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Abstract

■ Cognitive psychologists posit several specific cognitive abil-
ities that are measured with sets of cognitive tasks. Tasks that
purportedly tap a specific underlying cognitive ability are
strongly correlated with one another, whereas performances
on tasks that tap different cognitive abilities are less strongly
correlated. For these reasons, latent variables are often consid-
ered optimal for describing individual differences in cognitive
abilities. Although latent variables cannot be directly observed,
all cognitive tasks representing a specific latent ability should
have a common neural underpinning. Here, we show that cog-
nitive tasks representing one ability (i.e., either perceptual
speed or fluid reasoning) had a neural activation pattern distinct
from that of tasks in the other ability. One hundred six partic-
ipants between the ages of 20 and 77 years were imaged in an
fMRI scanner while performing six cognitive tasks, three repre-
senting each cognitive ability. Consistent with prior research,
behavioral performance on these six tasks clustered into the

two abilities based on their patterns of individual differences
and tasks postulated to represent one ability showed higher
similarity across individuals than tasks postulated to represent
a different ability. This finding was extended in the current re-
port to the spatial resemblance of the task-related activation
patterns: The topographic similarity of the mean activation
maps for tasks postulated to reflect the same reference ability
was higher than for tasks postulated to reflect a different refer-
ence ability. Furthermore, for any task pairing, behavioral and
topographic similarities of underlying activation patterns are
strongly linked. These findings suggest that differences in the
strengths of correlations between various cognitive tasks may
be because of the degree of overlap in the neural structures
that are active when the tasks are being performed. Thus, the
latent variable postulated to account for correlations at a behav-
ioral level may reflect topographic similarities in the neural
activation across different brain regions. ■

INTRODUCTION

General intelligence, in particular, its utility in predicting
specialized competence and the challenge of its accurate
measurement, has long stimulated enormous interest in
psychological research (e.g., Marquart & Bailey, 1955;
Bottorf, 1946; Embree, 1946; Kendler, 1946; Thomson,
1946; Willoughby, 1928). With the advent of fMRI imag-
ing, neural substrates of general and fluid intelligence
have been mapped in the brain, primarily to fronto-
parietal and temporal locations (Barbey, Colom, Paul, &
Grafman, 2014; Hampshire, Thompson, Duncan, & Owen,
2011; Preusse, van der Meer, Deshpande, Krueger, &
Wartenburger, 2011; Colom, Karama, Jung, & Haier, 2010;
Woolgar et al., 2010). Furthermore, rigorous attempts at
identifying general and specific components of intelligence
by combining neuroimaging and use of latent variable
modeling have been undertaken recently (Hampshire,

Highfield, Parkin, & Owen, 2012). Cognitive psychologists
often use the construct of a latent variable to best represent
a hypothesized cognitive ability. The basis of latent variable
modeling is the observation that performances on tasks
that purportedly tap a specific underlying cognitive ability
are strongly correlated, whereas performances on tasks
that tap different cognitive abilities are less strongly cor-
related. Mathematically, the latent variable represents vari-
ance across individuals that are common to the constituent
indicator variables and thus represents a “pure” measure
that is free of any features that are specifically associated
with any one task. This has made the latent variable ap-
proach valuable for cognitive studies. For example, when
assessing cognitive aging, it has been repeatedly demon-
strated (Salthouse & Ferrer-Caja, 2003) that multiple tests
can be summarized into a number of latent or “reference”
abilities that effectively capture the key features of age-
related cognitive differences. This observation provides a
basis for focusing on the key features of cognitive aging
rather than on individual tasks that potentially have idio-
syncratic features.
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Although the statistical and theoretical basis for latent abil-
ities is clear, by definition, they are not directly observable.
Despite such difficulties of attribution, it is reasonable to
hypothesize that (a) there are latent cognitive abilities, (b)
any latent cognitive ability has a neural basis, and (c) con-
stituent tasks tapping the same latent cognitive ability
engage a common brain network or set of brain areas.
Identifying such neural networks would provide support
for the existence of the latent ability as well as a directly
measurable and observable component to an otherwise
theoretical construct, providing a mechanistic explanation
for the observed behavioral covariances. We directly tested
this hypothesis in an fMRI study by imaging participants
performing a set of tasks associated with two putative
latent abilities. Our prime objective was to confirm the
existence of these a priori postulated abilities at the level
of neuroimaging indicators without using behavioral per-
formance (or any other guidance or constraints) to inform
the analysis of the neuroimaging data to provide a possible
explanation of the relations used to infer the existence
of latent variables We employed simple correlational anal-
ysis to ascertain the construct validity (CV) of within-
domain convergence and between-domain discrimination
with regard to the prior postulated reference abilities. In

