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Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy
memory trace with a prior structure that people impose on the space. Little is known about intraindividual
stability and interindividual variation in these patterns of bias. In the current work, we align recent
empirical and theoretical work on working memory capacity limits and spatial memory bias to generate
the prediction that those with lower working memory capacity will show greater bias in memory of the
location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this
prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some
were consistent with Bayesian models of spatial category use, however roughly half of participants biased
estimates outward in a way not predicted by current models and others seemed to combine these
strategies. These analyses highlight the importance of studying individuals when developing general
models of cognition.
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Memory of an object’s location in space is known to be subject
to systematic distortions. There are many potential sources of bias
in location memory, such as attentional asymmetries (Schurgin &
Flombaum, 2014) and perceptual momentum (Freyd & Johnson,
1987), but the most studied is the perceptual organization that
people impose on space. The common finding is that when par-
ticipants are shown an object and then immediately asked to
reproduce its location from memory, estimates are shifted away
from the outer edges of a defined space and also away from
internal axes of symmetry. According to prominent models such as
the category adjustment model (CAM; Huttenlocher, Hedges &
Duncan, 1991; Huttenlocher, Hedges, Corrigan & Crawford, 2004)
and dynamic field theory (DFT; Simmering, Spencer & Schöner,
2006; Spencer & Hund, 2002), this bias results from a process that
combines information about the stimulus location with information
about the dominant reference frame that people apply to the space.

These and other studies of object-location memory typically use
an analytic approach that combines results from participants and
fits their collective data. Because this approach presumes that the
collective provides a good representation of individuals, it can
potentially lead to conclusions about cognition that do not apply to

individual minds. In fact, little is known about how adults differ in
these patterns of memory bias (but see Holden, Duff-Canning, &
Hampson, 2015, for work on gender differences). Here we exam-
ine spatial memory biases by modeling participants individually,
allowing us to examine the variability in how people structure a
given space and in how they use that structure in memory. We then
examine whether individual tendencies are consistent across hor-
izontal and vertical dimensions of space and across two different
spatial memory tasks. Finally, we investigate whether variability in
spatial memory biases can be accounted for by differences in
working memory capacity and adult age.

A common paradigm in spatial memory experiments involves
showing participants a single object within a bounded spatial
frame and then, after a short delay, asking them to recall its
location. Studies have used a variety of objects and frames, such as
a dot shown within a circle, rectangle, or other shape, an angled
line within a 90° frame, a small toy buried somewhere in a
rectangular sandbox, or a spaceship projected onto a tabletop. In
addition, studies vary in the response procedure used: Participants
respond by marking the location on a piece of paper, by clicking
with a mouse on a computer screen, by pointing to the location in
physical space, or by discriminating whether a new location is the
same or different from the one just studied. Despite the variety of
approaches used, a common pattern of spatial memory bias has
emerged in which estimates are shifted away from the outer edges
of the spatial frame and away from internal axes of symmetry, as
shown in Figure 1.

The two prominent explanations of this bias are the CAM and
DFT. Rather than differentiating them, here we focus on their
commonalities: Both attribute these spatial biases to a combination
of memory for the individual object location and a prior structure
that people impose on the space. In the CA model, the structure is
in the form of spatial categories (i.e., regions) that are bounded by
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the frame’s edges and internal axes of symmetry. The model
proposes that location is encoded hierarchically, at both the par-
ticular and categorical level, and that these two levels are com-
bined in a Bayesian fashion with the category acting as a prior
distribution used to inform the uncertain memory of the particular
location. Although this combination causes estimates to be biased
toward category centers, it also makes them less variable than they
would have been without the categories, and the net effect is to
improve accuracy of reports. In DFT, the structure is provided by
the central midline of the space (or other perceptible features),
which has inhibitory effects on the peak of activation produced by
the target stimulus. This inhibition causes the peak of activation
that was triggered by the stimulus in the excitatory working
memory field to drift away from the midline, biasing estimates
away from it.

An important finding in this literature is that such biases are
more pronounced the longer a stimulus is held in memory, which
indicates that the bias in responses results from postencoding
processes rather than from a bias in perception. Both models
described above account for this finding. In the category adjust-
ment model, longer delays lead to greater particular-level uncer-
tainty, and thus greater weight is given to category information. In
the DFT, the interactions between inhibitory layers and excitatory
layers unfold over time, leading to greater cumulative impacts of
reference-axis-driven inhibition when delays are longer, thus in-
creasing the delay selectively changes the representation of the
stimulus but not the structuring of the space.1 Drawing on these
accounts, we conceptualize location estimates as the product of an
assembly of information sources, including a noisy memory trace
and a spatial organization. We model these sources respectively as
a Gaussian distribution centered on the true stimulus location and
as normally distributed categories centered on the midpoint of each
screen half, and we adopt the Bayesian mandate that more weight
is given to the categories when the memory trace is less precise,
thus producing more bias.

