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I will describe an exact relation between self-avoiding branched polymers in D + 2
continuum dimensions and the hard-core continuum gas at negative activity in D
dimensions (joint work with David Brydges, [1, 2]). Our results explain why the
critical behavior of branched polymers should be the same as that of the iϕ3 (or
Yang-Lee edge) field theory in two fewer dimensions (as proposed by Parisi and

Sourlas [3]). I will also discuss directed branched polymers in D + 1 dimensions,
and show that they, too, are related to the hard-core gas in D dimensions [4]. I
will review conjectures and results on critical exponents for D + 2 = 2, 3, 4 and

show that they are corollaries of our results.

1. Introduction and Main Results

In this article we describe some beautiful identities which connect branched polymer models
with repulsive gases in lower dimensions. For ordinary (isotropic) branched polymers (BP)
the reduction in dimension is 2, and our results [1, 2] provide a rigorous version of [3] (in
which the critical behavior of BP in D+2 dimensions is connected with that of the Yang-Lee
edge in D dimensions). For directed branched polymers (DBP), the reduction in dimension
is 1, and our results [4] parallel earlier work on directed lattice animala (which have been
related to dynamical models of hard-core lattice gases [5] and to the critical dynamics of
the Yang-Lee edge [6, 7]; see also exact results in [8, 9, 10] and the review [11]). Forest-root
formulas provide a unified picture for dimensional reduction for both BP and DBP. They
are used to interpolate in the extra dimensions. They have other applications as well: we
show how the one-dimensional forest-root formula generalizes some formulas of [12], used
for interpolating in cluster expansions.

We now define generating functions for BP and DBP. Let T be a tree graph on {1, . . . , N}.
For BP, the kth monomer is at position yk ∈ RD+2 and we write yk = (wk, xk) ∈ C × RD.
For DBP, it is at yk = (tk, xk) ∈ R+ × S, where S is either RD or ZD. While we must
use continuous coordinates for BP, we allow discrete spatial coordinates for DBP, and for
some models the time coordinate is discrete as well. For a unified treatment with DBP we
consider here rooted BP (in contrast to [13, 1, 2], where BP are defined mod translations.

aAnimals (for which loops are allowed) are generally believed to have the same critical behavior as BP
(where loops are not permitted). Likewise for directed animals and DBP.
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Fix the vertex 1 as the root, with y1 = 0. For each pair (i, j) ≡ ij, we define

yij = (tij , xij) =
{

(wi − wj , xi − xj), for BP
(|ti − tj |, xi − xj), for DBP

. (1)

Each link of T connects a vertex j to a vertex i where i is one step closer than j to the root
along T . For DBP, we require tj ≥ ti.

The weight associated with each configuration depends on a linking weight V (y) and a
repulsive weight U(y). The generating functions are written as

ZBP(z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∫
(C×RD)N−1

∏
ji∈T

[dyjiV (|yji|2)]
∏

ji/∈T

U(|yji|2),

ZDBP(z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∫
(R+×RD)N−1

∏
ji∈T

[dyjiV (yji)]
∏

ji/∈T

U(yji). (2)

Here each pair {i, j} appears exactly once, either in
∏

ji∈T or in
∏

ji/∈T . We assume that
U → 1 as yji → ∞, so that the repulsion vanishes at infinity. For BP, U is evidently
invariant under rotations in RD+2; for DBP we require U(t, x) = U(t,−x). In order to get
dimensional reduction, we require

V (t) = 2U ′(t), for BP,

V (t, x) = U ′(t, x), for DBP. (3)

where prime denotes the t-derivative. Note, however, that in the BP case t denotes a
squared-radius variable, whereas for DBP t is a “time” variable. For positive weights, we
require that U and V are positive. Furthermore, we assume that V is an integrable function
of y so that (2) is well-defined.

We relate these generating functions to the density of a repulsive gas in D dimensions.
Let Λ ⊂ S and define the grand canonical partition function

ZHC(z) =
∞∑

N=0

zN

N !