contrast to Hampshire et al. (2012), we do not rely on
an unsupervised multivariate decomposition of neuro-
psychological and imaging data with a post hoc rotation of
factors. Post hoc rotations of factors are in a sense arbitrary
and demand a compelling a priori motivation that should
not be confounded with the final interpretation of the
orthogonal or oblique relationships of the factor them-
selves. For this reason and the fact that the relationship
of rotated factors was integral to the interpretation pro-
pounded in the article, the study by Hampshire et al.
(2012) has encountered some criticism (Haier, Karama,
Colom, Jung, & Johnson, 2014). We have fewer interpre-
tational difficulties because we are confirming the labeling
taxonomy suggested by Salthouse and Ferrer-Caja (2003).
Figure 1 shows a schematic sketch for the illustration of
our method of assessing CV.
In the figure, good CV of a latent variable model with

strong loadings of the indicator variables onto their sepa-
rate respective latent variables results in a block-diagonal
structure of the correlation matrix observed for all indi-
cator variables. This means indicators belonging to the
same reference ability correlate strongly, while correlat-
ing only weakly across reference abilities. Poor CV, on
the other hand, results in all off-diagonal elements in

Figure 1. Explanation of the CV concept used extensively in the current article. The upper row shows different scenarios of how the latent reference
abilities of FR and PS (round circles) can manifest themselves in the six indicator tasks (squares boxes). The lower row shows the topographic
similarity of mean activation patterns or the behavioral similarity for any task pair in a 6 × 6 correlation matrix. (Left) Good CV, that is, the tasks load
on strongly to their respective reference ability latent variable, although the correlation between latent reference abilities is low. This can be
appreciated without latent variable modeling: The R matrix shows a block-diagonal structure, and the similarity of any two tasks belonging to the
same reference ability is much higher than that of two tasks chosen from different reference abilities. (Right) The converse scenario of poor CV:
Indicator tasks are only weakly loading onto their respective reference ability, and the residual correlation between the latent variables is strong.
The correlation matrix has no block-diagonal structure, that is, any task’s membership to a reference ability is irrelevant: All tasks share equally low
topographic or behavioral similarity. Correspondingly, CV is low.
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the correlation matrix to be of similar magnitude: There
is no difference between correlation within or across
reference abilities, and any clustering into reference
abilities would thus be made on an arbitrary basis. The
current study used this simple method of investigating
the presence of two distinct reference abilities at the
neural level, so that the CV emerges simply from the
topographic similarity of the mean activation maps
underlying a set of cognitive tasks. Reference-ability
neural networks (RANNs) then were derived from
region-wise analyses after removing neural activation
common to all tasks, that is, activation that is not task
specific, and this cannot be attributed to any particular
reference ability.
Successful identification of RANNs has the potential of

contributing to a paradigm shift in research on the neural
bases of cognitive processes by emphasizing the broad
and replicable neural components common to several
tasks that assess the same general cognitive ability, with-
out being hampered by task-specific “noise.”

METHODS

Participants

One hundred six participants (age = 50.13 ± 16.53 years,
range = 20–77 years) underwent behavioral testing and
brain imaging. All participants were required to be native
English speakers, to be strongly right handed, and to
have at least a fourth-grade reading level. Participants
were free of medical or psychiatric conditions that could
affect cognition and were carefully screened to ensure that
the elder participants did not meet criteria for dementia
or mild cognitive impairment.

Procedure

The six cognitive activation tasks were administered in
the context of a larger study. Both sessions included six
tasks spread across two cognitive domains. For one ses-
sion, perceptual speed (PS) and vocabulary (V) were the
domains tested (task order: Synonyms [V], digit–symbol
[PS], antonyms [V], letter comparison [PS], picture nam-
ing [V], pattern comparison [PS]), whereas for the other
session, fluid reasoning (FR) and memory (M) were the
domains tested (task order: paper folding [FR], logical
memory [M], matrix reasoning [FR], word order recogni-
tion [M], letter sets [FR], paired associates [M]). The order
of tasks within the two cognitive domains was not varied,
but the order of the domains was varied across partici-
pants. Task stimuli were back-projected onto a screen
located at the foot of the MRI bed using an LCD projector.
Participants viewed the screen via a mirror system located
in the head coil and, if needed, had vision corrected to
normal using MR compatible glasses (manufactured by
SafeVision, LLC, Webster Groves, MO). Responses were
made on a LUMItouch response system (Photon Control

Company, Burnaby, Canada). Task administration and
collection of RT and accuracy data were controlled by
E-Prime (Psychology Tools, Inc., Pittsburgh, PA) running
on a PC computer. Task onset was electronically syn-
chronized with the MRI acquisition computer.