CAM and DFT have mostly been applied to data aggregated
across individuals and not used to investigate individual differ-
ences. However, both models are properly models of intraindi-
vidual processes such as memory encoding, decay, and retrieval of
spatial location. If individuals differ with respect to these pro-
cesses, they will have different outcomes, and aggregating across
individuals may lead to misleading conclusions (cf. Baloff &
Becker, 1967). In fact, these models can be used to generate
predictions about individual differences that have not been tested.
Specifically, if bias results from the combination of prior structure
with imprecise memory, then bias in spatial memory should be
predicted by individual-difference variables that are theoretically
related to memory precision. Here, we examine two such variables,

age and working memory capacity, by reanalyzing a data set that
Siedlecki and Salthouse (2014) previously reported. Noting that
measures of verbal memory are commonly included in cognitive
batteries, but measures of spatial memory are not, Siedlecki and
Salthouse introduced a location memory task as part of a large
scale study of cognitive aging. Whereas their focus was on spatial
memory accuracy, here, we separate out two components of re-
sponses, precision and bias, in order to examine their connection to
working memory and age.

In addition to testing whether working memory and age predict
precision and bias, a second goal of this work is to characterize
individual variation in spatial memory bias. The implicit assump-
tion in prior work has been that the group mean well represents the
behavior of individuals. Such an approach ignores the potential for
diversity in the cognitive strategies individuals may adopt. Here,
we model participants individually and find that a substantial
proportion of them show a systematic bias that is not well char-
acterized by either DFT or CAM.

Working Memory Capacity Limits

As noted above, one way to examine the relation between
precision and bias in spatial memory is to manipulate precision by
varying the duration for which a location must be held in memory
(e.g., Hund & Spencer, 2003; Huttenlocher et al., 1991). That
approach treats variation between individuals as noise. The present
study takes an alternative, complementary approach by examining
whether precision and bias are accounted for by natural variation
in the availability of cognitive resources. Specifically, we predict
that those who perform worse on measures of spatial working
memory capacity (SWMC) will tend to have less precision in
memory and thus greater bias in responses when estimating a
single location.

Working memory capacity is the ability to maintain information
about the locations of objects that are no longer present, and it is
usually assessed with tasks that require participants to retain in-
formation about multiple objects simultaneously. There is ample
evidence that most people struggle when the number of items
exceeds four (e.g., Luck & Vogel, 1997), and some have charac-
terized this limitation as reflecting a fixed number of “slots” in
visual working memory (Cowan, 2001; Luck & Vogel, 1997).
According to classic slot models, each slot has a fixed resolution
and holds a discrete, all-or-none representation, and capacity limits
become apparent when the number of items to be remembered
exceeds the number of available slots. By such accounts, remem-
bering a single location is well within normal capacity limitations,
and so there is no reason to predict that precision on this task
would be related to measures of working memory capacity. How-
ever, more recent accounts do predict this relationship. For exam-
ple, updated slot models such as Zhang and Luck’s (2008) “slot �
average” model allow that when remembering very few items,
greater precision can be achieved by allocating multiple slots to
code an individual item. Resource models (Bays & Husain, 2008;
Bays, Wu, & Husain, 2011; Fougnie, Asplund, & Marois, 2010)

1 We note that some psychophysical models based on Stevens’s power
law have also proposed to account for biases in spatial estimation (e.g.,
Barth, Lesser, Taggart, & Slusser, 2014; Hollands & Dyre, 2000), but they
do not account for the effect of longer delays on bias.

Figure 1. Schematic diagram of biases in the V-frame task from Enge-
bretson and Huttenlocher (1996) and the rectangular frame from Hutten-
locher, Newcombe, and Sandberg (1994).
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and DFT (Johnson, Simmering, & Buss, 2014; Simmering &
Perone, 2012; Spencer, Perone & Johnson, 2009) hold that the
resource of working memory can be flexibly allocated to remem-
ber fewer objects with greater precision or more objects with less
precision: Individuals who have more of this resource will perform
better on measures of capacity and on measures of precision. The
map-architecture account of SWMC from Franconeri and col-
leagues (e.g., Franconeri, Alvarez, & Cavanagh, 2013) suggests
that being able to maintain more precise location information in
memory produces the ability to store more simultaneous object
locations in memory, that is, that precision gives rise to greater
capacity, specifically in the spatial domain (see also Lavenex,
Boujon, Ndarugendamwo, & Lavenex, 2015). Thus, with the ex-
ception of the classic slot models, several models of visual work-
ing memory capacity predict that people who are able to hold more
items in memory simultaneously will also be able to remember a
single location more precisely.

Combining Capacity Limits With Memory Bias

Recent models of working memory capacity share the prediction
that the number of locations that can be simultaneously maintained
in working memory is related to how precisely an individual
location can be maintained (see Figure 2). In turn, CAM predicts
a relationship between the precision of an individual’s memory for
an item and the bias in their location memory, because CAM treats
bias as the result of a rationally weighted combination of inexact
memory and category information in which categories compensate
for the noise in memory. If these two relationships hold, we can
generate a new, previously untested prediction that those with
lesser working memory capacity will also tend to show greater bias
in memories of location (Figure 2, double arrow).

Although this prediction is directly motivated by the CAM, DFT
could also be implemented in a way that would account for this
result. According to DFT’s spatial precision hypothesis, low work-
ing memory is associated with more diffuse regions of activation
around the target location in the field that represents spatial work-
ing memory. All else being equal, this greater diffusion would
produce more bias in estimates because a larger proportion of the

activation region would be near to the reference frame and thus
subject to its inhibiting effects. However, the spatial precision
hypothesis also suggests that with lesser SWMC the reference axis
itself would produce more diffuse activation in working memory,
and thus it would have weaker inhibitory effects. Thus, it is not
obvious that DFT would generate the same prediction as CAM
about the relationship between bias in location memory and mea-
sures of SWMC, but it could account for such a relationship by
allowing the reference axes to be less susceptible than the target
peak to the increases in diffusion that would stem from lower
working memory capacity.