∫
ΛN

N∏
i=1

dxi

∏
1≤i<j≤N

Uij , (4)

where Uij = U(|xij |2) for BP and Uij = U(0, xij) for DBP. Then define the pressure and
density:

p(z) = lim
Λ↗RD

1
|Λ|

log ZHC(z); ρHC(z) = z
d

dz
p(z). (5)

Theorem 1.1. For all z such that the right-hand side converges absolutely,

ρHC(z) =

{
−2πZBP

(
− z

2π

)
,

−ZDBP(−z).
(6)

We can also prove a dimensional reduction formula for correlations. Let

ρ(x̃) =
N∑

i=1

δ(x̃− xi), ρ(ỹ) =
N∑

i=1

δ(ỹ − yi), (7)



September 18, 2003 14:0 WSPC/Trim Size: 10in x 7in for Proceedings lisbon

3

where x̃, xi ∈ RD and ỹ, yi ∈ RD+2 for BP or R+ × S for DBP. Then the density-density
correlation functions of the three systems can be written as

GBP(0, ỹ; z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∫
(C×RD)N−1

ρ(ỹ)
∏

ji∈T

[dyjiV (|yji|2)]
∏

ji/∈T

U(|yji|2),

GDBP(0, ỹ; z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∫
(R+×S)N−1

ρ(ỹ)
∏

ji∈T

[dyjiV (yji)]
∏

ji/∈T

U(yji),

GHC(0, x̃; z) = lim
Λ↗S

〈ρ(0)ρ(x̃)〉HC,Λ . (8)

Here 〈·〉HC,Λ is the expectation in the measure for which ZHC(z) is the normalizing constant.

Theorem 1.2.

GHC(0, x; z) =

{
−2π

∫
d2w GBP

(
0, y;− z

2π

)
, where y = (w, x) ∈ C× RD

−
∫∞
0

dtGDBP(0, y;−z), where y = (t, x) ∈ R+ × S
. (9)

Here d2w is defined as du dv, where w = u + iv.

2. Examples

A natural BP example is obtained by letting U(t) = ϑ(t − 1), where ϑ is the usual step
function. Then V (|yij |2) = δ(|yij |−1), and we have a model of hard spheres linked together
with kissing conditions determined by the tree graph T . See Fig. 1. One can also consider
soft repulsion of the form U(t) = e−v(t). This is particularly interesting when D = 0,
because the sine-Gordon representation allows one to write

ZHC(z) =
∫ ∞

−∞
exp

[
−1

v

(
z̃eiϕ + 1

2ϕ2
)] dϕ√

2πv
, (10)

where z̃ = zvev/2. For small v, a steepest-descent analysis shows that (in two dimensions)
the crossover to noninteracting (or mean-field) BP is given by an Airy function [14], see also
[15].

Figure 1. A branched polymer in R2 (left) and a directed branched polymer in Z2 (right).
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For DBP, one can obtain a hard-sphere model by taking U(t, x) = ϑ(t2 + |x|2 − 1),
but note that the angular distribution of links is no longer uniform; it favors the preferred
direction (the t axis). Alternatively, if we let U(t, x) = ϑ(t+ |x|−1), then we obtain models
of hard diamonds (when |x| =

∑D
α=1 |xα|) or hard double-cones (when |x|2 =

∑D
α=1 x2

α)
distributed uniformly in contact with the positive surface of the monomer it is linked to
(subject to the constraint of nonoverlap with other monomers).

