A common feature of d‐ and p‐block elements is that they participate in multiple bonding. In contrast, the synthesis of compounds containing homo‐ or hetero‐nuclear multiple bonds involving s‐block elements is extremely rare. Herein, we report the synthesis, molecular structure, and computational analysis of a beryllium imido (Be=N) complex (2), which was prepared via oxidation of a molecular Be(0) precursor (1) with trimethylsilyl azide Me3SiN3 (TMS-N3 ). Notably, compound 2 features the shortest known Be=N bond (1.464 Å) to date . This represents the first compound with an s‐block metal−nitrogen multiple bond. All compounds were characterized experimentally with multi‐nuclear NMR spectroscopy ( 1H, 13C, 9Be) and single‐crystal X‐ray diffraction studies. The bonding situation was analyzed with density functional theory (DFT) calculations, which supports the existence of π ‐bonding between beryllium and nitrogen.
Publications
2021
Electrochemical methods are coupled with chemical oxidant-based analytical strategies to evaluate the oxidative reactivity of the platinum(II) diimine complex (bpy)PtII(CH3)2 (bpy = 2,2′-bipyridine) in coordinating and noncoordinating media. Through this mechanistic analysis, we show that the one-electron oxidation of (bpy)PtII(CH3)2 generates a highly reactive, 15-electron PtIII radical cation and identify three reaction pathways that can follow this oxidation: radical–substrate dimerization, radical–radical dimerization, and oxidative disproportionation. Axial ligation of the initially generated [(bpy)PtIII(CH3)2]•+ species is a critical driver of this reactivity, gating the available mechanistic pathways and tuning the competition between radical–radical dimerization and oxidative disproportionation.
We report a Co-based complex for the reduction of O2 to H2O utilizing decamethylferrocene as chemical reductant and acetic acid as a proton donor in methanol solution. Despite structural similarities to previously reported Co(N2O2) complexes capable of catalytic O2 reduction, this system shows selectivity for the four-electron/four-proton reduction product, H2O, instead of the two-electron/two-proton reduction product, H2O2. Mechanistic studies show that the overall rate law is analogous to previous examples, suggesting that the key selectivity difference arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(III)-hydroperoxide, instead of the proximal one. Interestingly, no product selectivity dependence is observed with respect to the presence of pyridine, which is proposed to bind trans to O2 during catalysis.
While pnictaalkenes are well‐established for the light group 15 elements, they become more reactive and exceptionally rare as the group is descended. Herein, we report a combined experimental and theoretical study on the first examples of carbodicarbene (CDC)‐stabilized bismuth complexes, which feature low‐coordinate cationic bismuth centers with C=Bi multiple bond character. Monocations [(CDC)Bi(Ph)Cl][SbF6] (8) and [(CDC)BiBr2(THF)2][SbF6] (11), dications [(CDC)Bi(Ph)][SbF6]2 (9) and [(CDC)BiBr(THF)3][NTf2]2 (12), and trication [(CDC)2Bi][NTf2]3 (13) have been synthesized via sequential halide abstractions from (CDC)Bi(Ph)Cl2 (7) and (CDC)BiBr3 (10). Notably, the dications and trication exhibit C⇉Bi double dative bonds, and thus represent unprecedented bismaalkene cations. In addition, the synthesis of these species highlights a unique non‐reductive route to C–Bi π‐bonding character. The CDC‐[Bi] complexes (7‐13) were compared with related NHC‐[Bi] complexes (1, 3‐6) and show substantially different structural properties. Indeed, the CDC ligand has a remarkable influence on the overall stability of the resulting low‐coordinate Bi complexes, suggesting that CDC is a superior ligand to NHC in heavy pnictogen chemistry. All compounds have been characterized by multiple analytical methods including 1H and 13C NMR, X‐ray crystallography, elemental analysis, and UV‐Vis spectroscopy. In addition, the bonding situation was analyzed with modern charge and energy decomposition analysis.
Emissive β-diketones (bdks) and difluoroboron complexes (BF2bdks) exhibit multi-stimuli responsive luminescence, including solvatochromism, viscochromism, aggregation induced emission, thermal and mechanochromic luminescence, halochromism and pH sensing. In this study, a series of six-membered heterocycle-substituted (piperidine, morpholine, 1-methyl piperazine) bdk ligands and boron complexes were synthesized, and their luminescent properties were investigated. All the compounds exhibited red-shifted emission in more polar solvents due to intramolecular charge transfer as well as higher emission intensity in more viscous environments. In response to solubility changes in water/tetrahydrofuran mixtures, while the piperazine bdk ligand showed aggregation caused quenching, the piperidine and morpholine bdks displayed enhanced emission upon aggregation. In the solid state, all ligands exhibited mechanochromism. More dramatic halochromism was observed for the piperidine boron dye spin cast film. In solution, for the boron dyes under varying pH values (1–13), different protonated and deprotonated forms were analyzed according to the measured emission spectra.
2020
Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g., cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate more than 10,000 tyrosine sites in lysates and live cells. We discover that tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein–protein interaction and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome.