Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon Nanohorn-Modified Carbon Fiber Microelectrodes for Dopamine Detection</style><style face="normal" font="default" size="100%">Carbon Nanohorn-Modified Carbon Fiber Microelectrodes for Dopamine Detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Drosophila as a Model System for Neurotransmitter Measurements</style><style face="normal" font="default" size="100%">Drosophila as a Model System for Neurotransmitter Measurements</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster</style><style face="normal" font="default" size="100%">Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Regional variations of spontaneous, transient adenosine release in brain slices</style><style face="normal" font="default" size="100%">Regional variations of spontaneous, transient adenosine release in brain slices</style>Drupal-Bibcite31<style face="normal" font="default" size="100%">High performance, low cost carbon nanotube yarn based 3D printed electrodes compatible with a conventional screen printed electrode system</style><style face="normal" font="default" size="100%">High performance, low cost carbon nanotube yarn based 3D printed electrodes compatible with a conventional screen printed electrode system</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">O2 plasma etching and antistatic gun surface modifications for CNT yarn microelectrode improve sensitivity and antifouling properties</style><style face="normal" font="default" size="100%">O2 plasma etching and antistatic gun surface modifications for CNT yarn microelectrode improve sensitivity and antifouling properties</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties</style><style face="normal" font="default" size="100%">Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Transient adenosine release is modulated by NMDA and GABAB receptors</style><style face="normal" font="default" size="100%">Transient adenosine release is modulated by NMDA and GABAB receptors</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Automated Algorithm for Detection of Transient Adenosine Release</style><style face="normal" font="default" size="100%">Automated Algorithm for Detection of Transient Adenosine Release</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods</style><style face="normal" font="default" size="100%">Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Novel carbon-fiber microelectrode batch fabrication using a 3D-printed mold and polyimide resin</style><style face="normal" font="default" size="100%">Novel carbon-fiber microelectrode batch fabrication using a 3D-printed mold and polyimide resin</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Correlation of transient adenosine release and oxygen changes in the caudate-putamen</style><style face="normal" font="default" size="100%">Correlation of transient adenosine release and oxygen changes in the caudate-putamen</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Fast-scan cyclic voltammetry (FSCV) detection of endogenous octopamine in Drosophila melanogaster ventral nerve cord</style><style face="normal" font="default" size="100%">Fast-scan cyclic voltammetry (FSCV) detection of endogenous octopamine in Drosophila melanogaster ventral nerve cord</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo</style><style face="normal" font="default" size="100%">Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Quantification of histamine and carcinine in Drosophila melanogaster tissues</style><style face="normal" font="default" size="100%">Quantification of histamine and carcinine in Drosophila melanogaster tissues</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon nanotubes grown on metal microelectrodes for the detection of dopamine</style><style face="normal" font="default" size="100%">Carbon nanotubes grown on metal microelectrodes for the detection of dopamine</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine</style><style face="normal" font="default" size="100%">Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism</style><style face="normal" font="default" size="100%">Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation</style><style face="normal" font="default" size="100%">Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review</style><style face="normal" font="default" size="100%">Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Characterization of dopamine releasable and reserve pools in Drosophila larvae using ATP/P2X2-mediated stimulation</style><style face="normal" font="default" size="100%">Characterization of dopamine releasable and reserve pools in Drosophila larvae using ATP/P2X2-mediated stimulation</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon nanopipette electrodes for dopamine detection in Drosophila</style><style face="normal" font="default" size="100%">Carbon nanopipette electrodes for dopamine detection in Drosophila</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Analysis of neurotransmitter tissue content of Drosophila melanogaster in different life stages</style><style face="normal" font="default" size="100%">Analysis of neurotransmitter tissue content of Drosophila melanogaster in different life stages</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Fast-scan cyclic voltammetry for the characterization of rapid adenosine release</style><style face="normal" font="default" size="100%">Fast-scan cyclic voltammetry for the characterization of rapid adenosine release</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Adenosine