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Abstract. Motivated by the many roles that hook lengths play in mathematics, we study the dis-
tribution of the number of t-hooks in the partitions of n. We prove that the limiting distribution is

normal with mean µt(n) ∼
√

6n
π

− t
2

and variance σ2
t (n) ∼ (π2−6)

√
6n

2π3 . Furthermore, we prove that the
distribution of the number of hook lengths that are multiples of a fixed t ≥ 4 in partitions of n converge
to a shifted Gamma distribution with parameter k = (t− 1)/2 and scale θ =

√
2/(t− 1).

1. Introduction and statement of results

The study of the statistical properties of partitions and their Young diagrams is rich with deep
results. Works by Pittel [12], Szalay and Turán [14, 15, 16], Temperley [17], and Vershik [18] form
a large body of work on questions related to the expected “limiting shapes” of Young diagrams (see
the more recent paper by Bogachev [2] for more recent results in the field). In this paper we study
the statistical properties of the hook lengths in Young diagrams of integer partitions. In this regard,
there is recent work by Mutafchiev [10] concerning the expected hook length of a randomly chosen
cell. Here we study a different aspect. To make this precise we first recall some notation.

A partition λ = (λ1, λ2, . . . , λm) of n, denoted λ ` n, is a nonincreasing sequence of positive integers
that sum to n. Its Young diagram is the left-justified array of boxes where the row lengths are the
parts. The hook H(k, j) of the cell in position (k, j) is the set of cells below or to the right of that cell,
including the cell itself, and the hook length h(k, j) := (λk − k) + (λ′j − j) + 1, is the number of cells

in the hook H(k, j). Here λ′j is the number of boxes in column j, which is the same as the number of
parts of the partition that are at least j.

Figure 1. Hook lengths for λ = (5, 4, 1)

Multisets H(λ) of partition hook lengths have many roles in combinatorics, number theory, and
representation theory (e.g. [1, 8, 13]). For instance, a standard Young tableaux for a partition λ of
n is obtained by writing the numbers 1 through n in the boxes of the Young diagram so that each
column and each row forms an increasing sequence. The Frame-Robinson-Thrall hook length formula

dλ =
n!∏

h∈H(λ) h

gives the number of standard Young tableaux for λ. This is also the degree of the canonical irreducible
representation of the symmetric group Sn associated to λ. As another important example, we have
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the famous Nekrasov-Okounkov identity (see (6.12) of [11])1

(1.1)
∑
λ

q|λ|
∏

h∈H(λ)

(
1− z

h2

)
=

∞∏
n=1

(1− qn)z−1 ,

which arises in combinatorics, mathematical physics and the theory of modular forms.
In this paper, we study the numbers Yt(n) which count the t-hooks (i.e. hooks of length t) among

all partitions of n. For fixed t, we derive the limiting behavior of the sequence {Yt(n)} for n ∈ N, and
we give asymptotics for the accumulation function

(1.2) Dt(k;n) :=
# {λ ` n with ≤ k many hook lengths of size t}

p(n)
.

Theorem 1.1. If t is a fixed positive integer, then the following are true for the sequence {Yt(n)}.
(1) The sequence is asymptotically normal with mean µt(n) ∼

√
6n
π −

t
2 and variance σ2

t (n) ∼ (π2−6)
√

6n
2π3 .

(2) If we let kt,n(x) := µt(n) + σt(n)x, then in terms of Gauss’s error function E(x) we have

lim
n→+∞

Dt(kt,n(x);n) =
1√
2π

∫ x

−∞
e−

y2

2 dy =: E(x).

Remark. The t = 1 case of Theorem 1.1 recovers a result by Brennan, Knopfmacher and Wagner [3]
on the distribution of ascents in partitions, as this number equals the number of size 1-hooks.

Example. Theorem 1.1 asserts that the limiting distribution of 2-hooks is a normal distribution with

mean µ2(n) ∼
√

6n
π − 1 and variance σ2

2(n) ∼ (π2−6)
√

6n
2π3 . For n = 5000, we find that∑

λ`5000

T#{2∈H(λ)} = 704T + 9211712T 2 + · · ·+ 1805943379138T 98 + 2T 99.

Figure 2 plots Y2(5000).

Figure 2. Y2(5000)

Table 1 illustrates the cumulative distribution approximation D2(k2,5000(x); 5000) ≈ E(x).

1This formula was also obtained by Westbury (see Proposition 6.1 and 6.2 of [19]).
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x D2(k2,5000(x), 5000) E(x) D2(k2,5000(x), 5000)/E(x)

−1.5 0.0658 . . . 0.0668 . . . 0.9849 . . .
...

...
...

...
0.0 0.5055 . . . 0.5000 . . . 1.0011 . . .
1.0 0.8246 . . . 0.8413 . . . 0.9802 . . .
2.0 0.9685 . . . 0.9772 . . . 0.9911 . . .

Table 1. Asymptotics for the cumulative distribution for n = 5000

We next consider the sequence {Ŷt(n)} of distributions of the number of hook lengths in tN among
the partitions of size n. This question is motivated by work of Han that extends (1.1) by giving infinite
families of modular forms with level structure and cuspidal divisor. If Ht(λ) is the multiset of hook
lengths of λ that are in tN, then he proved (see Theorem 1.3 of [7]) that∑

λ

q|λ|
∏

h∈Ht(λ)

(
y − tyz

h2

)
=
∞∏
n=1

(1− qtn)t

(1− (yqt)n)t−z(1− qn)
.

For t ≥ 4, we prove that the limiting distribution is a shifted Gamma distribution with parameter
k = (t−1)/2 and scale θ =

√
2/(t− 1), and we determine asymptotics for the cumulative distribution

(1.3) D̂t(k;n) :=
# {λ ` n with ≤ k many hook lengths in tN}

p(n)
.

Recall (e.g. II.2 of [5]) that a random variable Xk,θ satisfies the Gamma distribution with parameter

k > 0 and scale θ > 0 if its probability distribution function is Fk,θ(x) := 1
Γ(k)θk

· xk−1e−
x
θ .

Theorem 1.2. If t ≥ 4, then the following are true for the sequence {Ŷt(n)}.
(1) The sequence satisfies

Ŷt(n) ∼ n

t
−
√

3(t− 1)n

πt
·X t−1

2
,
√

2
t−1

,

and has mean µ̂t(n) ∼ n
t −

(t−1)
√

6n
2πt , mode m̂ot(n) ∼ n

t −
(t−3)

√
6n

2πt , and variance σ̂2
t (n) ∼ 3(t−1)n

π2t2
.

(2) If we let k̂t,n(x) := µ̂t(n) + σ̂t(n)x, then in terms of the lower incomplete gamma function we have

lim
n→+∞

D̂t(k̂t,n(x);n) =
γ
(
t−1

2 ;
√

t−1
2 x+ t−1

2

)
Γ
(
t−1

2

) .

Remark. The proof of Theorem 1.2, which uses properties of Gamma distributions with k > 1, does

not apply for t ∈ {2, 3} as (t−1)/2 ≤ 1. Indeed, the {Ŷ2(n)} and {Ŷ3(n)} do not even have continuous
limiting distributions. The fact that 100% of n do not have a 2-core or 3-core partition [6] implies
that these distributions are populated with many vanishing terms as illustrated by∑

λ`19

T#H2(λ) = 300T 9 + 185T 8 + 5T 2.

Example. Theorem 1.2 gives Ŷ11(n) ∼ n
11 −

√
30n

11π ·X5,
√

5
5

, with mean µ̂11(n) ∼ n
11 −

5
√

6n
11π and variance

σ̂2
11(n) ∼ 30n

121π2 . Figure 3 gives Ŷ11(1000).
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Figure 3. Ŷ11(1000)

Table 2 illustrates the approximation D̂11(k11,1000(x); 1000) ≈ γ(5;
√

5x+5)
24 =: Ê11(x).

x D̂11(k11,1000(x); 1000) Ê11(x) D̂11(k11,1000(x); 1000)/Ê11(x)

−1.00 0.1319 . . . 0.1467 . . . 0.8993 . . .
...

...
...

...
0.75 0.7410 . . . 0.7954 . . . 0.9315 . . .
1.00 0.8226 . . . 0.8474 . . . 0.9707 . . .
1.25 0.8872 . . . 0.8880 . . . 0.9991 . . .