Another reason to predict a link between working memory
capacity and spatial memory bias is that those with greater work-
ing memory capacity (WMC) are better able to control attentional
focus (cf. Kane, Poole, Tuholski, & Engle, 2006; Bleckley, Durso,
Crutchfield, Engle, & Khanna, 2003) and better able to maintain
information in an active state across a delay and despite distractors
(Unsworth & Engle, 2007). These conclusions are drawn from
studies that use nonspatial measures of WMC such as operation
span tasks, and they point to a general cognitive tendency rather
than one that is specifically spatial. Assuming that a general
difficulty maintaining information also applies to the maintenance
of location, this would suggest that those performing worse on
both spatial and verbal working memory tasks would have less
precision and more bias in memory for location. To our knowl-
edge, this has not been studied, but Siedlecki and Salthouse (2014)
showed that accuracy on a simple location memory test is pre-
dicted by fluid intelligence, which is highly related to WMC (see
Salthouse, Pink, & Tucker-Drob, 2008), and suggested that this
may be because fluid intelligence is related to general aspects of
attention allocation. The present work builds on this finding by
modeling precision and category use as components that contribute
to accuracy and by examining the relation between these compo-
nents and measures of working memory capacity.

Regardless of whether greater spatial precision leads to greater
SWMC or vice versa, there is reason to expect that those with
lower SWMC will store individual object locations less precisely.
To the extent that people use spatial structure to adjust for inexact
memory, they would also be expected to show more pronounced
biases.

The Current Study

The work presented here is a new analysis of data that was
collected previously as part of a large study (n � 778) of cognitive
aging (see Siedlecki & Salthouse, 2014). In addition to assessing
adults on a variety of cognitive and emotional factors, the study
included two spatial memory tasks. One had participants remem-
ber the location of a single dot at a time, and so was much like the
tasks used in previous research to examine spatial memory biases,
and the other involved a more challenging version in which par-
ticipants were asked to retain three successive locations in mem-
ory. Although these tasks were designed originally to examine
relations between cognitive functioning and spatial memory accu-
racy (see Siedlecki & Salthouse, 2014), the dataset also provides a
unique opportunity to explore individual differences in spatial
memory bias and precision.

There was a wide range of age in our sample, allowing us to
examine whether advancing age may also lead to increased reli-

Figure 2. The basic logic of the current paper combines recent findings
of a relation between precision of memory for a single item and capacity
limits with the relationship between precision and spatial memory bias, to
newly predict a relationship (double line) between working memory ca-
pacity limits and spatial bias. MAP � map architecture; DFT � dynamic
field theory; CAM � category adjustment model.
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ance on category structure. Prior studies present mixed evidence
for this prediction. Some studies have shown that although keeping
track of multiple objects becomes more challenging as people age,
memory for an individual location or small number of locations is
relatively preserved (e.g., Olson et al., 2004; Noack, Lövden, &
Lindenberger, 2012). In their analysis, Siedlecki and Salthouse
(2014) found no effect of age on spatial memory accuracy once
other cognitive factors have been taken into account. However,
according to the “neural noise hypothesis” (Welford, 1984), aging
is associated with increased noise in neural signaling, leading to
less precise perceptual and memory representations. Consistent
with this claim, Peich, Husain, and Bays (2013) examined preci-
sion of recall for single features (color or orientation) of an
individual object and found that even when remembering only one
object, estimates were less precise among older adults than
younger ones. If memory for an individual object’s location is also
less precise in older adults, they may also be expected to give more
weight to category biases, and thus show increased bias in spatial
memory.

Method

Participants

Participants consisted of 778 adults between the ages of 18 and
92 years (M � 54.7, SD � 14.5), recruited through flyers, news-
paper ads, and participant referrals.

Procedure

Participants completed two location memory tasks on computer
screen with resolution 640 � 800 pixels per inch. In the single-dot
task, each trial began with a crosshair appearing in the center of a
white screen for 500 ms followed by a dot (14-pixel diameter),
which appeared for 1,000 ms at a randomly selected location on
the screen. The screen color in the background of the dot varied
randomly between green, yellow, and cyan, and participants were
told to ignore the color for this task. The dot was followed by a
400-ms mask of moving dots on a white background, after which
the screen returned to the color it had been during dot presentation
and participants used the cursor to reproduce the dot’s location. In
the multidot version of the task, three successive dots were shown,
each with a different colored background and each followed by the
400-ms mask. Participants were then given a blank screen in one
of the three colors, randomly chosen, and told to click on the
location where the dot had appeared on the screen of that color.
Thus, the multidot task differs from the single-dot task not only the
number of items to be recalled, but also in that it requires binding
of location to screen color.

Participants completed many other tasks as part of the original
study, but here we restrict our focus to two measures of working
memory capacity, one spatial and one verbal, described in Salt-
house et al. (2008) and Salthouse (2011). Spatial working memory
capacity was assessed with a running span task in which partici-
pants viewed a series of marked locations in a 12-square grid, as
shown in Figure 3. The locations to be remembered were indicated
by a large red dot that appeared within one square at a time for one
second followed by a 250-ms interstimulus interval. The sequence
of locations varied unpredictably in length from four to 12 items,

and once it ended, participants used the mouse to click on the
locations of the last four items seen, in their correct order. Verbal
working memory capacity was assessed with a similar running
span task, except that rather than seeing a sequence of locations,
participants viewed sequences of letters. Performance in both tasks
was assessed as the proportion of items recalled in the correct
order from the last four items in the lists.

