Given an m-dimensional CW complex K, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embeddings into a Euclidean space Rd. For 2-complexes in R4, a geometric analogue is also introduced, based on intersections of Whitney disks and more generally on the intersection theory of Whitney towers developed by Schneiderman and Teichner. The focus in this paper is on the first obstruction beyond the classical embedding obstruction of van Kampen. In this case we show the two approaches give the same result, and also relate it to the Arnold class in the cohomology of configuration spaces. The obstructions are shown to be realized in a family of examples.
Conjectures are formulated, relating higher versions of these homotopy-theoretic, geometric and cohomological theories.
Research
2021
The Blanchet link homology theory is an oriented model of Khovanov homology, functorial over the integers with respect to link cobordisms.
We formulate a stable homotopy refinement of the Blanchet theory, based on a comparison of the Blanchet and Khovanov chain complexes associated to link diagrams. The construction of the stable homotopy type relies on the signed Burnside category approach of Sarkar-Scaduto-Stoffregen.
2020
We introduce and study the notion of filling links in 3-manifolds: a link L is filling in M if for any 1-spine G of M which is disjoint from L, π1(G) injects into π1(M∖L). A weaker "k-filling" version concerns injectivity modulo k-th term of the lower central series. For each k>1 we construct a k-filling link in the 3-torus. The proof relies on an extension of the Stallings theorem which may be of independent interest. We discuss notions related to "filling" links in 3-manifolds, and formulate several open problems. The appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic link in any closed orientable 3-manifold with π1(M) of rank 2.
Given a link in the thickened annulus, its annular Khovanov homology carries an action of the Lie algebra sl2, which is natural with respect to annular link cobordisms. We consider the problem of lifting this action to the stable homotopy refinement of the annular homology. As part of this program, the actions of the standard generators of sl2 are lifted to maps of spectra. The main new technical ingredients developed in this paper, which may be of independent interest, concern certain types of cancellations in the cube of resolutions and the resulting more intricate structure of the moduli spaces in the framed flow category.
2019
We study the effect of Nielsen moves and their geometric counterparts, handle slides, on good boundary links. A collection of links, universal for 4-dimensional surgery, is shown to admit Seifert surfaces with a trivial Lagrangian. They are good boundary links, with Seifert matrices of a more general form than in known constructions of slice links. We show that a certain more restrictive condition on Seifert matrices is sufficient for proving the links are slice. We also give a correction of a Kirby calculus identity in [FK2], useful for constructing surgery kernels associated to link-slice problems.
Further, we establish exponential growth of the number of chromatic polynomials of planar triangulations, answering a question of D. Treumann and E. Zaslow. The structure underlying these results is the chromatic algebra, and more generally the SO(3) topological quantum field theory.
2018
A subset of R^d is called ``sticky'' if it cannot be isotoped off of itself by a small ambient isotopy. Sticky wild Cantor sets are constructed in R^d for each $d\geq 4$.