Recent Papers

  • Akhmechet R, Johnson P, Krushkal V. Lattice cohomology and  q-series invariants of 3-manifolds. J. Reine Angew. Math. 796 (2023), 269-299. 2023.

    An invariant is introduced for negative definite plumbed 3-manifolds equipped with a spinc-structure. It unifies and extends two theories with rather different origins and structures. One theory is lattice cohomology, motivated by the study of normal surface singularities, known to be isomorphic to the Heegaard Floer homology for certain classes of plumbed 3-manifolds. Another specialization  gives BPS q-series which satisfy some remarkable modularity properties and recover SU(2) quantum invariants of 3-manifolds at roots of unity. 
    In particular, our work gives rise to a 2-variable refinement of the \(\widehat Z\)-invariant. 

  • Fendley P, Krushkal V. Topological quantum field theory and polynomial identities for graphs on the torus. Ann. Inst. Henri Poincaré D 10 (2023), 277-298. 2023.

    We establish a relation between the trace evaluation in SO(3) topological quantum field theory and evaluations of a topological Tutte polynomial. As an application, a generalization of the Tutte golden identity is proved for graphs on the torus.

  • Akhmechet R, Krushkal V, Willis M. Towards an sl2 action on the annular Khovanov spectrum. Adv. Math. 2022;408, Paper No. 108581.

    Given a link in the thickened annulus, its annular Khovanov homology carries an action of the Lie algebra sl2, which is natural with respect to annular link cobordisms. We consider the problem of lifting this action to the stable homotopy refinement of the annular homology. As part of this program, the actions of the standard generators of sl2 are lifted to maps of spectra. In particular, it follows that the sl2 action on homology commutes with the action of the Steenrod algebra. The main new technical ingredients developed in this paper, which may be of independent interest, concern certain types of cancellations in the cube of resolutions and the resulting more intricate structure of the moduli spaces in the framed flow category.

  • Given a finite CW complex $K$, we use a version of the Goodwillie-Weiss tower to formulate an obstruction theory for embeddings of $K$ into a Euclidean space $\R^d$. For $2$-dimensional complexes in $\R^4$, a geometric analogue is also introduced, based on intersections of Whitney disks and more generally on the intersection theory of Whitney towers developed by Schneiderman and Teichner. The focus in this paper is on the first obstruction beyond the classical embedding obstruction of van Kampen. In this case  we show the two approaches lead to essentially the same obstruction. We also relate it to the Arnold class in the cohomology of configuration spaces. The obstructions are shown to be realized in a family of examples. Conjectures are formulated, relating higher versions of these homotopy-theoretic, geometric and cohomological theories.

  • Krushkal V, Wedrich P. gl(2)  foams and the Khovanov homotopy type. To appear in Indiana University Mathematics Journal; arXiv:2101.05785. 2021.

    The Blanchet link homology theory is an oriented model of Khovanov homology, functorial over the integers with respect to link cobordisms. We formulate a stable homotopy refinement of the Blanchet theory, based on a comparison of the Blanchet and Khovanov chain complexes associated to link diagrams. The construction of the stable homotopy type relies on the signed Burnside category approach of Sarkar-Scaduto-Stoffregen.