } 
We have used that 

tx =y8[1 + 0(/3 - fJ*(L ) )] (3.41a ) 
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which follows from (3.36) . If (3.40b) is valid, we use the fact that 
i =0(Yc�.L 1 )  to bound �.z<2- 'l l x l by O(�.L2) . As a consequence , 

(x 2 +  �.L 2 ) 1/2 :;:, Iii + b�.z 12- e J  

provided b > 0 is chosen small enough. We conclude that 
o( t� L ( 2 - c)) �  & [ (x 2  + � .L 2 )  l/2 - I i i  J � & [(x 2 + � L 2) 1/2 - .X] 

provided L is large enough. Using th is bound, we may continue as 
before . I 

Combining Lemma 3.3 with (3.27 )  and (3.37 ) ,  we obtain 
£per( V, {3 )  

= E( L, [3) + O(�_L 1 1- "l) min { 1 + \ ycl , �;} 
+ 0( � .L 1 ) + O(q -bt ) - L1E(L, [3 )  
2 sinh { [ ( tx )2 + ( y slY c )2] 112 } y cO + y�)-112 + ( q - 1 )  exp( tx )  x ----�--�--��--�����----�----�--

2 cosh { [  ( tx )2 + (y  slY c)2] 1 12 } + ( q- 1 )  exp(tx) 

F inally , we expand in f3 - [J*( L) using (3.41a) and 

L1E(L, [3) = L1E + 0([3 - [J*( L)) 

E( L, [3) = E + 0([3 - [J*( L)) 

(3.41b ) 
(3.41c) 

Once again there is a problem with pulling out the correction. After 
dividing through the numerator and denominator , the only tricky term is 
the derivative of 

(q - 1 )  exp (tx ( l + 6 ) - { [tx ( l + 6 )] 2 + (YsiYc)2 }112 )  (3.42) 
in b [which stands for 0([3 - [J*( L))] . The logarithmic derivative of the 
exponent is bounded by a constant , so the derivative of ( 3.42) is bounded 
by O(q). Hence we may replace tx with y s is we add an error 
O(q [[3 - [J*( L)I ) . Bounding 0(� .L 1) by O(q-bL ), this completes the proof of 
(3.29). 

The last statement of Theorem 3.2 follows immediately from Theorem 
3. 1 (ii) , (iv ) .  [Recall that �.L 1 = JqroA1 + rdd) - 112 (1 + qToo )- 112.] I 

Proof of Theorem C. We consider three cases: 
(i) 1!3- f3t l  r � 1 .  By (3.22), hEd ± Eo )  differ from E, L1E by q - 0(1)L 

This induces changes 
y s -> y s[l + O(q - O(l)L)], Yc -> yc [1 + O(q -0( 1 )L )] 
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going from Theorem 3.2 to the simpler definitions (1 . 1 8 ), (1.19 ). Note that 
y slY c is not changed. Checking the effect of these changes on P + - P _ and 
P _]_ as before [see (3 .42 )] and observing that 

(with 6 = q - O( l J L ), we obtain 

+ O(q 1/3 - {J*(L) I ) + 0( �  z ( l - •J ) min { 1 + IYcl, �;} (1 .21 ' )  

(ii ) 1 � 1/3 - /3 1 1 r � (1 3/32 )(LIE)- 1r 1 .  In this case Yc ;::: O(�L ) and we 
may perturb away Yc2 in 

where a = (1 + YC: 2 ) 112 = 1 + O(�Z 2 ). We distinguish two cases : either 
I Ys l  � log �L ' which implies l ays -Ysl = O(� Z (2 - " l )  and hence 

Y( ) - qe l'B _ eYB 
+ 0( ;: - (2

-
• J ) Ys, Yc - l'B + - rB qc, L  qe- e -

= T(ys) + O(q� z (2 - • J ) ( 3.43 ) 

or I Ys l ;::: Jog �L ' in which case both Y(y8 , yc) and T(y8) are equal to 
sgn y8 + 0(q� Z 2) = sgn y8 + 0(�Z (2 - " l ), which gives again the bound 
( 3.43 ). By Theorem 3.1, the matrix F + F112 rF112 governs the behavior in 
the region (ii ), and its eigenvalues (3 .1 7 ), (3 .1 8 )  can be approximated as 

), _]_ = A [exp(x )] [ 1  + O(�Z (l - • l ) ] 
( 3 .44 ) 

Noting that we have good bounds on dr jd{J, a calculation shows that 

d - -
E ± (L, {3) = -L - v d{J

iog }, ± = E(L, {3) + LIE(L, {3) + O(�Z  1 ) 

d -
E_!_(L, {3) = -L - v  d{J

iog },j_ = E(L, {3) - LIE(L, {3) + O(�Z 1 ) 
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[The error term in E ± is essentially the third term in (2.33 )  and is easily 
bounded. ] Putting these results together, we obtain 

_ � 2 sinh t(x - x0 ) + (q - 1 ) exp[ t(x - x 1 ) ] 
£per( V, /3) = E(L, /3) - L1E(L, {3) 2 cosh t(x - x0) + (q - 1 )  exp[ t(x - x d] 

+ O(�Z I ) + O(q- b' ) 

where Xo = 0(� Z 2 ), X I = 0(� L (l - o) ). If Ii i t � log �L ' exp( - 2t I .X - Xo l ) and 
exp( - 2t l x - x1 1 ) are O(�Z r2 - e 1 )  and 

£per( V, {3) = E(L, {3 ) - LJ£(£, /3) [1 + 0(� L (l - " 1 )] + 0(� L 1 )  + O(q- h' ) 

= E(L, /3) - L1E(L, f3) T(xt) + O(� z 1 ) + O(q - h' ) 