Table 2. Asymptotics for the cumulative distribution for n = 1000

This paper is organized as follows. In Section 2 we recall work of Han that offers the relevant enu-
merative generating functions, and we then determine their asymptotics via the saddle point method,
with assistance from the Euler-Maclaurin summation formula. In Section 3 we use these asymptotics
to compute the moments of these statistics, which in turn imply Theorems 1.1 and 1.2 thanks to a
classical theorem of Curtiss.

Acknowledgements

The authors thank George Andrews, Kathrin Bringmann, Richard Stanley and Ole Warnaar for their
valuable correspondence on this project. Finally, they thank the referees for their careful reading of
the original submission and for their helpful suggestions.

2. Nuts and Bolts

We recall work of Han on the enumeration of hook lengths, and we derive important propositions
(see Proposition 2.1 and 2.2) that are central to the proof of Theorems 1.1 and 1.2. Han obtained
(see Thm. 1.4 and Cor. 5.1 of [7]) the following important generating functions for each fixed positive
integer t :

(2.1) Gt(T ; q) =

∞∑
n=0

Pt(n;T )qn =
∑
m,n

pt(m;n)Tmqn :=
∑
λ

q|λ|T#{t∈H(λ)} =

∞∏
n=1

(1 + (T − 1)qtn)t

1− qn
,
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(2.2) Ĝt(T ; q) =
∞∑
n=0

P̂t(n;T )qn =
∑
m,n

p̂t(m;n)Tmqn :=
∑
λ

q|λ|T#Ht(λ) =
∞∏
n=1

(1− qtn)t

(1− (Tqt)n)t(1− qn)
.

The next two propositions on Pt(n;T ) and P̂t(n;T ) are the main results of this section.

Proposition 2.1. Suppose that η ∈ (0, 1] and η ≤ T ≤ η−1. If c(T ) :=
√
π2/6− Li2(1− T ), then

Pt(n;T ) =
c(T )

2
√

2πnT
t
2

· ec(T )
(

2
√
n− 1√

n

)
·
(

1 +Oη(n
− 1

7 )
)
,

where Li2(z) := −
∫ z

0
log(1−u)

u du is the dilogarithm function.

The next proposition is more subtle, and pertains to suitable real sequences.

Proposition 2.2. If t is a positive integer and T := {Tn} is a positive real sequence for which

Tn = e
α(T )+εT (n)√

n , where α(T ) is real and εT (n) = oT (1), then

P̂t(n;Tn) =

1

2
7
4 3

1
4n
·

√
1√
6

+
α(T ) + εT (n)

πt

(
πt

πt+
√

6 (α(T ) + εT (n))

) t
2

· eπ
√
n
(√

2
3

+
α(T )+εT (n)

πt

)
· (1 +OT (n−

1
7 )).

2.1. Proof of Proposition 2.1. The proof of Proposition 2.1 requires the next lemma.

Lemma 2.3. If η ∈ (0, 1], then for 0 < α < 1 and η ≤ T ≤ η−1 we have

∞∑
j=1

log(1− e−jα) = −π
2

6α
− 1

2
log
( α

2π

)
+O(α),(2.3)

∞∑
n=1

t2n(T − 1)

T − 1 + etnα
= −Li2(1− T )

α2
+Oη(1),(2.4)

∞∑
n=1

log
(
1 + (T − 1)e−tnα

)
= −Li2(1− T )

tα
− 1

2
log T +Oη(α),(2.5)

∞∑
n=1

t3n2e−tnα

(1 + (T − 1)e−tnα)2
= − 2

α3

Li2(1− T )

T − 1
+Oη(α).(2.6)

Proof. For f ∈ Cj+1([a, b]) and a, b ∈ Z, Euler-Maclaurin summation (e.g. Thm. 2.1.9 of [9]) gives∑
a<n≤b

f(n) =

∫ b

a
f(x)dx+

j∑
r=0

(−1)r+1

(r + 1)!

(
f (r)(b)− f (r)(a)

)
Br+1+

(−1)j

(j + 1)!