transiently modulates stimulated dopamine release in the caudate–putamen via A1 receptors</style><style face="normal" font="default" size="100%">Adenosine transiently modulates stimulated dopamine release in the caudate–putamen via A1 receptors</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters</style><style face="normal" font="default" size="100%">Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide</style><style face="normal" font="default" size="100%">Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Optogenetic control of serotonin and dopamine release in Drosophila larvae</style><style face="normal" font="default" size="100%">Optogenetic control of serotonin and dopamine release in Drosophila larvae</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes</style><style face="normal" font="default" size="100%">High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex</style><style face="normal" font="default" size="100%">Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex</style><style face="normal" font="default" size="100%">Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Kinetics of the dopamine transporter in Drosophila larva</style><style face="normal" font="default" size="100%">Kinetics of the dopamine transporter in Drosophila larva</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection</style><style face="normal" font="default" size="100%">Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes</style><style face="normal" font="default" size="100%">Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">The mechanism of electrically stimulated adenosine release varies by brain region</style><style face="normal" font="default" size="100%">The mechanism of electrically stimulated adenosine release varies by brain region</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices</style><style face="normal" font="default" size="100%">Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests</style><style face="normal" font="default" size="100%">Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine</style><style face="normal" font="default" size="100%">Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Drosophila Dopamine2-like receptors function as autoreceptors</style><style face="normal" font="default" size="100%">Drosophila Dopamine2-like receptors function as autoreceptors</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Comparison of Nafion-and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection</style><style face="normal" font="default" size="100%">Comparison of Nafion-and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes</style><style face="normal" font="default" size="100%">Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection</style><style face="normal" font="default" size="100%">Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Adenosine release evoked by short electrical stimulations in striatal brain slices is primarily activity dependent</style><style face="normal" font="default" size="100%">Adenosine release evoked by short electrical stimulations in striatal brain slices is primarily activity dependent</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics</style><style face="normal" font="default" size="100%">A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Rapid determination of adenosine deaminase kinetics using fast-scan cyclic voltammetry</style><style face="normal" font="default" size="100%">Rapid determination of adenosine deaminase kinetics using fast-scan cyclic voltammetry</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon nanotube based electrochemical sensors for biomolecules</style><style face="normal" font="default" size="100%">Carbon nanotube based electrochemical sensors for biomolecules</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Both synthesis and reuptake are critical for replenishing the releasable serotonin pool in Drosophila</style><style face="normal" font="default" size="100%">Both synthesis and reuptake are critical for replenishing the releasable serotonin pool in Drosophila</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Microelectrode Sensing of Adenosine/Adenosine-5′-triphosphate with Fast-Scan Cyclic Voltammetry</style><style face="normal" font="default" size="100%">Microelectrode Sensing of Adenosine/Adenosine-5′-triphosphate with Fast-Scan Cyclic Voltammetry</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry</style><style face="normal" font="default" size="100%">Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Addition reaction and characterization of chlorotris (triphenylphosphine) iridium (I) on silicon (1 1 1) surfaces</style><style face="normal" font="default" size="100%">Addition reaction and characterization of chlorotris (triphenylphosphine) iridium (I) on silicon (1 1 1) surfaces</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Fast-scan cyclic voltammetry for the detection of tyramine and octopamine</style><style face="normal" font="default" size="100%">Fast-scan cyclic voltammetry for the detection of tyramine and octopamine</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Quantitative evaluation of serotonin release and reuptake in Drosophila</style><style face="normal" font="default" size="100%">Quantitative evaluation of serotonin release and reuptake in Drosophila</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon-fiber microelectrodes for in vivo applications</style><style face="normal" font="default" size="100%">Carbon-fiber microelectrodes for in vivo