Analyses and Results

Analytical Approach and Model Checks

We employed continuous model expansion as an analytic tech-
nique in developing our final data model (Gelman, Carlin, Stern, &
Rubin, 2014). In this process, one begins with a simple model of
the data, and develops more general models that contain the simple
model as a special case, iterating this process until the data is
adequately captured for the present concerns of the modeling
activity (see Appendix for more details). Bias data from both the
single-dot and multidot tasks are shown in Figure 4. Bias is the
signed difference between the location of the stimulus position and
the location of the response position, in pixels. In the horizontal
dimension, positive bias indicates a rightward shift and negative
bias a leftward shift; in the vertical dimension, positive bias
indicates an upward shift and negative bias a downward shift. The
results in Figure 4 are consistent with previously published find-
ings: Estimates are biased away from the outer edges of the screen
and away from the horizontal and vertical axes of symmetry.
Because the overall pattern fits reasonably well the predictions of
the category adjustment approach we began analyzing our data
with a straightforward category adjustment model, predicting nor-
mally distributed memory traces, and normally distributed catego-
ries at the midpoint of each screen side. An important parameter in
this model is the category weight: Responses are a weighted
average of the stimulus memory trace and the nearest category.
The category weight is the proportion of the response contributed
by the category: A value of 1 reflects moving each dot fully to the

Figure 3. A sample stimulus from the running span measure of spatial
working memory capacity. See the online article for the color version of
this figure.
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center of the category (e.g., the midpoint of the left and right
screen halves), 0 indicates no use of the category at all, and 0.5
reflects responses that on the whole average the position of the
central category and the actual dot location. Full details of this
approach are provided in the Appendix.

However, this approach did not provide an adequate fit to the
data; in the category adjustment approach, the midpoints of the left
and right sides of the screen are presumed to be the central
members of the category, and so should show no bias. As can
be seen in Figure 4, in this experiment the actual unbiased
points (i.e., the locations toward which estimates are biased) are
not at the screen-half centers (values �25 and 25 on the x-axis),

but are shifted outward toward the screen edges in at least three
of the four cases. Furthermore, examination of data from indi-
vidual participants indicated that while some participants
matched closely the predictions of the category adjustment
account, many did not. Indeed, some participants appeared to
systematically shift all responses toward the screen’s outer
edges.

In the DFT model of spatial memory, bias has been character-
ized as repulsion from the midline reference axes rather than
toward category prototypes, and so at first glance it might seem
that DFT would offer a better account than CAM for the system-
atic outward bias we observed here. However, there are two

Figure 4. Aggregated participant bias against horizontal spatial position. Although a clear category effect is
apparent in both the single-dot (top) and multidot tasks (bottom), in both cases responses are systematically
biased outward from the predictions of the pure category adjustment model.
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reasons why DFT also does not easily account for this bias. First,
the DFT predicts that the repulsion away from the midline will be
greatest for locations near the midline and will fall off as distance
from the midline increases, but the outward bias we observe does
not have this characteristic. In fact, it appears that outward bias is
constant or increasing with distance from the center, and this
pattern is inexplicable under both CAM and DFT. In addition, we
note that under DFT, the outer edges of the screen would also be
expected to have repulsive effects. In fact, because they are visibly
present features, they might be expected to have even stronger
repulsive effects than the midline structure, which is not visibly
marked (Simmering & Spencer, 2007), and that should produce a
countervailing inward bias, especially for stimuli in the outer
region of the space.

To capture this systematic outward bias in the model, we added
an additional feature, which we term a fixed outward bias. Each
response combines, in some fitted proportion, a memory trace that
is systematically shifted from its true location by the fixed outward
bias factor and which has some degree of precision (i.e., lack of
variability), along with a corrective bias derived from category
adjustment. In addition, we employed weighted categorization
near the screen center, to account for the roughly 20% of the screen
in which bias is weaker than the simplest CA model would predict.
This weighting comes from the relative probability of each of the
categories based on their variance (see Appendix for details) and
did not involve any additional parameters.

This combined model was evaluated by nested model compar-
ison. Specifically, we conducted two chi-squared model compar-
isons using the fit of each model to each individual as a single data
point, comparing the combined model to two simpler nested mod-
els: one that included only the fixed outward bias and one that
included only the category weight. Across participants, the mixture
model significantly improved fit over both simpler models, versus
CAM: �2(757) � 2,337, p � .00001; versus fixed outward bias:
�2(757) � 3,257, p � .00001. Of course, because the mixture
model contains the other models as special cases, the mixture
model fit best for each subject. To account for this, we chose the
best model for each individual based on Bayesian information
criterion values. The model with the lowest Bayesian information
criterion value was CAM for 40% of subjects, the pure outward
model for 39%, and the mixture model for the remaining 20% of
participants. Although this provides a concise way report the
variety of strategies participants use, in our analyses we do not
classify people trichotomously because the actual parameter fits
were relatively unimodal (see Figure 7). For analysis, we used
model fits from the mixture model for all participants. The final
model residual was considered acceptable (see Figure 5). See the
Appendix for a detailed mathematical description of the resulting
model.