∫ b

a
Bj+1(x−bxc)f (j+1)(x)dx,

where Br(x) is the rth Bernoulli polynomial and Br := Br(0). Letting a = 0 and j = 0 gives

b∑
n=1

t2n(T − 1)

T − 1 + etnα
=

∫ b

0

t2(T − 1)x

T − 1 + etαx
dx+

t2(T − 1)b

2(T − 1 + etαb)

+

∫ b

0
B1(x− bxc) t

2(T − 1)(T − 1 + etαx)− t3α(T − 1)xetαx

(T − 1 + etαx)2
dx

=
1

α2

[
Li2((1− T )e−tαb)− Li2(1− T )− tα log

(
(T − 1)e−tαb + 1

)]
+Oη

(
b3

etαb

)
.
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To obtain (2.4), we let b→∞ and find that

∞∑
n=1

t2n(T − 1)

T − 1 + etnα
= −Li2(1− T )

α2
+Oη(1).

Applying Euler-Maclaurin summation proves the other cases mutatis mutandis. �

Proof of Proposition 2.1. We first note that (2.1) implies that

(2.7) Pt(n;T ) =
1

2π

∫ π

−π
(zeix)−nGt(T ; zeix)dx =

1

2π

∫ π

−π
egt(T ;zeix)dx,

where gt(T ;w) := Log(w−nGt(T ;w)) for 0 < |w| < 1. To apply the saddle point method, we must
determine z = e−α for α > 0, such that g′t(T ; z) = 0 (throughout we consider the derivative with
respect to the second parameter). By (2.1), this is equivalent to

∞∑
j=1

t2j(T − 1)

T − 1 + etjα
+

∞∑
j=1

j

ejα − 1
= n.

By combining (2.4) with

(2.8)

∞∑
j=1

j

ejα − 1
=

π2

6α2
− 1

2α
+O(1),

which holds for 0 < α < 1, we find that

(2.9) α = c(T ) · n−
1
2 − 1

4
n−1 +Oη(n

− 3
2 ).

We now estimate gt(T ; z), g′′t (T ; z), and g′′′t (T ; z). Plugging z = e−α into gt(T ; z), we obtain

gt(T ; z) = t

∞∑
j=1

log
(
1 + (T − 1)e−tjα

)
−
∞∑
j=1

log(1− e−jα) + nα.

Therefore, (2.3), (2.5) and (2.9) gives

(2.10) gt(T ; z) = 2c(T )
√
n+

1

2
log

(
c(T )

2πT
√
n

)
+Oη

(
n−

1
2

)
.

Similarly, by using (2.4) and (2.6) we obtain

(2.11)
∞∑
j=1

j2e−jα

(1− e−jα)2
=

π2

3α3
− 1

2α2
+O(α),

which implies that

g′′t (T ; z) =

n+
∞∑
j=1

t3j2e−tjα

(1 + (T − 1)e−tjα)2
−
∞∑
j=1

t2j(T − 1)

T − 1 + etjα
+
∞∑
j=1

j2e−jα

(1− e−jα)2
−
∞∑
j=1

j

ejα − 1

 e2α

= e2c(T )n−
1
2 +Oη(n−1)

(
2

c(T )
n

3
2 +Oη(n)

)
.(2.12)

By the same argument, thanks to (2.9), we find that

(2.13) g′′′t (T ; z) = Oη

 ∞∑
j=1

j3e−jα

(1− ejα)4

 = Oη(α
−4) = Oη

(
n2
)
.
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To complete the proof, we now let Pt(n;T ) = I + II, where

I :=
1

2π

∫
|x|≤n−5/7

egt(T ;zeix)dx and II :=
1

2π

∫
|x|>n−5/7

egt(T ;zeix)dx.

To estimate I, we use the Taylor expansion of gt(T ;w) centered at the saddle point z = e−α

gt(T ;w) = gt(T ; z) +
g′′t (T ; z)(w − z)2

2
+Oη(g

′′′
t (T ; z))(w − z)3).

Since |x| ≤ n−5/7, estimate (2.9) gives

w − z = zeix − z = e−α
(
ix+O

(
x2
))

=
(

1 +Oη

(
n−

1
2

))(
ix+O

(
n−

10
7

))
= ix+Oη

(
n−

17
14

)
.

Therefore, we obtain

(2.14) gt(T ;w) = gt(T ; z)− g′′t (T ; z)(x)2

2
+Oη

(
n−

1
7

)
.