applications</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry</style><style face="normal" font="default" size="100%">Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Neurotransmission: Measuring Chemical Events</style><style face="normal" font="default" size="100%">Neurotransmission: Measuring Chemical Events</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Flame etching enhances the sensitivity of carbon-fiber microelectrodes</style><style face="normal" font="default" size="100%">Flame etching enhances the sensitivity of carbon-fiber microelectrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Transient adenosine efflux in the rat caudate–putamen</style><style face="normal" font="default" size="100%">Transient adenosine efflux in the rat caudate–putamen</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo</style><style face="normal" font="default" size="100%">Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry</style><style face="normal" font="default" size="100%">Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry</style>Drupal-Bibcite9<style face="normal" font="default" size="100%">Handbook of capillary and microchip electrophoresis and associated microtechniques</style><style face="normal" font="default" size="100%">Handbook of capillary and microchip electrophoresis and associated microtechniques</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Synapsins differentially control dopamine and serotonin release</style><style face="normal" font="default" size="100%">Synapsins differentially control dopamine and serotonin release</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Pharmacologically induced, subsecond dopamine transients in the caudate–putamen of the anesthetized rat</style><style face="normal" font="default" size="100%">Pharmacologically induced, subsecond dopamine transients in the caudate–putamen of the anesthetized rat</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear</style><style face="normal" font="default" size="100%">Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool</style><style face="normal" font="default" size="100%">Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Synaptic vesicle trafficking and drug addiction in synapsin triple knockout mice</style><style face="normal" font="default" size="100%">Synaptic vesicle trafficking and drug addiction in synapsin triple knockout mice</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2, 5-dihydro-2, 4, 5-trimethylthiazoline</style><style face="normal" font="default" size="100%">Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2, 5-dihydro-2, 4, 5-trimethylthiazoline</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Real-time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing</style><style face="normal" font="default" size="100%">Real-time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing</style>Drupal-Bibcite31<style face="normal" font="default" size="100%">Psychoanalytical electrochemistry: dopamine and behavior</style><style face="normal" font="default" size="100%">Psychoanalytical electrochemistry: dopamine and behavior</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo</style><style face="normal" font="default" size="100%">Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">A role for presynaptic mechanisms in the actions of nomifensine and haloperidol</style><style face="normal" font="default" size="100%">A role for presynaptic mechanisms in the actions of nomifensine and haloperidol</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate–putamen</style><style face="normal" font="default" size="100%">Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate–putamen</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Neurochemistry and electroanalytical probes</style><style face="normal" font="default" size="100%">Neurochemistry and electroanalytical probes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration</style><style face="normal" font="default" size="100%">Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Sub-second changes in accumbal dopamine during sexual behavior in male rats</style><style face="normal" font="default" size="100%">Sub-second changes in accumbal dopamine during sexual behavior in male rats</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes</style><style face="normal" font="default" size="100%">Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Electrochemistry at the Synapse</style><style face="normal" font="default" size="100%">Electrochemistry at the Synapse</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection</style><style face="normal" font="default" size="100%">Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">3D‐Printed Carbon Electrodes for Neurotransmitter Detection</style><style face="normal" font="default" size="100%">3D‐Printed Carbon Electrodes for Neurotransmitter Detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Expanding University Student Outreach: Professional Development Workshops for Teachers Led by Graduate Students</style><style face="normal" font="default" size="100%">Expanding University Student Outreach: Professional Development Workshops for Teachers Led by Graduate Students</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine</style><style face="normal" font="default" size="100%">Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Early changes in transient adenosine during cerebral ischemia and reperfusion injury</style><style face="normal" font="default" size="100%">Early changes in transient adenosine during cerebral ischemia and reperfusion