In D = 1, the pressure of the hard-sphere gas is computable, it is

p(z) = LambertW(z) = −T (−z), (11)

where T (z) =
∑∞

N=1 zNNN−1/N ! is the tree generating function [2]. So Theorem 1.1 implies
that

ZBP(z) = − 1
2π

ρHC(−2πz) =
∞∑

N=1

(2πz)NNN

2πN !
,

ZDBP(z) = −ρHC(−z) =
∞∑

N=1

zNNN

N !
. (12)

Thus we have exact expressions for the volume available to BP and DBP of size N .
One can also consider lattice DBP examples by taking U(t, x) = 1− I(x)ϑ(1− t), where

I(x) is the indicator function of a set of “neighbors” in the lattice, such as {x : |x| ≤ 1}.
Since V (t, x) = I(x)δ(t − 1), the set determines which sites a link can jump to, with t

always increasing by 1. This model is closest to the standard examples of DBP. See Fig. 1
for a configuration in two dimensions. The factors

∏
ji/∈T U(yji) enforce nearest-neighbor

exclusion for monomers on the same level (same value of t). But there is a subtlety when
a monomer at level t has n neighbors at level t − 1 in the polymer. In this case, we can
write the U -factors as ϑn−1(0), which should be interpreted as 1

n =
∫

ϑn−1dϑ (this can be
seen by approximating ϑ with a smooth function and integrating over t). Monomers which
are separated by more than one unit in the t direction do not interact, since U(t, x) = 1 for
t > 1.

By Theorem 1.1, the generating functions of these models equate to the density of the
nearest-neighbor exclusion models in D dimensions associated with the weights U(0, x) =
1− I(x). In D = 1, the pressure can be calculated explicitly [16, Eqn. 2.16]

p(z) = ln( 1
2 + 1

2

√
1 + 4z), (13)

so the generating function is

ZDBP(z) = −z
d

dz
p(−z) =

1
2

(
1√

1− 4z
− 1

)
=

∞∑
N=1

[2N − 1]!!2N−1zN

N !
, (14)

which gives an explicit enumeration of the number of DBP with N monomers.

3. Critical Exponents

As these reduction formulas are valid out to the edge of convergence of the generating
functions, one can deduce the values of the BP and DBP critical exponents by looking at
solvable repulsive gas models in low dimension. Let us define an exponent αHC from the
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singularity of the pressure of the hard-core gas, p(z) ∼ (z−zc)2−αHC . Likewise, susceptibility
exponents γBP and γDBP can be defined from

ZBP

(
− z

2π

)
∼ (z − zc)1−γBP , ZDBP(−z) ∼ (z − zc)1−γDBP . (15)

Note that zc is negative. By Theorem 1.1, the singularities must be the same, so

αHC(D) = γBP(D + 2) = γDBP(D + 1). (16)

Closely related to the susceptibility exponents are the counting exponents. If one defines
cN , dN from

ZBP(z) = z
d

dz

∞∑
N=1

cNzN , ZDBP(z) =
∞∑

N=1

dNzN , (17)

then θBP, θDBP are determined from the asymptotic behaviors

cN ∼
(
− zc

2π

)−N

N−θBP , dN ∼ (−zc)−NN−θDBP . (18)

The exponent θBP is usually defined from counting unrooted BP, the difference being a
factor N which is produced by z d

dz . We see that the unrooted generating function
∑

cNzN

is related to the pressure p(z) of the repulsive gas [1].
From (16) and the relations

θBP = 3− γBP, θDBP = 2− γDBP, (19)

one can determine θBP, θDBP from αHC.
In D = 0, we have αHC = 2 because ZHC(z) = 1+ z, so the “pressure” has a logarithmic

singularity. For D = 1, one can compute αHC = 3
2 from the solutions for the pressure

(11),(13), which have a square root singularity. For D = 2 there is an exact solution for the
hard-hexagon model [17], which has αHC = 7

6 [5, 18]. This model works as the starting point
for one of our lattice DBP models (with D+1 = 3). Our construction for BP does not work
as described above for the hard hexagon model. Nevertheless, one expects the same value
of αHC for hard spheres. Hence the exponents θBP(D + 2), θDBP(D + 1) are determined for
D = 0, 1, 2 (rigorously for D = 0, 1). See the table below.