Combining (2.10), (2.12), (2.13), and (2.14), we obtain the main term asymptotic

I = egt(T ;z)

2π

[∫∞
−∞ e

− g
′′
t (T ;z)x2

2 dx−
∫
|x|>n−5/7 e

− g
′′
t (T ;z)x2

2 dx

]
·
(

1 +Oη

(
n−

1
7

))
= c(T )

2
√

2πnT
t
2
· ec(T )

(
2
√
n− 1√

n

)
·
(

1 +Oη

(
n−

1
7

))
.(2.15)

To estimate the tail error term II, we estimate Gt(T ;zeix)
Gt(T ;z) using

egt(T ;zeix) = egt(T ;z)Gt(T ; zeix)

Gt(T ; z)
.

Since T > 0, letting w = zeix gives∣∣∣∣Gt(T ;w)

Gt(T ; z)

∣∣∣∣2 ≤ ∞∏
j=1

Max

{
1,

∣∣∣∣1 + (T − 1)wj

1 + (T − 1)zj

∣∣∣∣2
}∣∣∣∣ 1− zj

1− wj

∣∣∣∣2

≤
∞∏
j=1

Max

{
1,

(
1 +

2zj(1− T )(1− cos(xj))

(1− zj)2

)}(
1 +

2zj(1− cos(xj))

(1− zj)2

)−1

≤
∏

√
n≤j≤2

√
n

Max

{
1,

(
1 +

2zj(1− T )(1− cos(xj))

(1− zj)2

)}(
1 +

2zj(1− cos(xj))

(1− zj)2

)−1

.(2.16)

To reduce to the finite product in the last line, we used the fact that for all j ≥ 1 we have

Max

{
1,

(
1 +

2zj(1− T )(1− cos(xj))

(1− zj)2

)}(
1 +

2zj(1− cos(xj))

(1− zj)2

)−1

≤ 1.

We consider two cases (i.e. T > 1 and T ≤ 1) to estimate (2.16). If T > 1 and j ∈ [
√
n, 2
√
n], then

by (2.9) we have 2zj/(1− zj)2 ≤ cη, for some cη > 0. This implies that

(2.17)

∣∣∣∣Gt(T ;w)

Gt(T ; z)

∣∣∣∣2 ≤ ∏
√
n≤j≤2

√
n

(1 + cη(1− cos(xj)))−1 .

If T ≤ 1, then we have

Max

{
1,

(
1 +

2zj(1− T )(1− cos(xj))

(1− zj)2

)}
= 1 +

2zj(1− T )(1− cos(xj))

(1− zj)2
.
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Moreover, we have 2zj/(1−zj)2 ≤ cη. A similar calculation also shows that (2.17) still holds for T ≤ 1
by choosing a suitable cη > 0.

We divide the range of x into two cases n−5/7 ≤ |x| ≤ π
2
√
n
, and π

2
√
n
≤ |x| ≤ π. For the first case,

we can use the inequality 1− cos(xj) ≥ 2
π2 (xj)2 to estimate (2.17), giving

(2.18)

∣∣∣∣Gt(T ;w)

Gt(T ; z)

∣∣∣∣2 ≤ ∏
√
n≤j≤2

√
n

(
1 +

2cη
π2

(xj)2

)−1

� e−cη(x2n
3
2 ) � e−cηn

1
14 .

In the case where π
2
√
n
≤ |x| ≤ π, we count the j ∈ [

√
n, 2
√
n] for which there is an ` ∈ Z with

−n−
1
12 + 2`π ≤ xj ≤ n−

1
12 + 2`π. The total number of such j is � n1/2 +O(n5/12). Hence, we have

(2.19)

∣∣∣∣Gt(T ;w)

Gt(T ; z)

∣∣∣∣2 ≤ (1 + cη(1− cos(n−
1
12 ))

)−(n
1
2 +O(n

5
12 ))
� e−cηn

1
14 .

By combining (2.18) and (2.19), we obtain the upper bound for the tail

II � 1

2π

∫
|x|>n−5/7

egt(T ;z)

∣∣∣∣Gt(T ; zeix)

Gt(T ; z)

∣∣∣∣ dx�η e
− c(T )√

n
− cη

2
·n

1
14
.

As Pt(n;T ) = I + II, the proposition follows from this inequality and (2.15).
�

2.2. Proof of Proposition 2.2. For each positive integer n, (2.2) implies that

(2.20) P̂t(n;Tn) =
1

2π

∫ π

−π
(zeix)−nĜt(Tn; zeix)dx =

1

2π

∫ π

−π
eĝt(Tn;zeix)dx,

where ĝt(Tn;w) := Log(w−nĜt(Tn;w)) for 0 < |w| < 1. We aim to locate the saddle point z = e−βn ,
with βn > 0. To this end, we solve

−
∞∑
j=1

t2j

etjβn − 1
+
∞∑
j=1

t2jT jn

etjβn − T jn
+
∞∑
j=1

j

ejβn − 1
= n.

By (2.8) and the definition of α(T ) and εT (n), we obtain we find that

(2.21) βn =

(
π√
6

+
α(T ) + εT (n)

t

)
· n−

1
2 +OT

(
n−1

)
.

Since we have εT (n) = oT (1), it follows that

(2.22) βn =

(
π√
6

+
α(T )

t

)
· n−

1
2 + oT

(
n−

1
2

)
.

We now estimate ĝt(Tn; z), ĝ′′t (Tn; z), and ĝ′′′t (Tn; z). Plugging z = e−βn into ĝt(Tn; z), we obtain

ĝt(Tn; z) = t

∞∑
j=1

log
(

1− e−tjβn
)
− t

∞∑
j=1

log
(

1− T jne−tjβn
)
−
∞∑
j=1

log
(

1− e−jβn
)

+ nβn.

Applying (2.3) to all three terms gives

(2.23) ĝt(Tn; z) =
tπ2

6(tβn − log Tn)
+

1

2
log

(
βn
2π

)
+
t

2
log

(
tβn − log Tn

tβn

)
+ nβn +OT (βn).
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Similarly, by using (2.8) and (2.11) we obtain

ĝ′′t (Tn; z) =

[
n+

π2t3

3(βnt− log Tn)3
+
t− 1

2β2
n

− (t3 + π2t2)

2(βnt− log Tn)2
+

1− t
2βn

+
t2

2(βnt− log Tn)
+OT (βn)

]
e2βn .

(2.24)

By the same argument, thanks to (2.22), we find that

(2.25) ĝ′′′t (Tn; z) = OT
(
(βnt− log Tn)−4

)
= OT

(
β−4
n

)
.

Arguing as in the proof of Proposition 2.1 with (2.22), (2.23), (2.24), and (2.25), we obtain

P̂t(n;Tn) =
eĝt(Tn;z)

2π
·
∫ ∞
−∞

e−
ĝ′′t (Tn;z)x2

2 dx · (1 +OT (n−
1
7 )) =

eĝt(Tn;z)

2π
·

√
2π

|ĝ′′t (Tn; z)|
·
(

1 +OT

(
n−

1
7

))
=

1

2
7
4 3

1
4n
·

√
1√
6

+
γ(T ) + αT (n)

πt

(
πt

πt+
√

6 (α(T ) + εT (n))

) t
2

· eπ
√
n
(√

2
3

+
α(T )+εT (n)

πt

)
·
(

1 +OT

(
n−

1
7

))
.

This completes the proof of the proposition.

3. Proofs of Theorems 1.1 and 1.2

We prove Theorems 1.1 and 1.2 using the method of moments, where the crucial device is the
following classical theorem of Curtiss.

Theorem 3.1 (Theorem 2 of [4]). Let {Xn} be a sequence of real random variables. Then define the
corresponding moment generating function

MXn(r) :=

∫ ∞
−∞

erxdFn(x),

where Fn(x) is the cumulative distribution function associated with Xn. If the sequence {MXn(r)}
converges pointwise on a neighborhood of r = 0, then {Xn} converges in distribution.

Proof of Theorem 1.1. For each n ≥ 1, we consider the rth power moment

(3.1) M(Yt(n); r) :=
1

p(n)

∞∑
m=0

pt(m;n) · e
(m−µt(n))r

σt(n) .