injury</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Electrochemical Measurements of Acetylcholine-Stimulated Dopamine Release in Adult Drosophila melanogaster Brains</style><style face="normal" font="default" size="100%">Electrochemical Measurements of Acetylcholine-Stimulated Dopamine Release in Adult Drosophila melanogaster Brains</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon Nanotube-Based Microelectrodes for Enhanced Neurochemical Detection</style><style face="normal" font="default" size="100%">Carbon Nanotube-Based Microelectrodes for Enhanced Neurochemical Detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Comparison of spontaneous and mechanically-stimulated adenosine release in mice</style><style face="normal" font="default" size="100%">Comparison of spontaneous and mechanically-stimulated adenosine release in mice</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain</style><style face="normal" font="default" size="100%">Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Cavity Carbon Nanopipette Electrodes for Dopamine Detection</style><style face="normal" font="default" size="100%">Cavity Carbon Nanopipette Electrodes for Dopamine Detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Caffeine Modulates Spontaneous Adenosine and Oxygen Changes during Ischemia and Reperfusion</style><style face="normal" font="default" size="100%">Caffeine Modulates Spontaneous Adenosine and Oxygen Changes during Ischemia and Reperfusion</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function</style><style face="normal" font="default" size="100%">Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes</style><style face="normal" font="default" size="100%">Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Nanodiamond Coating Improves the Sensitivity and Antifouling Properties of Carbon-Fiber Microelectrodes</style><style face="normal" font="default" size="100%">Nanodiamond Coating Improves the Sensitivity and Antifouling Properties of Carbon-Fiber Microelectrodes</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</style><style face="normal" font="default" size="100%">Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Measurement of natural variation of neurotransmitter tissue content in red harvester ant brains among different colonies</style><style face="normal" font="default" size="100%">Measurement of natural variation of neurotransmitter tissue content in red harvester ant brains among different colonies</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Fundamentals of Fast-Scan Cyclic Voltammetry for Dopamine Detection</style><style face="normal" font="default" size="100%">Fundamentals of Fast-Scan Cyclic Voltammetry for Dopamine Detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Recent Advances in Fast-Scan Cyclic Voltammetry</style><style face="normal" font="default" size="100%">Recent Advances in Fast-Scan Cyclic Voltammetry</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Complex Sex and Estrous Cycle Differences in Spontaneous Transient Adenosine</style><style face="normal" font="default" size="100%">Complex Sex and Estrous Cycle Differences in Spontaneous Transient Adenosine</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">CD73 or CD39 deletion reveals different mechanisms of formation for spontaneous and mechanically-stimulated adenosine release and sex specific compensations in ATP degradation</style><style face="normal" font="default" size="100%">CD73 or CD39 deletion reveals different mechanisms of formation for spontaneous and mechanically-stimulated adenosine release and sex specific compensations in ATP degradation</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection</style><style face="normal" font="default" size="100%">Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Structural Similarity Image Analysis for Detection of Adenosine and Dopamine in Fast-Scan Cyclic Voltammetry Color Plots</style><style face="normal" font="default" size="100%">Structural Similarity Image Analysis for Detection of Adenosine and Dopamine in Fast-Scan Cyclic Voltammetry Color Plots</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing</style><style face="normal" font="default" size="100%">3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Thin Layer Cell Behavior of CNT Yarn and Cavity Carbon Nanopipette Electrodes: Effect on Catecholamine Detection</style><style face="normal" font="default" size="100%">Thin Layer Cell Behavior of CNT Yarn and Cavity Carbon Nanopipette Electrodes: Effect on Catecholamine Detection</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Improving Serotonin Fast-Scan Cyclic Voltammetry Detection: New Waveforms to Reduce Electrode Fouling</style><style face="normal" font="default" size="100%">Improving Serotonin Fast-Scan Cyclic Voltammetry Detection: New Waveforms to Reduce Electrode Fouling</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">A1 and A2A Receptors Modulate Spontaneous Adenosine but Not Mechanically Stimulated Adensoine in the Caudate</style><style face="normal" font="default" size="100%">A1 and A2A Receptors Modulate Spontaneous Adenosine but Not Mechanically Stimulated Adensoine in the Caudate</style>Drupal-Bibcite0<style face="normal" font="default" size="100%">Real-Time Measurement of Stimulated Dopamine Release in Compartments of the Adult Drosophila melanogaster Mushroom Body</style><style face="normal" font="default" size="100%">Real-Time Measurement of Stimulated Dopamine Release in Compartments of the Adult Drosophila melanogaster Mushroom Body</style>