If I.X I t < log �L ' we pull out a correction O(q)(t lx 1 l + lxo l ) �  
O(q�z r2- " 1  log �L ) = 0(��- ' 1 ). Again we find that 

Eper(V, /3) = E(L, /3) - L1E(L, /3) T(xt )  + 0( � L 1 ) + O(q - ht ) ( 3.45 ) 

Combining ( 3.45 ) with (3 .4 1 ) and (3.43 ), we obtain that 

£per( V, {3) = E(L) - L1E(L) Y(y B ' Yc) + O(�L 1 )  + O(q- b' )  + O(q(/3 - {3*(L))  
( 1 .2 1 " ) 

(iii ) ( 1 3/32) (L1E) - 1 r 1 � 1/3-fJ ,ILv . Here l Ye! � exp[O(r d V],  IYsl � 
O(r 1 )t, so that 

Y(ys, Yc) = sgn(/3 - /3, ) + q - OWJ + q- O(t) ( 3.46 ) 

We need a replacement for Theorem 3 . 1  when the ordered and disordered 
states are widely separated in energy. The following theorem, proven in 
ref. 17 ,  provides the necessary information. 

Theo rem 3.4. Let q and L be sufficiently large, and assume that 
�r 1 � lfd (/3 ) -fo(/3) 1  Lv � 0( 1 ) £". Then the following statements hold for 
k � 6 and some b > 0. 

( i )  If /3 < /3" then there exists r�AL, {3) satisfying (3.7b ) such that 

1:;k (Zper(V, /3) - { [ 1 + F�AL, f3)J e - [J;;,rL. {J )L' } ' ) I � e -f!I I VI q- b' 

(ii ) If {3 > {3" then there exists r�0(L, f3)  satisfying (3 .7a) such that 

I d�k [Zper( V, /3) - tr(F + p1!2rp1!2 ) ' ] I � e -f!f i VI q- b' 
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where r, F are q X q matrices with matrix elements r mn = r�o and 
F mn = bmn exp[ - f3fo(L, f3 )Lv] .  

Recall that EperC V, /3 )  i s  approximated as a convex combination of 
Ei = -L - v(d/df3 ) !og -i i , where Ai are the eigenvalues of F+ F112rF112• If 
f3 < f3 , ,  there is only one A.i, and the corresponding energy is 

d 
Ei = 

d/3 
[f3JAL, /3 ) ]  + 0( � z <2 - 'l) = Ed +  0( � z <2 - c ) ) + 0( /3- /3,) 

If /3 >  /3, , the eigenvalues are exp[ - f3fo(L, f3 )Lv]  and exp[ - f3fo(L, f3 )V]  
[ 1 + qr�0(L, /3)  ] ,  the former with multiplicity q- 1 .  All of the energies, 
however, obey the same estimate: 

Putting these facts together with ( 3.46 ), we obtain ( 1 .2 1  ), and the proof of 
Theorem C is complete. I 

4. C R OSSOV E R  F I N ITE-SIZE SCALI N G  F O R  F R E E  B O U N DARY 

C O N DITI O N S  

In  this section we consider volumes where we impose free boundary 
conditions in the directions transverse to the time direction. We therefore 
take volumes of the form V = A  x T, where A is the v-dimensional box 
{ 1, 2, . . . , L } "  and T is the torus Z/( tZ ) . In order to avoid technical com
plications, we only consider the standard Ising model. For this model, the 
partition function with free boundary conditions is just 

Zrree( V, fl ) := I exp (- /3 L I O"x - O"l' J + /1  L 0",) (4. 1 ) 
OT (xy )  E V1 X E V 

where the first sum goes over ali configurations O" v : V ---+ { - 1/2, + 1/2} , 
while the second sum goes over the set V1 of all nearest neighbor pairs 
{ x, y }  for which both x and y are in V. We recall that the infinite-volume 
transition takes place as 11 crosses the point 11*  = 0 due to the ± symmetry 
of the model. We use O" to denote the infinite-volume surface tension, f(L) 
to denote the free energy in the infinite cylinder V w := A x  Z, 

- f3f(L) : =  lim -1
1

1
log Zrree( V, /1) 

v � Vx V 
(4.2) 

and f ± = f ± (/1) to denote the metastable free energies introduced in ( 1 .1 )  
(their existence is guarantied by Theorem A ). Our main result for free 
boundary conditions is then summarized in the following theorem. 
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Theo rem 4.1 . Let f3 be large and l.u l L" :( 1 .  Then there exists a 
2 x 2 symmetric matrix R = R(L, .u) with strictly positive entries, such that 
the following statements are true. 

(i) For t ;;;, v log L and for 0 :( k :( 4, 

I :;k [Zrree( V, .U) -Tr R'] I :( e - f!f(L) l VI e - [f! - 0( 1 J J  t ( 4.3) 

( ii) R + + ( L, .u = 0)  = R _ _  ( L, .u = 0) 

(iii ) I :; dL - v log Rmm + f3fm(.u) ] I :( O(L - 1 ), m E { - , + } (4.4) 

(iv ) I!!_ R . I � e- f3f(L) U e- [f3- 0( 1 J JL' 
d.uk T - '-':: 

(v ) There are constants b0 , . . . , bv _ 1 such that 

R + _ (L, .u = 0)  
R + + ( L, .u = 0)  

( 4.5 )  

= exp( - fJO"L") exp ( - �t� biLi) ( l + O(exp { - [fJ - 0( 1 ) ] £ } ) ) 

provided v + 1 ;;:, 2. 

Remarks. ( i ) If one defines 

fJ]+ (L, ,u) = -L- v log R + +  
fJ]_ (L, ,u ) =  -L- v log R _ _  

f3 x = 2 cl + ( L, .U) -] _ ( L, .U ) ] L v 

( 4.6 ) 

( 4. 7 )  

(4. 8 )  

(4.9 )  

T= T(L, .u) = ( exp {� []+ (L, .u) + ]_ (L, .u) ] L"}) R + _ (L, .u) 

( 4. 10 )  

then the two eigenvalues of R (and hence the two lowest eigenvalues of the 
transfer matrix ff )  are 

A± = ( exp { - � U + ( L, .u) +] _ ( L, .u) ] L v}) [cosh x ± (sinh 2 x + T2) 112] 

( 4. 1 1 )  
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As a consequence, the spectral gap � z 1 in the infinite cylinder V oo at f1 = 0 
is related to the surface tension <I by the equation 

where 

" · - l 1 J - D(L) fJau (,L .- I ( 1 / "  ) 
- e 

og 11. +  ). _ �" �o 

1 ( v - 1 ) 
D(L) = 2_ exp ;�o b ;L; (1 + O(exp { - [,8 - 0( l ) ] L ) )  

( 4. 1 2 )  

( 4. 1 3 )  

Note that D(L) = 0( 1 )  for v + 1 = 2, in accordance with the results of 
refs. 1 8-20. 

(ii ) As in the periodic case, the finite-volume magnetization is given 
by an equation of the form (2.3 ), i.e., 

if k ::;; 3, t � v iog L, and l fl i L" ::;; l .  Here 

1 d M + (L, /1)  = --: - log A + - L' dfl -
p ± ( V, f1 ) = A I± ( ). I+ + ). I_ ) -I 

( 4. 14 )  

( 4.1 5 )  

( 4. 1 6 )  

We leave it to the reader to use the methods of Section 2 to obtain an 
analog of Theorem B for free boundary conditions. 

We now sketch the main ideas of the proof of Theorem 4. 1 ,  leaving 
some of the more technical details to the Appendix. As usual, we define the 
contours corresponding to a configuration <I v as the connected components 
of 86 v, where ali v is the set of v-dimensional faces dual to the bonds 
<xy )  E V1 for which <Ix =f. <Ir .  We distinguish between long contours, which 
wind around the cylinder in time direction, and short contours, which do 
not. For short contours we distinguish between interfaces, which are those 
short contours which are perforated by all timelike loops5 in V1 ,  and 
ordinary contours, which are those short contours Y for which it is possible 
to find a timelike loop in V1 which does not perforate Y. 

Neglecting configurations <I v for which 8<I v contains long contours [as 
shown in the Appendix, these configurations only contribute to the error 
term in (4.3 ) ] , we then consider the partition function Z,e,( V, /1) which is 
obtained from Zrree( V, f1 ) by restricting the sum in ( 4. 1 )  to those configura-

5 We call a closed line in V Time/ike if its closed via the periodicity of V. 
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tions for which a(J v is only made of interfaces and ordinary contours. If the 
condition l,u l  V :s;; 1 is fulfilled-as we assume from now on-the gain in 
energy resulting from the insertion of an ordinary contour with interior 
Int Y into an unstable phase is bounded by l ,u l l lnt Yl :s;; l ,u l  V I  Yl :s;; I YJ , 
leaving an effective decay exp [ - (/3 1 Yl - l ,u l l lnt Yl )] :s;; exp[ - ({3 - 1 )  I Yl ] .  
As a consequence, we can use a convergent cluster expansion to resum the 
ordinary contours in Zres( V, ,u ). This leads to effective free energies 
f ± (,u, L)  for the regions between interfaces, an interaction term 
exp g( Y, Y ' )  for neighboring interfaces, and a modified weight K( Y) for the 
interfaces. As a consequence, 

zres( V, ,u) = e-#.f'+ (L. !l ) l  VI + e - fij_ (L. !l) l VI 

X 1 + L _ L TI K( Y; ) e - /if; (L. I'J I V.! e�r( Y,, Y, " , J 
n = l n Y1 ,  ... , Yn i 

(4. 1 7 )  

where the second sum goes over interfaces Y1 , . . .  , Y" that are chronologi
cally ordered, V, is the region between Y1 and Y, + 1 ,  I = f + if V, is in the 
+ phase, and f, = f _ otherwise. The factor 1/n in the above sum accounts 
for the fact that cyclic permutations of Y1 , ... , Y" correspond to the same 
configuration in Zres( V, ,u). 

Comparing ( 4. 1 7 )  to the corresponding expansion for periodic 
boundary conditions, we note two main differences: first, the L dependence 
of f + ( L, ,u ) is much stronger then before. For the periodic case, we had a 
bou�d lf± (L, ,u ) - f± (,u) l  :s;; e - Cfl - O ( I J J L, while now 

( 4. 1 8 )  

due to the presence of the free boundary. Second, the sum over interfaces 
is now a sum over interfaces with free boundaries, while the interfaces in 
the periodic case had to match at the boundary [it is this restriction which 
is responsible for the power law correction O(L - 112 ) in ( 1 .8 ) ;  see Section 5 
of ref. 9 for details ] .  

