Insight into Elongation Stages of Peptidoglycan Processing in Bacterial Cytoplasmic Membranes

Abstract

Peptidoglycan (PG) biosynthesis and assembly are needed for bacterial cell wall formation. Lipid II is the precursor in the PG biosynthetic pathway and carries a nascent PG unit that is processed by glycosyltransferases. Despite its immense therapeutic value as a target of several classes of antibiotics, the conformational ensemble of lipid II in bacterial membranes and its interactions with membrane-anchored enzymes remain elusive. In this work, lipid II and its elongated forms (lipid VI and lipid XII) were modeled and simulated in bilayers of POPE (palmitoyl-oleoyl-phosphatidyl-ethanolamine) and POPG (palmitoyl-oleoyl-phosphatidyl-glycerol) that mimic the prototypical composition of Gram-negative cytoplasmic membranes. In addition, penicillin-binding protein 1b (PBP1b) from Escherichia coli was modeled and simulated in the presence of a nascent PG to investigate their interactions. Trajectory analysis reveals that as the glycan chain grows, the non-reducing end of the nascent PG displays much greater fluctuation along the membrane normal and minimally interacts with the membrane surface. In addition, dihedral angles within the pyrophosphate moiety are determined by the length of the PG moiety and its surrounding environment. When a nascent PG is bound to PBP1b, the stem peptide remains in close contact with PBP1b by structural rearrangement of the glycan chain. Most importantly, the number of nascent PG units required to reach the transpeptidase domain are determined to be 7 or 8. Our findings complement experimental results to further understand how the structure of nascent PG can dictate the assembly of the PG scaffold.
Last updated on 11/26/2020