Data from each participant was fitted to this model, separately
for the single-dot and multidot tasks, and also (to provide an
estimate of reliability) the horizontal and vertical dimensions. For
each participant, we examined three of the resulting parameters:
memory precision (i.e., the lack of variability in the memory
trace), category weight, and fixed outward bias. It should be noted
that our measure of memory precision differs from the response
accuracy measure examined in earlier work (Siedlecki & Salt-
house, 2014) in that it is a model-derived parameter representing
one theoretical determinant of accuracy. That is, we treat memory

precision, category weight, and the fixed outward bias factor as
components that combine to produce responses, and thus each can
contribute to response accuracy. Throughout what follows, we
used a Monte Carlo approach to compare tasks and estimate
individual differences parameters. For each test (using general
linear models or differences in means), we created 10,000 random
resamplings of the original data, and compared our difference
against those created by the Monte Carlo simulations to estimate
the probability of the obtained results under the null hypothesis.

Before addressing variation between individuals, we first verify
that the data aggregated across individuals is consistent with
findings from prior work. Specifically, precision should decrease
and category weight should increase the longer a stimulus is held
in memory. Because the multidot task presented three stimuli in
succession, the first dot in the series has the longest retention
interval and the third dot has the shortest, and indeed, Siedlecki
and Salthouse (2014) reported that overall error was greatest for
the first dot and least for the third. By analyzing separate sources
of error, we show that this effect is captured by increased category
weight and decreased precision for locations presented earlier in
the sequence (see Table 1). In other words, the overall pattern of
bias shown in Figure 4 is more pronounced for dots that appeared
earlier in the sequence, as shown in Figure 6. We also note that the
single-dot task, which Siedlecki and Salthouse showed was per-
formed more accurately than the multidot task, showed overall
greatest precision and least category weight. Table 1 also shows
that the fixed outward bias is greater with longer retention inter-
vals.

Variability Across Individuals

Our first goal was to examine the degree to which individuals
differ from each other in their spatial memory performance. Al-
though aggregate behavior reflected some mixture of a constant
bias (typically outward) and category adjustment, individual par-
ticipants behaved quite differently from one another. To illustrate,
we consider horizontal bias in the single-dot task. Figure 7 presents
estimates for individual participants of category weight and fixed
outward bias. Recall that for estimated category weight, a value of
1 reflects moving each dot fully to the center of the category (e.g.,
the midpoint of the left and right screen halves), 0 indicates no use
of the category at all, and 0.5 reflects responses that on the whole
average the position of the central category and the actual dot
location. For the fixed outward bias factor, values greater than 0
indicate outward bias and values less than 0 indicate inward bias.
As is apparent from Figure 7, increased category use weakly
negatively correlated with fixed outward bias, r � �0.22, p �

Table 1
Fitted Parameters by Task and Dot

Task

M [95% CI]

Precision Category weight Fixed outward bias

Multidot 1 .16 [.16, .17] .18 [.17, .19] 2.90 [2.65, 3.13]
Multidot 2 .19 [.18, .20] .18 [.17, .20] 1.67 [1.43, 1.88]
Multidot 3 .27 [.26, .28] .16 [.15, .17] .77 [.60, .94]
Single dot .61 [.59, .63] .04 [.03, .04] .40 [.35, .44]

Note. CI � confidence interval.
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.0001. Qualitatively, several different patterns emerged. A few
participants showed a systematic inward bias (circle); more
showed a systematic outward bias (diamond). A few showed
more-or-less typical category adjustment behavior (square) only.
Other participants (triangle), in our analysis, seemed to combine
these two strategies.

Participants responding with a generally systematic inward bias
have sometimes been thought of as adjusting toward a single
central category, such as in young children (Huttenlocher New-
combe & Sandberg, 1994). This is a plausible explanatory account
of the behavior of participants such as the red circle, but is not
included in this model directly because it cannot be practically
distinguished from an inward fixed bias (that is, a fixed bias value
less than 0).

Reliability of the Fitted Parameters

We next examined the reliability of the parameters of interest
within individuals. Specifically, we examined whether perfor-

mance in the horizontal dimension was correlated with perfor-
mance in the vertical dimension. Although these responses are in
principle independent, the underlying cognitive constructs are not.
In particular, memory precision would be predicted to be consis-
tent across dimensions. In addition, we assessed intraindividual
correlations between the single-dot and multidot tasks. This model
fits four parameters to each individual’s behavior with both the
single and the multidot tasks, with only 40 unique data points per
model fit. Although the model is fairly well-constrained, and only
three of those parameters are of interest here, we nevertheless
considered it important to estimate the reliability of these fits.

As Table 2 indicates, memory precision is highly consistent
across dimensions within a given task. Not surprisingly, individ-
uals who were estimated to have greater memory precision in the
horizontal dimension were estimated to have greater memory
precision in the vertical dimension, with correlations around .8
within each version of the task. There are also moderately high
(i.e., above .5) correlations between the memory precision param-

Figure 5. Plot of residuals from final fitted model. As can be seen, the model residuals are quite flat across the
range of stimuli, consistent with noise in individual judgments. Slight deviations include an s-shaped residual
near the screen center and skew at the boundaries. Perhaps the most salient structure is the diagonal line running
approximately through the center of the screen in all four plots. This seems to represent trials in which a
participant simply placed responses near the center of the screen. Although visually salient, these patterns formed
a small proportion of overall trials.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1440 CRAWFORD, LANDY, AND SALTHOUSE



eters estimated from the single-dot task and those estimated from
the multidot task, suggesting a common feature of memory preci-
sion across the two tasks.