Keeping these differences in  mind, we continue as in  the periodic case: 
we assign a time t( Y) E T112 : =  { 1 /2, 3/2, . . .  , t - 1 /2 }  to each interface Y 
[roughly speaking, t( Y) is the middle point of the smallest interval I( Y) 
such that Y c A x I( Y)] and define an activity 

r( Y) = K( Y) exp{ - f3fmJL, ,u ) [ l V - 1- L" I I_ [ ] }  

X exp { - f3fmJL, ,u ) [ I V + 1- L" I I+ I ] } ( 4.1 9 )  

where I +  (I_ ) is the part of I( Y )  above (below) t (  Y), V + ( V _ ) is the part 
of A x I( Y) above (below) Y, and m + ( m _ ) is the label of the phase above 
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(below) Y. With these definitions, the partition function Zres( V, f.l) can be 
rewritten as 

OCJ 1 
+ I - I TI r( YJ 

II = I n y! , . . . , Yn i 

x exp { - f3J: (L, f.l) [t( Yi + 1 ) - t( YJ] L" } exp[ g( Yi , Yi+ 1 ) ]  

(4.20) 

If we neglect the interaction between neighboring interfaces and 
approximate the nonoverlap constraint between Yi and Yi + 1 by the 
constraint t( YJ < t( Yi + 1 ), we can write the right-hand side of ( 4. 1 7 )  as a 
trace 

Here F is the diagonal matrix 

F= diag(exp [ - f3f_ (L, f.l )L'' ] ,  exp [ - f3f+ (L, f.l )L'] ) (4.22 ) 

and r(O) is the 2 x 2 matrix with matrix elements 

r(O) = lim " r( Y) m - m + L.,; v �  Vx Y : t( Y) � to 
( 4.23 ) 

where the sum goes over interfaces describing a transition from the phase 
m - below y to the phase m + above Y. Note that r(O) does not depend on 
the choice of t0 in (4.2 3 ), due to the translation invariance in the time 
direction. 

Taking into account the interaction between interfaces requires the use 
of the methods of ref. 9, Section 4. There is, however, no difference in this 
part of the proof. We therefore only state the result, which is the existence 
of a matrix r with matrix elements 

such that 

T = T(Ol + 0(e - [2/i - 0( 1 ) J L' ) nJ _ n1 +  ni _ m ,  ( 4.24) 

I ::k [Zres( V, f.1) - tr(F + F112 TF112 )
'
] I 

� exp[ - [3  min {f_ (L, f.l ), f+ (L, f.l ) }  I VI ]  exp { - [[3 - 0( 1 )] t } (4.25 )  

l dk::;;m+ I � exp{ - [[3 - O( l )] L' }  (4.26) 
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provided fJ is large enough, k � 4, and I ii I V �  1 .  Up to the difference 
between Zrree( V, !l )  and Zres ( V, !l) (which is bounded in the Appendix )  and 
the difference between f(L) and min {f_ ( L, fl), f+ (L, ,u) }  (which is 
O(exp{ - [[J - 0( 1  ) ] V } )  and therefore harmless ) this already proves the 
bounds (4.3 )-(4.5 )  of Theorem 4. 1 [use (4. 1 8 )  and its generalizations to 
derivatives to prove ( 4.4 ) ], while ( 4.24) reduces the proof of ( 4.6) to the 
proof of the relation 

r�)- (!l = O) 

= exp( - J)oLv ) exp ( - ��: biLi) ( l + O(exp { - [J) - O( l ) ] L } ) ) 

(4.27 ) 
Note that the right-hand side of this equation is typical for the parti

tion function Z of a dilute lattice gas in a volume A =  { 1 ,  ... , L }  v, where 
log Z contains a volume term proportional to V, a surface term propor
tional to V - 1 , . . .  , a corner term 0( 1 ), and finally exponential corrections 
due to the finite correlation length of the model. We therefore have to find 
a suitable representation of r�>_ (!l = 0) as a dilute lattice gas with free 
energy density CJ. 

In order to present the main ideas, let us neglect, for the moment, the 
fact that the resummation of ordinary contours also changes the activity of 
an interface. In this approximation, 

zres( V, fl = O) � e -flf+ (L,O) I VI ( 1 + 1 + � � L n e - fl i Y,I egt Y,, Y, . ! l) 
n - 1  Y1 , , Yn 

r�>_ � L e - fl i YI (4.28 ) 
Y: t( Y) =  to 

where we used the fact that f+ (L, O ) = f_ (L, O) .  Note that the leading 
contribution to the rhs of ( 4.28 ) comes from the completely flat surface Y0 , 
with I Y0 1 = L v. 

Following an idea originally appearing in ref. 1 0, we now decompose 
each interface into flat pieces (defined as those parts of Y which are 
parallel to the minimal surface Y0 and which are simple in the sense that 
all straight lines in the time direction which intersect a flat piece of Y have 
only one intersection with Y) and its walls WI , ... , wn (defined as the 
connected components of the part Y*  of Y which is not flat ). We then 
introduce the floating walls [ W1 ] , . . .  , [ Wn] of Y by introducing, for each 
wall W of Y, the equivalence class [ W] of walls W' which are obtained 
from W by a translation in the time direction. It is then an easy geometric 
exercise (see, e.g., ref. 10) to show that the orthogonal projections, 
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n( WI ), . . . , n( W, ), of WI , . . .  , W, onto the flat surface Y0 do not overlap, and 
that two surfaces Y and Y' with the same set of floating walls are identical 
up to a global translation in the time direction. Given, on the other hand, 
a set { [ W1 ] ,  ••• , [ W,] }  of floating walls such that n( W;) and n( W1) do not 
overlap for i i= j (we call such a set an allowed set of floating walls) one 
may actually always construct an interface Y such that [ WI ] , . . .  , [ W,] are 
the floating walls of Y. 