Theorem 1.2 connects the Green’s functions for the three models, so it is clear that
the exponents for the divergence of the correlation length are all equal. For DBP this gives
information only on the transverse correlation exponent ν⊥DBP, which describes the vanishing
of the rate of decay in the x directions. The exponent νHC can be computed in D = 1 or
more generally determined from αHC via hyperscaling (DνHC = 2 − αHC). Theorem 1.2
also implies that ηHC = ηBP [2], and one can compute ηHC in D = 1, or more generally
determine it from Fisher’s relation (η = 2 − γ/ν). In D = 2 it can be obtained from the
conformal field theory of the Yang-Lee edge [19].

The repulsive gas singularity at negative activity is believed to be in the same universality
class as the Yang-Lee edge [16, 20]. One way of seeing this is by writing down the sine-
Gordon representation for the repulsive gas (see (10) for the D = 0 case). The interaction is
eiϕ, whose lowest order term at the critical point is iϕ3, the Yang-Lee edge interaction. The
Yang-Lee edge exponent σ can be equated with 1 − αHC. This leads to the Parisi-Sourlas
relation θBP(D + 2) = 2 + σ(D) [3] and its analogue for DBP: θDBP(D + 1) = 1 + σ(D)
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[6, 7, 21]. The table below summarizes what we know about exponents for these models
(the last line gives the presumed mean-field exponents and upper critical dimensions; see
[22, 23] for results on BP in high dimensions).

αHC νHC ηHC

HC DBP BP = γBP = νBP = ηBP σ =
dim D dim D+1 dim D+2 = γDBP θDBP θBP = ν⊥DBP 1−αHC

0 1 2 2 0 1 −1

1 2 3 3
2

1
2

3
2

1
2 −1 − 1

2

2 3 4 7
6

5
6

11
6

5
12 − 4

5 − 1
6

MFT D>6 D>7 D>8 1
2

3
2

5
2

1
4 0 1

2

4. Forest-Root Formulas

The key ingredients for proving Theorems 1 and 2 are a pair of forest-root formulas, which we
use to interpolate in the extra dimensions. Let f(t) depend on a collection of non-negative
real variables t = {tij}1≤i<j≤N , {ti}1≤i≤N . Assume f → 0 when any ti → ∞. In the BP
case, the t’s are functions of another set of variables: tij = |wi −wj |2, ti = |wi|2, with each
wi ∈ C. The forest-root formula is

f(0) =
∑

(F,R)

∫
CN

N∏
i=1

d2wi

−π
f (F,R)(t). (20)

The sum is over forests F and roots R (R is any subset of {1, . . . , N} and F is a loop-free
graph on {1, . . . , N} such that each connected component or tree of F has exactly one root
in R). See Fig. 2. The expression f (F,R) denotes the N th partial derivative of f with respect
to tij , ij ∈ F and ti, i ∈ R. The simplest example is when N = 1, F = ∅, R = {1}, in which
case (20) reduces to the fundamental theorem of calculus:

f(0) =
∫

C
f ′(t)

d2w

−π
= −

∫ ∞

0

f ′(t)dt. (21)

In the DBP case the t’s are the underlying variables, and tij = |ti − tj |. Our second
forest-root formula is

f(0) =
∑

(F,R)

∫
RN

+

∏
r∈R

[−dtr]
∏

ji∈F

[−d(tj − ti)]f (F,R)(t). (22)

As in (2), each link in a tree of F connects a vertex j to a vertex i which is one step closer
to the root for that tree. The integration region is {tr ≥ 0, r ∈ R and tj ≥ ti, ji ∈ F}. For
N = 1, (22) is just f(0) = −