The model integrates the precision of memory and the presumed
category structure to create an estimated overall level of categor-
ical bias. This bias is a proportion, reflecting the proportion of the
distance between the stimulus and the category by which
the response are deformed. A category bias of 1 reflects using just
the category when making responses, while a category bias of 0.5
reflects averaging the stimulus location and the category. Table 2
reports the correlations across dimensions and tasks for this pa-
rameter. Although correlations were lower than for precision (re-
flecting, perhaps, variability in category structures), the same
patterns held as in the other parameters, with cross-task correla-
tions ranging from .23 to .36.

Fixed outward bias was also estimated in all four data sets. Less
is known about the sources and modulators of this bias, so we did
not have strong predictions about how it would change across task
or direction. As shown in Table 2, all four estimates were posi-
tively correlated, and were statistically significant. However, the
actual correlations were relatively low between tasks (ranging
from .19 to .31), suggesting that people may have adopted some-
what different strategies for the single and multidot tasks (cf.
Crawford & Jones, 2011).

Individual Differences in Dot Location Bias

Because of the positive correlations across dimensions, and
because we did not have any strong predictions about task dimen-

sions, we collapsed the vertical and horizontal direction fit param-
eters for each task into a single average measure for analyses of
individual and task differences.

Individual difference patterns were assessed by applying linear
models to the results of the parameter fits. Because one parameter
set was fitted to each individual, parameter fits can be used as a
measure, in the same way that using the mean of a set of response
times can be taken as extracting the parameter of a best-fitting
normal model. Here, we consider how memory precision, category
weight, and fixed outward bias factor are predicted by several
particular individual parameters: spatial working memory, verbal
working memory, and age.2 For the multidot task, we also included
as a predictor the relevant parameter estimate from each partici-
pant’s performance in the single-dot task in order to determine
whether our predictors account for variance that is unique to this
more complex task. Because distributions of the parameters cannot
be regarded as normal, we evaluated statistical significance in
these models using a bootstrap analysis with 10,000 replications
per model. Because we evaluated four potential predictors across
three dependent measures for each parameter of independent in-
terest, we used a Bonferroni correction for each analysis, so that a
test was considered significant at the 0.05 level if the probability
was less than 0.0042. These results are presented in Table 3.

The results in Table 3 show that memory precision is significantly
predicted by scores on a spatial working memory task in both the
single-dot (.35) and multidot (.39) tasks, as shown in Figure 8. The
finding is especially interesting in the single-dot task because a single
location is well within the capacity of most people. With precision on
the single-dot task accounted for, SWMC accounts for additional
variance in the multidot task, which more closely resembles tasks
used to assess SWMC. In addition, although prior work suggested that
age would have little relationship to memory precision when only one
location was to be remembered, here, we find a small but significant
effect of age for that task (–.12).

We predicted that those with lesser SWMC would show greater
reliance on spatial categories when estimating locations. This effect
emerges with small but significant correlations between SWMC and
category weight in both the single-dot (�.24) and multidot tasks
(�.32; see Figure 9). Once spatial working memory is taken into
account, age and verbal working memory did not significantly predict
further variance in most cases, suggesting that this finding may be
specific to spatial working memory. However, the correlation be-
tween spatial and verbal working memory capacity was .53 and both
correlated with age (–.35 and �.26, respectively), making it difficult
to make definitive conclusions about specificity of mechanism.

Results for the fixed outward bias factor were smaller and
less consistent. In the single-dot task, there was a small but
significant effect of age (�.11), suggesting that increased age
was associated with a smaller tendency to shift estimates out-
ward. In the multidot task, those with higher SWMC tended to
show decreased fixed outward bias (–.31). The pattern could
suggest that, like category-based adjustment, fixed outward bias
is something people engage in more when memory capacity is

2 We initially also looked at gender because Holden et al. (2015)
reported that women may show stronger category biases than men. How-
ever, we found that gender accounted for negligible additional variance
beyond age and the two working memory measures, so we dropped it from
the analyses.

Figure 6. Rightward bias in responses by horizontal distance from screen
center, separated by task and dot number. As can be seen, not only does
overall error decrease for later dots compared to earlier dots, the systematic
bias (the slope of the descending line) decreases as well. For the single-dot
case, bias is much smaller than any multidot case. See the online article for
the color version of this figure.
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limited, however, the inclusion of a fixed outward bias param-
eter is novel, and caution is recommended in interpreting
individual-difference patterns at this point.

Here, we have assumed that precision is the common factor
between the location memory task and the running span mea-
sure of SWMC, and that the lack of precision gives rise to bias
in location memory. However, another possibility is that it is
the bias that we observe in location memory also influences
performance on the running span task. This seems unlikely
because the tasks use very different kinds of displays and
responses: In the location memory tasks, a response dot can be
placed anywhere on the screen, and the only visibly present
structure is the edge of the screen. In the running span task (see
Figure 3), the screen shows a grid with 12 bounded response
boxes and participants are asked to indicate in which box a dot
had appeared, not to remember the location of the dot within the
box. However, it is possible that there are systematic biases in
the running span task that are ignored by scoring the task in
terms of overall accuracy, and it is possible that those who show