Cognitive Tasks

In the scanner, participants receive a battery of six com-
puterized tasks. Paper-and-pencil versions of these tasks
have been found to have high internal consistency and
test–retest reliabilities (i.e., .7 or greater) and moderate-
to-large (i.e., .7 or greater) loadings on their respective
factors. To accommodate testing in the scanner as well as
to optimize power for image analysis, some changes in test
structure and presentation were required. Before the scan
session, the participants were familiarized with the tasks
and allowed to practice each of them. For all tasks, re-
sponses were differential button presses. During training,
responses were on the computer keyboard, and during
scans, they weremade on the LUMItouch response system.
For the FR tasks, the primary dependent variable was
accuracy, whereas for the speed of processing tasks, the
primary dependent variable was RT. The tests used for
the two cognitive domains were as follows.

PS: (1) Digit symbol: A code table is presented on the top
of the screen, consisting of numbers 1 through 9, each
paired with an associated symbol. Below the code
table, an individual number/symbol pair is presented.
Participants are asked to indicate whether the individ-
ual pair is the same as that in the code table using a
differential buttonpress. (2) Letter comparison (Salthouse
& Babcock, 1991): Two strings of letters, each consist-
ing of three to five letters “i,” are presented along-
side one another. Participants indicate whether the
strings are the same or different using a differential
button press. (3) Pattern comparison (Salthouse &
Babcock, 1991): Two figures consisting of varying
number of lines connecting at different angles are
presented alongside one another. Participants indi-
cated whether the figures were the same or different
by a differential button press.

FR: (1) Paper folding (Ekstrom, French, Harman, &
Derman, 1976): Participants select a pattern of holes
that would result from a sequence of folds in a piece of
paper, through which a hole is then punched. Partici-
pants choose from six options which unfolded paper
best corresponds to the sequence given. (2) Matrix
reasoning (adapted from Raven’s 1962 Advanced
Progressive Matrices): Participants discern a pattern
from a series of figures displayed in a matrix. Participants
are given a matrix that is divided into nine cells, in
which the figure in the bottom right cell is missing.
Below the matrix, they are given eight figure choices,
and they are instructed to evaluate which of the figures
would best complete the missing cell. (3) Letter sets
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(Ekstrom et al., 1976): Participants are presented with
five sets of letters, where four of the five sets have a
common rule (i.e., have no vowels), with one of the
sets not following this rule. Participants are instructed
to select the unique set.

Image Acquisition Procedures

AllMR imageswere acquired in a 3.0-T Philips (Andover,MA)
Achieva Magnet. At each session, first, a scout, T1-weighted
image was acquired to determine patient position. All
scans use a 240-mm field of view. For EPI, the pulse
sequence parameters were TE/TR = 20/2000, flip angle =
72°, in-plane resolution = 112 × 112 voxels, slice thickness/
gap (mm) = 3/0, and 41 slices. A high-resolution structural
image was also acquired for coregistration. A neuro-
radiologist reviewed each participant’s MRI scan. Any
significant findings were conveyed to the participant’s
primary care physician. Behavioral performance was
recorded while participants executed the tasks in the
scanner. Z scores were computed for all six behavioral
variables.

Image Analysis Preprocessing Procedures

Each individual’s six fMRI scans was preprocessed using
the SPM8 software (Wellcome Trust Centre for Neuro-
imaging, London, UK) as implemented in MatLab in two
basic steps: (a) standard initial processing steps including
motion correction, transformation into standardized
(Montreal Neurological Institute) space, and smoothing
and (b) statistical analysis of individual participants’ data.
Statistical analysis of individual participants’ data for the
six cognitive tasks consisted of block-based time series
analysis of each individual task as a whole for each partici-
pant via general linear modeling of the fMRI time series
data. These data, along with the predictor variables, were
high-pass filtered and prewhitened to explicitly correct
for intrinsic autocorrelations in the data. The predictor
variables comprising the first-level design matrix were
composed of epochs representing each unique experi-
mental task relative to the same duration of rest (i.e., no-
performance blocks) and were convolved with a model of
the hemodynamic response function. Our main interest in
this article is the mean activation maps for each task. For
these mean activation patterns, we can obtain a pattern
score with a simple linear regression (without intercept
term) across all voxels for each participant:

N s; tð Þ ¼ F mean s; tð ÞM tð Þ þ ε s; tð Þ
where M(t) denotes the mean activation pattern for task
t and F_mean(s,t) is its pattern score of the mean pattern
for participant s; ε(s,t) denotes subject-, task-, and voxel-
specific residual activation that is orthogonal to the mean
activation pattern and was not considered further in the
current study.

CV Statistic

Behavioral data as well as activation patterns are expected
to manifest both convergent as well as discriminant valid-
ity. To conveniently monitor these requirements, we
summarized both validity requirements in one CV statis-
tic. The CV statistic can be computed for topographic
mean activation patterns, behavioral performance, or
mean activation pattern scores according to the following
procedure. Imagine we have a task pairing of task t1 and
task t2:

(1) We can compute the topographic CV by considering
the correlation across voxels of the mean activation
patterns for the task pairing in question. For instance,
for task pairing t1 and t2, we can compute the cor-
relation r(M(t1),M(t2)) and then turn this into a
Fisher Z coefficient according to Z = 0.5 log((1 + r)/
(1 − r)).

(2) We can compute the behavioral CV by considering
the correlation across participants of the behavioral
performance variables for the task pairing in ques-
tion, with a subsequent conversion into Fisher Z.

(3) Finally, we can compute the CV of the mean pattern
scores, that is, we consider the correlation of the
mean pattern scores: Z(F_mean(:,t1), F_mean(:,t2)),
where the colon denotes that the correlation is com-
puted across participants, similar to the behavioral
measures.

After clarifying how task similarity is established as a
Fisher Z correlation coefficient for any task pairing, we
can give the general formula for CV:

CV ¼ Ẑwithin − Ẑbetween

Here, Ẑwithin denotes the average Fisher Z correlation co-
efficient for all within-domain task pairings (=6), and
Ẑbetween denotes the average Fisher Z correlation coefficient
for all between-domain task pairings (=9).
One complication arising in this computation is the fact

that tasks pertaining to the two reference domains were
obtained in different scanning sessions. It is thus possible
that within-domain task pairings look more similar than
between-domain pairings purely by virtue of having been
recorded in the same session. Fortunately, we can estimate
the potential increase in both topographic and behavioral
CV because of session effects. All participants have six
additional tasks available: Overall, there was one scanning
session with three speed-of-processing tasks and three
vocabulary tasks and a separate scanning session with three
episodic memory tasks and three FR tasks. This means we
can estimate 18 within-session similarities for task pairs
coming from different reference domains and contrast
these with 36 between-session similarities for task pairs
coming from different reference domains to obtain an
upper limit of the boost in task similarity for tasks that
were recorded in the same session. The boost amounts
can be estimated for all measures, that is, topographic
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mean activation patterns, behavioral performance, or mean
activation pattern scores, and subtracted from the within-
session and domain correlations that go into the construct
validity computation according to

Ẑwithin → Ẑwithin − boost

Significant construct validity statistics in all three of the
aforementioned senses imply that (1) the mean activation
patterns are topographically more similar, (2) behavioral
performances between two tasks are more similar, and
(3) the degrees of subject-specific deployments of mean
task activation patterns are more similar, for a pairing of
tasks within, rather than between, reference domains.
For the inferential judgment about CV, we perform a

simple permutation test in which within-domain similarity
is contrasted with between-domain similarity (as quanti-
fied by Fisher Z) in null data. There are six within-domain
values and nine between-domain values, yielding 5,005
permutations of randomgroup assignment, andwe compute
CV = Ẑwithin − Ẑbetween for all of them. The p level is com-
puted as the fraction of these 5,005 permutations that yielded
construct validates larger than the point estimate value.