∫∞
0

f ′(t)dt.
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1

2

tree

tree

forest

tree

tree N

Figure 2. Example of a forest

4.1. Proof of the Main Results

Let us see how these forest-root formulas lead to a proof of Theorem 1.1. Let

f(t) = g(t1/ε)
N∏

i=2

g(εti)
∏

1≤i<j≤N

Uij , (23)

where Uij is either U(|yij |2) = U(tij + |xij |2) for BP or U(tij , xij) for DBP (we suppress
the dependence on {xij} in f(t)). Here g is any smooth function which decreases to 0 and
satisfies g(0) = 1. For each ji ∈ F , Uji is differentiated and becomes the linking weight
Vji (Vji/2 for BP). For each r ∈ R a g is differentiated. One finds that (up to terms which
vanish as ε → 0) all the trees of F decouple due to the large separation in the t-direction
(the distribution of tr for an n-vertex tree is essentially −(g(εtr)n)′dtr or −(g(εtr)n)′ d

2w
π ,

which are very spread-out probability measures). One tree has its root fixed at 0 by a factor
−(g(tr/ε))′dtr or −(g(tr/ε))′ d

2w
π , which converges to a δ-measure at 0. The others cancel

with the normalization ZHC(z), so that

ρHC(z) = lim
Λ↗RD

lim
ε↘0

ZHC(z)−1
∞∑

N=1

zN

N !

∫
ΛN

N∏
i=1

dxif(0)

= lim
Λ↗RD

lim
ε↘0

ZHC(z)−1
∞∑

N=1

zN

N !

∫
(C×Λ)N

N∏
i=1

dyi

−π
f (F,R)(t)

= −2πZBP(− z
2π ). (24)

Similarly, one can show that ρHC(z) = −ZDBP(−z). For each link there is a factor − 1
2π

(BP) or −1 (DBP), and this leads to the scaling of ZDBP and ZBP and their arguments in
Theorem 1.1. Further details of this argument are in [2]. Theorem 1.2 can be obtained by
differentiating (6) with respect to a source at x (see [1] for details).

4.2. Decoupling Expansions

It is interesting to look at these forest-root formulas from the point of view of decoupling
expansions. Complete decoupling occurs only at t = ∞, so it is important to note that the
trees of F still interact in (20),(22). However, if we start with a function h which depends
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only on {tij}, and let f(t) = h(t)
∏N

i=1 g(εti) as above, then in the limit ε ↘ 0 we obtain
(from (22), for example) a forest-root formula where all the trees are decoupled:

h(0) =
∑
F

∫
RN

+

∏
ji∈F

[−d(tj − ti)]h(F )(t). (25)

Note that if a tree has n vertices, the sum over its root gives a factor n. This appears in
−(g(εtr)n)′dtr which, as noted above, is a spread out probability measure. Thus the root
sums disappear (one still needs to select a root for each tree, however—take the one with
the smallest label in {1, . . . , N}, for example). One is tempted to change variables here, to
sji = tj − ti for ji ∈ F . Then h(F ) has to be evaluated at tkl = |tk− tl|, where tk is a height
variable obtained as the sum of s parameters along the tree joining the root to k (tkl = ∞
if k and l are not in the same tree). The result is a new decoupling formula which has some
similarity with Theorem III.2 in [12]. In fact, the rooted Taylor forest formula of [12] can
be obtained from (25) by a limiting procedure similar to what we did in making a lattice
model of DBP.

Let H(w) depend on {wij}, a set of decoupling parameters in [0, 1] (no assumption that
wij = wi−wj). Make a change of variable wij = ϑ(1− sij), where ϑ is a smooth, monotone
approximation to the step function. Apply (25) with sji ≡ tj − ti for ji ∈ F . The result of
this is that for each kl /∈ F , skl is determined as the height difference tkl. As sji ∈ [1−ε, 1+ε]
for ji ∈ F , the height variables tk become discretized and actually measure the number of
steps from the root to k. Then if the height difference is 2 or more, wkl = 0, and if the
difference is 1, all wjk linking j to the next level down are equal to wji, where ji ∈ F . Thus
we obtain

H(1) =
∑
F

∫
[0,1]N−1

∏
ji∈F

dwjiH
(F )(w), (26)

which is Theorem III.2 of [12]. We have switched from s-derivatives and integrals to w-
derivatives and integrals, noting that under a change of variables ∂H

∂s ·ds is invariant (except
for the loss of the minus sign, because dw

ds < 0).