By Curtiss’s Theorem, combined with the theory of normal distributions, it suffices to show that

(3.2) lim
n→+∞

M(Yt(n); r) = e
r2

2 .

By evaluating Pt(n;T ) at T = 1 (i.e. Pt(n; 1) = p(n)) and e
r

σt(n) , we have

M(Yt(n); r) =
Pt(n; e

r
σt(n) )

p(n)
· e−

µt(n)
σt(n)

r
.

Proposition 2.1 gives

(3.3) M(Yt(n); r) =
c(e

r
σt(n) ) ·

(
1 +Oη

(
n−

1
7

))
c(1) ·

(
1 +O

(
n−

1
7

)) · e−
t

2σt(n)
r−µt(n)

σt(n)
r+(2n

1
2−n−

1
2 )·(c(e

r
σt(n) )−c(1))

.
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Since e
r

σt(n) > 0 and e
r

σt(n) → 1, as n→∞, the implied constant can be chosen to be independent of
η. By direct calculation of the dilogarithm function, we find that c(1) = π/

√
6, and

c(e
r

σt(n) ) =
π√
6

+

√
3

2

1

π

(
r

σt(n)

)
+

√
3

2

(π2 − 6)

4π3

(
r2

σ2
t (n)

)
+O

(
r3

σ3
t (n)

)
.

Therefore, (3.3) becomes

M(Yt(n); r) =
(

1 +Or(n
− 1

7 )
)
· e
(
− t

2
−µt(n)+

√
6n
π

)
r

σt(n)
+
√

6n
(
π2−6

4π3

)(
r2

σ2t (n)

)
+Or

(
n−

3
4

)

=
(

1 +Or(n
− 1

7 )
)
· e

r2

2
+or(1).

Letting n→ +∞, we obtain (3.2) confirming Theorem 1.1. �

Proof of Theorem 1.2. To prove Theorem 1.2, we recall that if k > 1 and r < 1/θ, then the moment
generating function for the random variable Xk,θ is (for example, see II.2 of [5])

M(Xk,θ; r) =
1

(1− θr)k
.

This distribution has mean µk,θ = kθ, mode mok,θ = (k − 1)θ, and variance σ2
k,θ = kθ2. If a and b are

real, then the shifted Gamma distribution aXk,θ + b has moment generating function

M(aXk,θ + b; r) = ebr ·M(Xk,θ, ar) =
ebr

(1− θar)k
,

and has mean akθ+b, mode a(k−1)θ+b, and variance a2kθ2. We compare Ŷt(n) with aXk,θ+b, where

(k, θ) :=
(
t−1

2 ,
√

2
t−1

)
, and a := −1 and b :=

√
2(t− 1)/2. Therefore, we assume that (t − 1)/2 > 1,

which is equivalent to t ≥ 4.
To apply Curtiss’s theorem, we compute the moment generating function as in (3.1), with the

claimed mean µ̂t(n) ∼ n/t − (t − 1)
√

6n/2πt, and variance σ̂t(n) ∼
√

3(t− 1)n/πt. Applying Propo-

sition 2.2 with α(T ) := πtr/
√

3(t− 1) and Tn := e
α(T )√
n , we find that

M(Ŷt(n); r) =

(2
7
4 3

1
4n)−1 ·

√
1√
6

+ r√
3(t−1)

·
(

1 +
√

2
t−1r

)− t
2 ·
(

1 +Or(n
− 1

7 )
)

(4
√

3n)−1 ·
(

1 +O(n−
1
7 )
) · e

n
tσ̂t(n)

r− µ̂t(n)
σ̂t(n)

r
.

=
e

√
2(t−1)

2
r(

1 +
√

2
t−1r

) t−1
2

·
(

1 +Or(n
− 1

7 )
)
.

Therefore, Curtiss’s theorem gives Ŷt(n) ∼ aσ̂t(n)Xk,θ + bσ̂t(n) + µ̂t(n), as well as the claimed mean,
mode and variance. To obtain claim (2), we recall that if k > 1, then the Gamma distribution Xk,θ

has cumulative distribution function (e.g. II.2 of [5]) Dk,θ(x) = γ
(
k; xθ

)
/Γ(k), where γ(α;x) is the

lower incomplete Gamma function. �
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