Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells

Abstract

In the absence of functional rod and cone photoreceptors, mammals retain the ability to detect light for a variety of physiological functions such as circadian photoentrainment and pupillary light reflex. This is attributed to a third class of photoreceptors, the intrinsically photosensitive retinal ganglion cells that express the photopigment melanopsin. Even though in the absence of rods and cones, mammals retain the ability to detect light for various nonimage-forming visual functions, rods and cones can compensate for the absence of the melanopsin protein in nonvisual light-dependent physiological behaviors. Several studies have addressed the relative contribution of each photoreceptor type to nonimage-forming visual functions; however, a comprehensive model for these interactions is far from complete. Under conditions where melanopsin-containing retinal ganglion cells were genetically ablated, image formation is maintained, whereas circadian photoentrainment and pupillary light reflex are severely impaired. The findings indicate that multiple photoreceptors contribute to nonimage-forming visual functions through signaling via melanopsin-containing retinal ganglion cells. Future studies will aim to determine more quantitatively the relative contributions of each retinal photoreceptor in signaling light for nonimage-forming visual functions.
Last updated on 11/26/2020