4.3. The Two-Dimensional Forest-Root Formula

The two-dimensional forest-root formula (20) is proven using a supersymmetry argument in
[1]. Replace each variable ti in f(t) with

τi = wiw̄i +
dwi ∧ dw̄i

2πi
, (27)

and each tij with

τij = wijw̄ij +
dwi ∧ dw̄i

2πi
. (28)

Then f(τ) is defined by its Taylor series. A “localization” formula∫
CN

f(τ) = f(0) (29)

holds, which becomes the forest-root formula when expanded out. This can be proven by
deforming the problem to the independent case (21), using ideas from [24]. See [14] for an
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alternative argument, which uses the linearity of (29) to reduce to the case where f is an
exponential (a Gaussian calculation) [25]. See also [26].

4.4. Proof of the One-Dimensional Forest-Root Formula

As mentioned above, the N = 1 case is just the fundamental theorem of calculus. For
N = 2, consider f(t1, t2, t12) and use subscripts 1, 2, 12 to denote partial derivatives. Then

f(0) = −
∫ ∞

0

ds(f1(s, s, 0) + f2(s, s, 0)). (30)

Apply the N = 1 formula to the f1 term (integrating with respect to x2 − x1), and to the
f2 term (integrating with respect to x1 − x2). The result is

f(0) =
∫ ∞

0

dt1

∫ ∞

0

d(t2 − t1)(f1,2 + f1,12) +
∫ ∞

0

dt2

∫ ∞

0

d(t2 − t1)(f2,2 + f2,12), (31)

since dt12
dt2

= 1 for t2 > t, and dt12
dt1

= 1 for t1 > t2. The two f1,2 terms combine to form∫
R2

+
dt1dt2f1,2, which is the term R = {1, 2} of (22). The other two integrals are the terms

R = {1}, {2}.
We prove the general case by indication on N . Begin as above with

f(0) = −
∫ ∞

0

ds
N∑

k=1

fk(s, . . . , s, 0, . . . , 0), (32)

where the integral is along the diagonal, t1 = t2 = · · · = tN . Consider one of these terms,
say k = N , and apply (22) in the variables t̃i = ti − tN , i = 1, . . . , N − 1, keeping tN = s

fixed:

fN (tN , . . . , tN , 0, . . . , 0) =
∑

(F̃ ,R̃)

∫
RN−1

+

∏
r∈R̃

[−dt̃r]
∏

ji∈F̃

[−d(t̃j − t̃i)]f
(F̃ ,R̃)
N (t). (33)

Note that when computing the derivative of fN with respect to t̃r, there will be a term fN,r

and also a term fN,rN (coming from the dependence on trN = tr − tN = t̃r). Thus each
(F̃ , R̃) on {1, . . . , N − 1} gives rise to 2|R̃| terms, each of which can be assigned a unique
(F,R) on {1, . . . , N}. R consists of N , together with each r ∈ R̃ with an fN,r term. F

consists of F̃ , together with rN , r ∈ R̃ when r gives rise to an fN,rN term. Observe that
each root in R̃ ceases to be a root in R if it is connected by a bond rN in F . We obtain in
this way all (F,R) with N ∈ R, and each satisfies the condition that each tree of F contains
exactly one root. As a result,

f(0) =
N∑

k=1

∑
(F,R):k∈R

∫
RN

+

[−dtk]
∏

i∈R\{k}

[−d(ti − tk)]
∏

ji∈F

[−d(tj − ti)]f (F,R)(t). (34)

It is evident that if we take the term (F,R) of (22), and consider the subset of the integration
region for which tk = minr∈R tr, we obtain the term k, (F,R) of (34). This completes the
proof.
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