Split-half Validation Analyses

As an additional validation of the reference ability concept,
we can use (the subject-and-task scores of) the mean acti-
vation patterns to predict which reference domain any
particular task and subject activation map belong to.
Split-half analyses are very helpful for this purpose. We
randomly divide (all) the pool of all 6 × 106 = 636 subject-
task activation maps into a training fold of 500 maps and a
test fold of 136 maps. Two mean activation patterns were
computed in the training sample for all FR and PS tasks,
and for every map in the test fold, two scores can be com-
puted quantifying the extent to which this particular map
manifests both FR and PS patterns derived from the train-
ing set. The reference domain is predicted according to
which pattern the test map loads onto more strongly.
Using the gold standard knowledge of the true reference
domain labels in the test fold, the classification accuracy
can be recorded for all the test maps. The grouping of
tasks into reference abilities can be changed and “diluted”
by swapping one task between the FR and PS domains.
Ideally, the prediction performance for the correct assign-
ment of tasks into domain groupings should give (1) much
better performance than chance level and (2) better per-
formance than a “diluted” grouping.

RESULTS AND DISCUSSION

As described in the Methods, the two domains of FR and
PS were investigated with three cognitive tasks each.
For FR, we have (1) matrix reasoning, (2) letter sets, and
(3) paper folding. For PS, we have (1) digit symbol, (2) letter
comparison, and (3) pattern comparison.

Behavioral Performance

Performance was measured as accuracy of response for
the FR tasks and RT for the PS tasks. Age-related per-
formance decreases were noted for all tasks at an un-
adjusted p level of <.05; however, after a Bonferroni
correction for a six age comparisons, letter sets and letter
comparison no longer showed significant age differences.

Demonstration of CV of Reference Domains in
Neuroimaging and Behavioral Data

We first examined the interrelationships of the perfor-
mance data acquired from the six tasks administered in
the scanner. To quantify this relationship, we computed
a CV statistic, corresponding to the difference of the
mean correlation between tasks within a domain and
the mean correlations between domains. This CV statistic
captures to what extent the correlation in performance
of tasks within the same domain exceeds that of tasks
that belong to different domains, and therefore, larger
values indicate greater distinctiveness of the constructs.
The behavioral CV statistic was 0.8945 (corrected mean
within-domain Z = 0.5602, between-domain Z = −0.3343).
A permutation test (see Methods) established that such a
difference is unlikely to occur by chance ( p < .0002).
These results replicate numerous previous studies that
have demonstrated that these six tasks can be inferred to
represent two distinct cognitive abilities.

The similarity of the areas activated for any task pair
can be quantified using a spatial correlation of the topo-
graphic composition of mean task activation patterns.
The CV of the resulting spatial R matrix can be computed
in the same way as for the behavioral data, contrasting
the average within-domain Z correlation to the average
between-domain Z value. We obtained a value of 0.6235
(corrected mean within-domain Z = 1.7681, between-
domain Z = 1.1446), which was highly significant in the
permutation procedure ( p = .0010).

Finally, we computed a pattern score for each subject
and task, quantifying to what extent a person in a partic-
ular task manifests the mean activation pattern for the
task under consideration in their task activation map
(see Methods). These subject and task scores can be
treated in an identical manner to the behavioral variables.
Again, we submitted the correlation matrix to the con-
struct validity computation and obtained a value of 0.2505
(mean within-domain Z = 0.5556, between-domain Z =
0.3052; p= .0006, from permutation test). Figure 2 displays
the correlation matrices for mean activation patterns and
behavioral, subject, and task scores.

We then tested a more general mathematical rela-
tionship of CV concerning topographic composition of
activation patterns and behavioral performance. Ideally,
topographic similarity of activation patterns for any chosen
pair of tasks should be linked with the corresponding
similarity of behavioral performance, that is, tasks that
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activate similar brain regions across participants should
also show a high correlation of behavioral performance
across participants, and vice versa. As shown in Figure 3,
the mean topographic similarity of the underlying activa-
tion patterns between any two tasks across participants
was indeed strongly linked to the similarity of behavioral
performance for that task pairing (r = .8289, p = .0001,
obtained from Pearson correlation). Thus, tasks that elicit
similar activation patterns are more likely to have similar
performance levels for any participant, and both behav-
ioral and neural similarity was higher for within-domain
pairings.