We therefore have a one-to-one correspondence between interfaces 
with fixed time t( Y) = t0 and allowed sets of floating walls. Observing 
finally that 

n n 
I YI = I n( Y) I +  L [ I W;I - In( W;) I J = V + L [ I W; I - In( W;) I J  

i =  1 i =  1 

we find that the rhs of ( 4.28) can be rewritten as 

CD n 

L e - P I  Yl = e -pu L fl z( W;) : = e-Puz(A )  (4.29 ) 
Y : t ( Y) � to 

where the second sum goes over allowed sets of floating walls and 

z( W) : = e - P [ I W,I - I n( W, ) I ] (4.30 )  

In  the approximation ( 4.28 ) ,  the rhs o f  ( 4.29 ) i s  the desired representa
tion of r�� as the partition function of a dilute lattice gas, with 
"molecules" which are just the excitations of the flat surface Y0 • This 
function can be brought to the standard form of a polymer partition 
function, with polymers which are just the connected subsets of Y0 , by 
resumming, for each set {PI , ... , P, } ,  all floating walls for which 
n( WI ) = P1 ,  ... , n( W,) = P, .  After this resummation, Z(A ) is just a sum over 
subsets P1 , ... , P, of Y0 which are mutually nonoverlapping, with a weight 
z(P;) ::::; exp { - [,8 - 0( 1 ) ] I P; l } for the polymer P; . The Mayer expansion 
for the logarithm of the polymer partition function Z(A ), which is 
absolutely convergent if .B is large enough, then gives an expansion of the 
form (4.27 ). If one adds the corrections coming from the resummation of 
ordinary contours, using, e.g., the methods described in Section 5 of ref. 9, 
the expansion for the free energy of the lattice gas is exactly the same as 
the usual expansion (see, e.g., ref. 10 )  for the surface tension rr. Since both 
expansions are convergent, the bound ( 4.24 ) is proven. I 

It is instructive to compare the above situation to the periodic case. In 
this case it is no longer true that each allowed set of floating walls 
{ [ W1 ], ... , [ W,] }  leads to an allowed surface Y, because the surface 
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constructed from { [ W1 ] , • • •  , [ W,] }  may violate the periodicity conditions 
imposed by the periodic lattice. If v + 1 � 3, this can only happen if one of 
the walls is so large that I Wl - l n( W)T � L; the contribution of these con
figurations therefore only enters into the error term in ( 1 .8 ) ; see Section 5 
of ref. 9 for the proof. For v + 1 = 2, however, this effect leads in fact to the 
1/ fi correction in ( 1 .8 ), and hence to w = 1 /2. Heuristically, this can be 
easily understood by considering only surfaces without overhangs. The sum 
over surfaces is then just a sum over closed random walks. Since a random 
walk without restriction on its endpoint walks just an average distance fi 
in a time L, it gets a 1 /fi correction if it is forced to return to its 
endpoint. 

We do want to make this more precise, however, taking at the same 
time the opportunity to explain the main idea of the proof of w = 1/2 in the 
periodic case. To this end, we introduce for each wall W1 the height 
difference h1 between its right and left endpoints. The surface constructed 
from an allowed set of floating walls then fulfills the required periodicity 
condition if and only if the heights hi add up to zero. Following ref. 21 ,  we 
then introduce the partition function 

( 4.3 1 )  
n � O  { [ WJ ], ... , [ W, ] )  J �  I 

where the sum goes over all allowed sets of floating walls. The restriction 
L hi = 0 is now obtained by integrating over p, so that the sum over 
periodic interfaces is just 

1 f" -L e - !l i YI = - dp Z(p )  
Y:r ( Y) � ro 2n - n  

(4.32) 

Since Z( p)  can again be rewritten as the partition function of a dilute 
lattice gas (note that the activities of the walls are multiplied by a complex 
number of modulus one, which does not affect the absolute convergence ), 
it logarithm is again of the form 

log Z(p)  � -L](p )  (4.33 ) 

For large L, the integration over p in (4.32) can then be analyzed by a 
saddle point approximation and we obtain 

Y: rl� � 10 
exp( - {J I Yl ) � 2

1
n ( " dp exp [ -L](O) -�2 L]"(O) j 

1 
[2nL]"(O)J ll2 exp[ - L](O ) ]  ( 4.34) 

in accordance with the heuristic random walk argument. 
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It is interesting to introduce boundary conditions which interpolate 
between free and periodic boundary conditions by adding a term 

L g i O"x - av l  ( 4.35 ) 
{ x, y }  

to the Hamiltonian, where the sum runs over all pairs of points x, y which 
lie on opposite sides of the boundary of V. The value g = 0 then 
corresponds to free and the value g = 1 to periodic boundary conditions. 
For the transverse quantum Ising model in one dimension, such boundary 
conditions have been considered by Cabrera and Julien< 1 8 l and by Barber 
and Cates. < I9 l  While Cabrera and Julien present exact calculations on a 
small lattice which suggest that � L � O(L "')ef3"L, where w varies smoothly 
as g goes from 1 to 0, Barber and Cates give random walk arguments 
which explain this effect as a crossover phenomenon, suggesting that 
w = 1/2 for all g > 0. For the classical Ising model considered here, 
Abraham et a!. <20l gave exact transfer matrix expressions for the spectral 
gap, which again give w = 1/2 for all g > 0 in v + 1 = 2. We think that these 
results can be given an independent proof (and at the same time be 
extended to a large class of two-phase systems with a symmetry relating h 
to - h )  if one uses the methods developed in Section 5 of ref. 9. In order to 
explain the main idea, we again leave off the corrections coming from the 
resummation of ordinary contours. In this approximation, r�l_ is now 
give as a sum of the form (4.29 ), with an extra factor exp( -gf3 Li h ; )  on 
the rhs correcting for the fact that we have left out the contribution of 
(4.3 5 )  to the energy of an interface. Rewriting 

where 
,XC 

( 4.36) 
m = - ce 

we obtain that 

r�l_ � 
Y: r(�� ro exp( - /3 1  Yl ) exp ( - gf3 � hi) = 

2
1
n [, dp G( p ) Z( p) 

(4.37) 
Except for g = 0, where G( p) = 2n6( p ) and hence 
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G(p )  is regular at p = O. As a consequence, the integral in (4.37) may again 
be analyzed by a saddle point approximation, leading to 

r�l- � 0( 1 )  r dp G(O) exp [ -L](O) - p2 L]" (O )l 
- rr  2 

G(O) = 0( 1 ) [LJ"(O)r12 
exp[ - L](O )] ( 4.38 )  

for all g > 0 .  Using the methods of ref. 9, Section 5 ,  it should be  possible to 
actually prove that this behavior persists when the corrections coming from 
resumming over ordinary contours are taken into account. We therefore 
conjecture that the following quasi-theorem is in fact a theorem. 

Quas i -Theorem 4.2. Let f3 be large, v + 1 = 2, and J1 = 0. Let 
� z 1 ( g) be the spectral gap in the infinite cylinder V cxo with boundary 
conditions g as defined above. Then 

( 4.39 ) 

where 
D(L) � const · L" as L -->  oo (4.40) 

and w = 0 for g = 0, while w = 1 /2 for all g in the range 0 < g :%;  1 .  

Note that ( 4.40) is only an asymptotic statement for large L, and that 
the answer to the question of how large is large may depend on g. Heuristi
cally, one just should compare the average walking distance of the random 
walk l(L )  = O(L 112 ) to the length scale l(g )  = 0( 1 /g) on which the term 
exp( -gf3 L; h;) starts to suppress large height differences between the two 
endpoints of the surface Y; see also ref. 1 9. If l(L )  < l(g ), the insertion of 
exp( -gf3 L; h; )  should not have a great influence, so that effectively w is 
still 0, while for l(L )  > l(g )  we expect the onset of the asymptotic behavior 
( 4.40 ) . Note that this heuristic argument can actually be made more quan
titative by calculating the next to leading orders in the approximation 
( 4.38 ) . One obtains that 

T7l_ � ft [ 1  + c 1 L - l + O(L - 2 ) ] ( 4.4 1 ) 

where both c0 and c1 depend on g. For small g, c 1 � g - 2, which gives a 
crossover if L = O(g - 2). 

Remark. It would be interesting to prove Theorem 4. 1 and the above 
quasi-theorem for asymmetric models. For these models, we expect a shift 
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0( 1 /  L)  in the free boundary finite-volume transition point [defined, e.g., as 
the point fl*(L) where f+ (L, fl*(L))  = f_ (L, fl*(L)), or, more naturally, as 
the point where the splitting between the two lowest eigenvalues of the 
transfer matrix is minimal ] .  It is clear, however, that the proof of the 
analog of Theorem 4. 1 requires a substantial extension of the methods used 
so far, since the a priori assumption lfl - fl* I L" � 0( 1 )  which was used to 
resum ordinary contours is no longer valid. Note, however, that such a 
condition is only needed for ordinary contours which touch the boundary, 
while ordinary contours not touching the boundary may in fact be 
resummed as long as lfll L � b{J for some b < 1 .  Using a procedure of induc
tively defining suitable finite-L free energies f ± ( L, fl) [as sketched in the 
Appendix just before Eq. (A.2 ) ]  should then make it possible to actually 
resum the ordinary contours which touch the boundary if lfl - fl *(L) I U �  
0( 1 ) [where fl*(L)  is now inductively defined as well ] .  

A P P E N DIX 

In this Appendix we fill in the technical details left out of the last 
section. In order to avoid lengthy repetitions, we assume that the reader 
has some familiarity with ref. 4 and only comment on the differences which 
appear due to the presence of free boundary conditions (b.c. ). 

For preciseness, we distinguish between the lattice V = A x T, the set 
V1 of nearest neighbor (n.n. ) bonds in V, their duals V *  and vr, and the 
continuum cylinder V : =  [ 1 /2, L + 1 /2 ] "  x (IR1/tZ:' ). We introduce contours, 
long contours, interfaces, and ordinary contours as in Section 3, con
sidering the set 80" v as a subset of V by taking the closed union of all faces 
dual to a bond (xy )  for which O"x =I= O"_,.. Observing that each short contour 
may be embedded into the infinite cylinder V x := [ 1 /2, L + 1 /2 ] "  x IR1, we 
define, for each contour Y which is either an interface or af ordinary 
contour, the interior Int Y of Y as the union of all finite components of 
V""' \ Y. Note that the interior of a contour may have several connected 
components with our definitions where we did not include a "rounding of 
edges" procedure to produce contours with connected interiors.6 

First, we want to comment on the consequences of the condition 
lfll L" � 1 on the resummation of ordinary contours. To this end, we recall 
that the resummation of ordinary contours involves activities K( Y) [see 
Eq. ( 3.4) of ref. 9 ]  which contain ratios of partition functions 

or 

6 For the same reasons, interfaces may also have an interior with several components. 
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where W is a connected component of Int Y and Z ± ( W, 11 ) is defined as 

Z ± ( W, fl,) := I,' exp ( - {3 L l ux - o) + !l L u,) (A. l )  
a w  (xy )  E W1 x E  Wo 

where the sum goes over all configurations u w : W0 � { - 1/2, 1/2 } which 
are perturbations of the plus ground state (or of the minus ground state, 
if the minus sign is chosen) by ordinary contours (see below), W0 = V n W 
is the set of lattice points which lie in W, and W1 is the set of nearest 
neighbor bonds <xy ) E V1 for which both x and y lie in W0 . Here and in 
the following u w is called a perturbation of a ground state m E  { - 1/2, 1/2 }  
by ordinary contours if all contours corresponding to u w are ordinary 
contours, if none of them touches 8 W\8 V, and if u x = m for all points x in 
the set Ext := W\ U i Int Yi (where the union runs over all contours Yi 
of u w)· 

In order to bound the activities K( Y), we have to bound the above 
ratios of partition functions. Following the strategy used for periodic b.c., 
we would assume inductively that K( Y) '( exp { - [{3 - 0( 1 ) ]  I Yl } and then 
use this assumption to bound 

I log Z ± ( W, /l) + I WI {3! ± (/l) l  '( 1 8 WI O(e -fl ) 
in the next step. Assuming 1 11 1 Lv '( 1 ,  which implies that 

{3 1! + (p) -f _ (p ) l l lnt Yl '( f3 1! + (p) -f _ (p ) l Lv I Yl '( 0( 1 )  I Yl 
we then get 

IK( Y) l '( exp { - [{3 - 0( 1 ) ]  I Yl }  TI exp[ I 8 WI O(e -fl ) ]  
w 

where the product goes over the connected components of Int Y. 
Unfortunately, this bound is not good enough, since 1 8 WI may now have 
huge parts which are made of the free boundary a v, so that 1 8 WI may be 
much larger than I Yl [ the ratio may in fact be as large as O(V - 1 ) ] .  