outward bias on one will tend to show outward on the other. To
assess this, we analyzed the kinds of errors made to the four
central squares in the running task. For each instance in which
a square was selected that was adjacent to the correct square, we
coded it as either a horizontal outward error, a horizontal
inward error, a vertical outward error, or a vertical inward error.
For example, for the stimulus location shown in Figure 3, a
response in the box above it was coded as a vertical outward
error, a response in the box below it was coded as a vertical
inward error, a response in the box left of it was coded as a
horizontal outward error, and a response in the box to the right
of it was coded as a horizontal inward error. Overall, we found
no outward or inward bias in responses. The number of outward
horizontal errors per participant, M � 1.04, 95% confidence
interval [CI] [0.96, 1.11], was comparable to the number of
inward ones, M � 1.01, 95% CI [.93, 1.09], and the number of
outward vertical errors, M � 1.42, 95% CI [1.33, 1.51], per
participant was comparable to the number of inward ones, M �
1.44, 95% CI [1.35, 1.53]. In addition, the degree of outward
bias for each participant on the running span task did not
correlate significantly with model parameters from the location
memory task (all correlation coefficients between �.05 and
.08). Thus there is no evidence that the correlations we observe
between SWMC performance and location memory perfor-
mance are due to a common underlying bias in spatial memory.

Discussion

Previous studies that have examined how age or cognitive
constructs relate to spatial memory have usually examined error
in responses, calculated as the distance from stimulus to re-
sponse (e.g., Lavenex et al., 2015; Olson et al., 2004; Siedlecki
& Salthouse, 2014). The present study takes a different ap-
proach in that it conceptualizes responses as the product of an
assembly of information sources, including a noisy memory
trace, a spatial organization, and an additional fixed bias. Here
we model those components and examine how individuals
differ with respect to these parameters and what factors may
predict those differences. We find that SWMC predicts category
bias and precision: Those with higher spatial working memory
scores tended to have less category bias and greater precision in

Table 2
Correlations Between Tasks and Spatial Dimensions for Memory
Precision, Fixed Outward Bias, and Category Weight

Model parameter
Single

horizontal
Single
vertical

Multiple
horizontal

Multiple
vertical

Memory precision
Single horizontal 1 .79��� .55��� .50���

Single vertical 1 .54��� .52���

Multiple horizontal 1 .80���

Multiple vertical 1
Fixed outward bias

Single horizontal 1 .54��� .31��� .19���

Single vertical 1 .21��� .28���

Multiple horizontal 1 .51���

Multiple vertical 1
Category bias

Single horizontal 1 .48��� .27��� .25���

Single vertical 1 .23��� .36���

Multiple horizontal 1 .34���

Multiple vertical 1

��� p � .001.

Table 3
Individual Variable Predictors of Model Parameters

Measure M 95% CI

Predictor (standardized �)

Spatial
capacity Age

Letter
capacity

Single-dot
parameter

Memory precision
Single dot .61 [.59, .63] .35��� �.12� .06 N/A
Multidot .17 [.17, .18] .39��� �.04 .14�� .37���

Category weight
Single dot .05 [.05, .056,] �.24��� .10 .04 N/A
Multidot .15 [.137, .155] �.32��� .03 �.07 .29���

Fixed outward bias
factor
Single dot 1.02 [1.01, 1.02] �.10 �.11� �.05 N/A
Multidot 1.14 [1.13, 1.16] �.31��� �.03 �.08 .30���

Note. CI � confidence interval; N/A � not applicable.
� p � .004. �� p � .0008. ��� p � .00008.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1442 CRAWFORD, LANDY, AND SALTHOUSE



spatial memory. Verbal WMC was a much weaker predictor,
suggesting that these findings do not reflect a domain general
ability to deploy and maintain attention but instead are rela-
tively specific to spatial information.

The finding that SWMC predicts bias in location memory is
predicted by a combination of models that treat SWMC as an
allocatable resource with the category adjustment model of
spatial memory. According to the optimal Bayesian weighting
embedded in CAM, categories are weighted more heavily, and
thus estimates are more biased, when memory is less precise.
As noted in the introduction, a relation between precision and
storage capacity is predicted by many models of SWMC, such
as resource models (e.g., Bays & Husain, 2008; Bays et al.,
2011; Fougnie et al., 2010), updated slot models (Zhang &
Luck, 2008), the map-architecture account from Franconeri and
colleagues (e.g., Franconeri et al., 2013), and a recent model
from Lavenex and colleagues (2015). The literature on SWMC
limits and on bias in location memory has been largely separate
even though both invoke the same theoretical construct of
memory precision, and the connection between these invoca-
tions of precision has been unexamined. Integrating these lit-

eratures generated a novel prediction that bias patterns in loca-
tion memory would be related to capacity limits. The
verification of this prediction confirms that these literatures are
addressing related notions of precision and suggests the possi-
bility of integrated models that combine capacity limits and
rational Bayesian adjustment strategies.

The results presented here validate the core assumption of the
CAM that category use is proportional to memory precision and
establish this effect at the level of individual participants. This
is shown by the good fits obtained by including individual-level
parameters for category use and memory trace precision in the
model, by the correlations between those parameters among
spatial dimensions and across different versions of the task, and
by the finding that the values on these parameters are predicted
by measures of an individual’s SWMC. The relation between
category use and precision also emerges in group-level data by
the finding that category use is greater and precision less in the
three-dot version than in the single-dot version of the task, and
by the finding that within the three-dot version, category use is
greater for dots held in memory longer.

