Publications by Year: 2019

2019

Rudenko, Lauren, Horst Wallrabe, Ammasi Periasamy, Karsten Siller, Zdenek Svindrych, Matthew E Seward, Merci Best, and George Bloom. 2019. “Intraneuronal Tau Misfolding Induced by Extracellular Amyloid-β Oligomers”. Journal of Alzheimer’s Disease 71 (4).

Abnormal folding and aggregation of the microtubule-associated protein, tau, is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD). Although normal tau is an intrinsically disordered protein, it does exhibit tertiary structure whereby the N- and C-termini are often in close proximity to each other and to the contiguous microtubule-binding repeat domains that extend C-terminally from the middle of the protein. Unfolding of this paperclip-like conformation might precede formation of toxic tau oligomers and filaments, like those found in AD brain. While there are many ways to monitor tau aggregation, methods to monitor changes in tau folding are not well established. Using full length human 2N4R tau doubly labeled with the Förster resonance energy transfer (FRET) compatible fluorescent proteins, Venus and Teal, on the N- and C-termini, respectively (Venus-Tau-Teal), intensity and lifetime FRET measurements were able to distinguish folded from unfolded tau in living cells independently of tau-tau intermolecular interactions. When expression was restricted to low levels in which tau-tau aggregation was minimized, Venus-Tau-Teal was sensitive to microtubule binding, phosphorylation, and pathogenic oligomers. Of particular interest is our finding that amyloid-β oligomers (AβOs) trigger Venus-Tau-Teal unfolding in cultured mouse neurons. We thus provide direct experimental evidence that AβOs convert normally folded tau into a conformation thought to predominate in toxic tau aggregates. This finding provides further evidence for a mechanistic connection between Aβ and tau at seminal stages of AD pathogenesis.

Cao, Ruofan, Horst Wallrabe, Karsten Siller, Shagufta Rehman Alam, and Ammasi Periasamy. 2019. “Single‐cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H​”. Cytometry Part A 95 (1).

Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens. © 2019 International Society for Advancement of Cytometry.