One should therefore try to construct inductively an  L-dependent free 
energy f ± (L, 11 ) which takes the boundary effects with the free boundary 
into account, leaving only an error term 1 a W n  Yl 0( e - fl ). Fortunately, we 
do not have to follow this strategy in the present case, where the + 1 -
symmetry implies that 

Z _ ( W, p = O ) = Z + ( W, p = O) (A.2) 
Using the fact that 

(A.3 ) 

822/69/3-4-6 
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since the sum m (A. l )  IS a sum of positive terms and I a-, !  = 1/2, we 
conclude that 

and IZ+ ( W, fl ) l ,::: I WI I I11 

Z ( W  ) "" e 
- ' f1  

Bounding now l int Yl ::::; I I( Y) l L" ::::; I Yl Lv, where I( Y) denotes the smallest 
interval such that y c [ 1/2, L + 1 /2 r X /( Y), we find that the activities 
K( Y) may be bounded by 

K( Y) ::::; e - <fJ - IIli L' J I YI (A.4) 

The condition 111 1  Lv ::::; 1 therefore guarantees that the resummation o f  the 
ordinary contours in zres can be analyzed by a convergent expansion. 

In order to obtain a representation of the form ( 4. 1 7  ), we now use that 
the resummation of ordinary contours brings Zres ( V, f1) into the form 

Zres ( V, f1)  = Z + ( V, 11) + Z _ ( V, 11) 

+ n� 1 � Yt� Yn ry l e - fJ I  Y;l 

w
iT

t y 
zmw( W, /1) J ry Zm,( V; , /1) 

(A. 5 )  

where the sum over Y1 , . . . , Y11 goes over interfaces Y1 , .. . , Y11 that are 
chronologically ordered, the product Il w c int y runs over the connected 
components of Int Y, and V; is the region between Y; and Y; + 1 ; Z ± ( · ,  f1 )  
are the partition functions introduced in (A. l ), m ;  = + if V; is in the + 
phase and m; = - otherwise, and, in the same way, m w = ±, depending on 
whether W is in the phase + or - . The factor 1 /n in the above sum 
accounts for the fact that cyclic permutations of Y1 , • • •  , Yn correspond to the 
same configuration in Zres ( V, fl ). 

Using W* and V;* to denote the set of cubes dual to the lattice points 
in W and V;, respectively, we now use the fact that Z± ( · , fl ) can be 
analyzed by a convergent cluster expansion to write its logarithm in the 
form 

(A.6) 
Xc W* 

where the sum goes over connected subsets X of W*, and lk ± (X) I ::::; 
exp { - [p - 0( 1 )] l XI }. We then rewrite 

log Z ± ( W, fl ) =  I [ ±11 + I k± (x)J 
c E W *  X c= W *  

X 3 c  
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where k ± (X) = k ± (X)/IXI ,  and introduce position-dependent free energies 

noting that 

{Jf,± : = +p - L k± (X) 
Xc Vi, X 3 c  

(A.7 ) 

{3f, ± = {Jf(p) + O(exp { - [{3 - 0( 1 )] dist(c, o V;!'J } ) (A.8) 

Using these free energies, we can write log Z ± ( W, J1) as {3 LeE w •  fx ±  plus 
a sum of the form (A.6), where X now goes over sets X c V! which 
intersect o W\oV! . As a consequence, Zres( V, p) can be rewritten as 

where 

zres( V, p) = exp[ - /3! + (L, p) I VI J + exp[ - {Jf_ (L, p) I VI J 

00 1 + L - L TI R( Yi) exp[g( Yi , Yi + t l ]  
n = l  n Y1 , ... , Yn i 

X exp ( -
,
�/fxm) (A.9) 

K( Y) = exp[ - /3 1 Yl + g( Y)] TI exp ( - L f3fcmw) 
W c int Y c E  W* 

Here g( Y) can be rewritten as a sum of terms X intersecting Y and hence 
can be bounded by I YI O(e -fl ), and g( Y, Y' ) can be written as a sum of 
terms intersecting both Y and Y' ,  and hence can be bounded by min { l  Yl , 
I Y' l }  exp { - dist( Y, Y' ) [/3 - 0( 1  ) ] } .  

In order to  bring (A.9 ) into the form (4. 1 7 ), we note that 

Vi =  (A X /)\ { [A X /( YJ]\ V  + ( YJ u [A X /( Yi + t l ]\ V  _ ( Yi + d } (A. l O )  

where A= [ 1 /2, L + 1 /2 r,  /( Y), V _ ( Y), and V + ( Y )  are the smallest inter
val such that Y c A x /( Y), the part of /( Y) which lies below Y, and the 
part of /( Y) which lies above Y, respectively. Finally, I is the interval which 
extends from the lowest endpoint of /( Yi) to the highest endpoint of 
I( Yi+ d· Using (A. l O) and the fact that the translation invariance in the 
time direction implies that 

L fc± = IA x fi J± (L, p) 
c c::. Ax l 
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for f= I, I( Y;), and I( Yi+ d, we now rewrite (A.9 ) as 

Zres( V, J1 ) = e -fJf+ (L,!l) l VI + e -fJf-(L,!l) l VI 
co 1 + I - I fl K( Y;) e -f3fi(L,!l ) I Vtl eg( Y;, Y;+ t l  (A. l l )  

n = I n Yt , ... , Yn i 
where, for an interface Y which describes the transition from a state m _ 
below Y to a state m + above Y, 

K( Y) := K( Y) exp { - [3  c �
+ 

Ucm+ -fm+ (L, Jl) ] - f3 c �� Ucm_ -fm_ (L, Jl) ] } 

(A. l 2 )  

In  order to  bound K( Y), we note that 

K( Y) = exp [g( Y) - [3 1  Yl ]  exp [ - f3L1F( Y)] fl exp[ - f3fmw(L, Jl) I WI ] 
Wc lnt Y 

(A. 13a )  

where 

C E  V+ C E  V� 
+ I (A. l3b)  

Wc int Y c E W* 
Using the fact that l dL1F( Y)/dJ1 1 < I I( Y) I LvO(e -P) and that L1F( Y) = O  if 
J1 = 0, we conclude that 

(A. 14 )  

provided I Jll U < 1 .  
Given the representation (A. lO ), the bound (A. 14 ), and its generaliza

tion to derivatives, and the fact that the derivatives of f ± ( L, J1 ) are 
bounded by 0( 1 ), the results of Section 4 of ref. 9 immediately give 
( 4.24 )-( 4.26 ). In order to prove ( 4.27 ) , we note that 

Lv I I+ ( Y) l + U IL ( Y) I - I V  + ( Y) l  - I V_ ( Y) l = l int Yl 
where I± ( Y) are the parts of I( Y) which lie above and below the point t( Y) 
defined in the last section. Combined with the fact that L1F( Y) = 0 if J1 = 0, 
we obtain that 

r( Y) l �'  = o = eg( Y) - fJ I YI 
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and hence 

r�)__ I J.l � O = lim I e g( Y) - fl i YI 
V � Voo Y:t( Y) � to 
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Using the fact that g( Y) is a sum over connected sets X c V* which inter
sect the surface Y, the methods introduced in ref. 2 1  (see also ref. 22) then 
allow us to rewrite r�)__ as the partition function Z( Y0) of a dilute gas of 
excitations over the flat surface Y0 , where an excitation is now a connected 
cluster made of the walls introduced in Section 3 and the subsets X c V* 
appearing in the cluster expansion for g( Y). Expanding log Z( Y0) into 
volume terms, surface terms, etc., we obtain Eq. (4.27) .  

We finally bound the difference Zrree( V, fl) - Zres( V, fl ). Resumming 
ordinary contours, we rewrite this difference as 

00 

Zrree( V, /1 ) - Zres( V, /1) = I 
n � l  { Y, ,  ... , Yn )  i W 

where the second sum goes over sets { Y1 , . . . , Yn } of long contours in V 
such that Y; n Y1 = 0, the product over W runs over the connected 
components of V\ U ;  Y;, m w is the label of the state in W, and Zmw( W, 11) 
are the partition functions introduced in (A. l ) . Using the bound (A.3 ) and 
the symmetry (A .2 ), we then bound 

00 

I Zrree( V, 11)- zres( V, 11 ) I  � eiJ.i/ZI I VI I 
n � l  { Y[ ,  ... , Yn )  i W 

We then note that the last product in this sum can be rewritten as 

w o-v (xy) E V1 

where the sum goes over configurations which are small perturbations of 
the plus ground state by ordinary contours obeying the additional 
constraint that CJ x = CJ Y = + 1/2 for all bonds ( xy )  which are dual to a face 
in U Y;. Summing over all configurations which are small perturbations of 
the plus ground state by ordinary contours without any additional 
constraints gives an upper bound, and we obtain that 

00 

I Zrree( V, /1 ) - Zres( V, !1 ) 1 � e i J.i/ZI I VI Z + ( V, 0 )  I 
n � 1 { Yt,--., Yn ) i 

00 
� e i J.I I I VI Z + ( V, /1 ) I 

n � l  { YJ ,  ... , Yn )  i 
(A. l 5 )  
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Using the fact that each contour in the sum over { Y1 , • • •  , Yn } is long, and 
hence larger than t, and bounding Z + ( V, f1) by 

exp[ - {3  min {f+ (L, fl ), f� (L, fl ) }  I VI ]  exp( l VI exp { - [{3 - 0( 1 ) ] t } )  

we obtain that 

I Zrree( V, f1) - zres( V, f1 ) I 

� exp[ - {3  min {f+ (L, fl ), f� (L, fl ) }  I VI ]  exp { - [{3 - 0( 1 ) ] t } 
(A. 1 6 )  

provided l fl i Lv � 1 .  At this point we use the bound (4.26) to bound the 
smallest eigenvalue ..1.0 of the matrix (F+ F112rF112 )  from below 

).0 � (exp [ - f3 min {! + (L, fl ), f � (L, fl ) }  Lv ] )( l - exp { - [{3 - 0( 1 ) ] V } ) 

� exp[ - f3 min {! + (L, fl), f � (L, fl) } V] exp [ - 0( 1 ) ] (A. 1 7 ) 

Combining the bounds (4.25 ) and (A. 16 )  with (A. 1 7 )  and the fact that 
I VI = tL v, we obtain that 

I :k [Zrree( V, fl) - Tr(F + F112rF112f] I � A.�e � [fl � O( t J J t  (A. 1 8 )  

provided t � v log L, I fl l L v � 1 ,  and 0 � k � 4. Since this bound implies that 
- log ..1.0/(fJLv ) is actually the free energy f(L) defined in (4.2 ), the bound 
( 4.3 ) is finally proven. I 
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