Skip to main content

Weiqiang Wang

Gordon Whyburn Professor of Mathematics

Primary menu
  • HOME
  • CV
  • Publications
  • Ph.D. Students
  • Conferences & Workshops
  • Research Collaborators
  1. Home
  2. Publications
  3. 263

1999

Dimension of a minimal nilpotent orbit. Proc. AMS. 127; 1999.

935-936. arXiv:math/9907141

1998

Classification of irreducible modules of W_3 algebra with c = -2. Commun. Math. Phys. 195; 1998.

113-128. arXiv:q-alg/9708016

W_{1 +\infty} algebra,  W_3 algebra, and Friedan-Martinec-Shenker bosonization. Commun. Math. Phys. 195; 1998.

95-111. arXiv:q-alg/9708008

Quasifinite representations of classical Lie subalgebras of  W_{1+\infty}, (with V. Kac and C.H. Yan). Adv. in Math. 139; 1998.

6-140. arXiv:math/9801136 

1995

W_{1+\infty} and W(gl_N) with central charge N, (with E. Frenkel, V. Kac and A. Radul). Commun. Math. Phys. 170; 1995.

337-357. arXiv:hep-th/9405121 

1994

Vertex operator superalgebras and their representations, (with V. Kac). Contemp. Math. 175; 1994.

161-191. arXiv:hep-th/9312065

1993

Rationality of Virasoro vertex operator algebra. IMRN 7 ; 1993.

Filter By

Books
Papers Accepted
Papers Accepted
Papers Published
Papers Published
Preprints
Preprints

My papers in arXiv

I have research interests in the following subjects:

  • Quantum groups, quantum symmetric pairs, and canonical bases
  • Hecke algebras: finite, affine, and degenerate/spin variants
  • (Spin) symmetric groups and algebraic q-combinatorics
  • Infinite-dimensional Lie algebras and vertex algebras
  • (Super) category O and Kazhdan-Lusztig theory
  • Representation theory of Lie superalgebras
  • Geometric representation theory
  • Modular representation theory
  • Categorification
  • (More keywords: Schur duality, Howe duality, super duality, McKay correspondence, Hilbert schemes of points)

Recent Publications

  • Cells in affine q-Schur algebras
  • The nil-Brauer category
  • Formulae of ı-divided powers in U_q(sl_2), III
  • Braid group action and quasi-split affine ıquantum groups I
  • An intrinsic approach to relative braid group symmetries on ıquantum groups
  • Quantum symmetric pairs

Contact

WEIQIANG WANG

ww9c@virginia.edu
434-924-4946
University of Virginia Department of Mathematics
231 Kerchof Hall 
PO Box 400137
Charlottesville VA 22904

Secondary menu
Powered byOpenScholar®Admin Login
Copyright ©2025 By the Rector and Visitors of the University of Virginia