Figure 7. Parameter estimates for individual participants (top), along with response patterns of a few selected
representative individuals (bottom four panels). As can be seen, behavior patterns of individuals are systematic
and variable, with some individuals showing much less use of the categories than others, and showing different
patterns of inward or outward bias. See the online article for the color version of this figure.
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However, the results also show that there is another source of
bias in estimates that is not anticipated by the CAM. We
accounted for this by including a fixed outward bias factor to
capture the tendency to systematically shift estimates inward or,
more commonly, outward. Visual examination of the data re-
ported by earlier studies on spatial memory biases suggests a
general tendency for outward bias (Huttenlocher et al., 1994;
Crawford & Duffy, 2010), but in most cases, has not been
explicitly addressed (but see Barth, Lesser, Taggart, & Slusser,
2015). To our knowledge, there is not a compelling theoretical
explanation for why estimates would be biased further away
from an invisible, subjectively imposed internal boundary than
from the actually visible edges of the spatial frame. This out-
ward bias is reminiscent of caricature effects in the categoriza-
tion literature (Goldstone, 1996), which would suggest that
spatial memory may be affected by idealized extremes of left
and right, top and bottom (cf. Crawford, Landy, & Presson,
2014). Our finding that fixed outward bias is related to working

memory capacity in challenging versions of the dot location
task, and that it is correlated with category weight, may help to
provide a starting point for investigating this bias. Also, we note
that the same basic pattern of outward bias emerges in other
tasks that rely on spatial placement of responses, such as
placing numbers along a number line (Landy, Charlesworth, &
Ottmar, 2014). To the extent that space is used to represent
other concepts, such as number and quantity, we might expect
performance on those tasks to be predicted by the same indi-
vidual differences that predict bias in spatial memory.

Investigations of individual differences can serve as a useful
complement to the experimental research on spatial memory bi-
ases. Rather than taking the variability between individuals and
throwing it into the error term (Eysenck, 1997), we can use it to
test predictions generated from cognitive theories. As we seek to
understand the component processes that give rise to spatial mem-
ory bias and other memory phenomena, the natural variation
between people can steer the development of theory and ensure

Figure 8. Working memory and estimated precision. See the online article for the color version of this figure.

Figure 9. Overall bias patterns for single-dot and multidot tasks, separated by those scoring higher versus
lower than the group average on the spatial working memory capacity. See the online article for the color version
of this figure.
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that the conclusions we draw about cognition on the whole also
apply to individual minds.
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Appendix

Details of the Mathematical Model

We modeled participant behavior as the interaction of three
parameters: memory precision (	), category precision (c), fixed
outward bias (f). The first thing that happens, after a stimulus is
presented and observed, is that a memory for the stimulus item is
constructed. This memory is imperfectly precise, and we capture it
as a truncated normal distribution with variance 1/	, and truncation
at the screen boundary. We assume that fixed outward biasing
happens very early in processing (Crawford et al., 2014), so that
the mean of the memory distribution for a stimulus located at
position x is sx (see Figure A1). However, fixed bias and trunca-
tion were independent.

We assumed that people treated stimuli as being generated by
two normally distributed categories: one on each side of the
(unidimensional) space (see Figure A2). These categories had

variance 1/c. These left- and right-side categories were centered at
the midpoints of each side (we call this position h, for halfway),
and had a fitted precision which varied across participants, tasks,
and dimensions. The more precise the category, the more infor-
mative, and the more Bayesian reasoning mandates using the
categories. How people construct categories to reflect spatial dis-
tributions is a topic of general interest, but was not central to the
investigation here. Worth noting, however, is that the actual stim-
uli were uniformly presented within the interior 85% of the screen,
not by normally distributed categories.

(Appendix continues)

Figure A1. Effect of outward bias on memory trace. Outward bias sys-
tematically moves the mean of the trace distribution outward by a fixed
amount. It does not alter the shape of the distribution. See the online article
for the color version of this figure.

Figure A2. Summary of the category adjustment component of the
model. Responses are adjusted away from the (already biased by fixed
outward bias) stimulus location, in the direction of the nearest category,
through a weighted average of the mean of the two distributions. Category
weighting is increased by precise categories, and decreased by precise
spatial memory traces. Near the midline of the screen, the stimulus is
adjusted toward both categories, weighted by the proportion of the memory
trace that is best-fitted by each category. See the online article for the color
version of this figure.
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When both category and memory representation are normal, the
theoretically optimal balance of categorical and instance informa-
tion is given by the normal-normal model (Huttenlocher, Hedges,
& Vevea, 2000). The result is a normal distribution with mean

M � bh � �1 � b�x � f �x�
x (1)

where b is the category bias, given by

b � c
c � �

(2)

and the fraction serves to set the sign of the fixed bias, f.
The precision of the resulting normal is given by

p � � � c (3)

We assumed that people sampled form this normal distribution
to general the given responses. We assumed that people assigned
an item to a category by sampling the memory distribution. If the

sample was left of center, the category was assumed to be left, and
otherwise, right. As a result, the probability of correct classifica-
tion is equal to the proportion of the memory distribution that is on
the correct side of the screen. When an item is miscategorized, it
biases toward the far category. Thus, items in the middle are
expected to show less mean bias than items closer to category
centers.

Close examination of the residuals reveals some remaining
systematic structure near the midline, and near the edges of the
screen. This residual structure suggests that the current model is
imperfectly capturing behavior, though it dramatically improves
over the pure outward bias model or pure CAM. As mentioned in
the main text, we regarded the model fits to be adequate at this
point, though, certainly, there is more left to do.
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