Finally, to illuminate the plausibility of the concept
of reference abilities and the particular assignment of
tasks into the FR and PS reference abilities, furthermore,
we conducted some split-half validation analyses (see
Methods) with 1,000 iterations each. Every participant
and task map gets assigned the label FR or PS according
to reference ability the tasks belongs to. After splitting
the total pool of subject-task maps randomly into a training
set of 500maps and a test set of 136maps, we can compute
two mean activation maps in the training sample: one
mean activationmap for all FR tasks and one for all PS tasks.
In the test data set, we can compute to what extent every
map loads onto these two mean activation patterns. This
means every subject-task map gets assigned two numbers.
The prediction of the reference domain in the test set is

Figure 2. (Top) Correlation matrices to illustrate task clustering into reference abilities according to topographic similarity of mean task activation
maps (left), behavioral similarity of task performance (middle), and usage similarity of the mean pattern scores (right). (Bottom) Corresponding
scatter plots for the within-domain versus between-domain correlations (=Fisher Z ), with p levels obtained from a permutation test. The similarity
values are highest for the mean activation pattern topography and pattern score and much lower for behavior. The differences of between- versus
within-domain similarities, however, were always highly significant, thus establishing good CV. Note also that within-domain Z values were
corrected for session effects as explained in the manuscript.

Figure 3. The topographic similarity of mean task-related patterns is
closely related to the similarity of behavioral performances for any
task pairing, as measured by Fisher Z. In the figure, the three red
data points indicate task pairings within the domain of FR, and
the three blue data points denote task pairings within the domain of PS.
The remaining nine data points in black indicate all between-domain
task pairings. The similarity mapping is statistically significant at
r = .8289, p = .0001.
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done simply by assigning the reference domain whose
pattern score is higher; for instance, if a map’s pattern
score with respect to the FR pattern is smaller than with
respect to the PS pattern, we classify this map as “PS.”
Predictive performance is recorded as classification accura-
cy by comparing the gold standard knowledge of the true
labels with the predicted labels.

As Figure 4 shows, the prediction is successful, and
the hit rates for both reference abilities are much better
than chance level. Furthermore, to give additional cre-
dence to the reference ability concept, we swapped
two tasks in their assignment to the reference abilities.
The paper-folding task was mislabeled as PS, and the
digit–symbol substitution task was mislabeled as FR.

Figure 4. Split-half validation
analysis with 1,000 iterations.
Using the mean task pattern
scores with respect to the RANN
patterns derived from the
training sample, we can predict
the reference ability (FR or PS)
of scans in the test sample with
a simple difference of loadings.
Shown in the left are the
differences in loadings with
respect to the mean FR and the
mean PS activation patterns for
the FR and PS scans. There is
large overlap, but on average,
FR maps load onto the FR
pattern more strongly than PS
maps, and vice versa. Imposing
a decision threshold for the
difference scores at threshold =
0 achieves a classification accuracy of 87%. The classification was also tried for held-out data (right) with a split-sample test of 1,000 iterations.
Classification accuracies are shown with violin plots for a proper assignment of tasks into the two reference domains—FR = [matrix reasoning , letter
sets, paper folding], PS = [digit symbol, letter comparison, pattern comparison]—and a “diluted” assignment where the domain label for paper
folding and digit symbol had been changed to speed and fluid domains, respectively. Finally, we show the result obtained when randomly permuting
the label assignments for each iteration, corresponding to chance performance. One can see that, for the proper assignment, the prediction success
in the test sample is appreciably better than the diluted assignment, giving additional support to the concept of latent reference abilities with
the proper assignment.

Figure 5. Select axial slices of the unique parts of the FR (red) and PS (blue) RANNs as well as common parts (green). Shown are areas of
mean activation across the three tasks in each reference domain, which survive a significance threshold of p < .05, corrected for the number of
voxels in our analysis. The upper row shows areas of activation, and the lower row shows areas of deactivation. One can appreciate that large parts
of frontal, parietal, and occipital lobe activate in common, but only one frontal pole area deactivates in common.
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These “diluted” reference domains were then used in a
second split-half validation test in both training and test
samples. Figure 4 shows for these latter reference do-
main assignments that the prediction in the test sample
is still better than chance but substantially worse than for
the correct reference domain assignment. This demon-
strates that the assignment into reference domains as
envisioned by Salthouse and Ferrer-Caja (2003) is optimal:
An alternative grouping of tasks into reference domains
not only produces worse construct validities but also ham-
pers the prediction of reference domain labels in indepen-
dent data. We checked all eight other possibilities of
mislabeling one task in the reference ability assignment
and found similarly poorer prediction performance in all
of them.

Testing for Ability-specific Activation

Next, we turned to the topographic composition of the
cognitive ability neural networks themselves. The repre-
sentation of the neural networks associated with each of
the two domains was derived by computing voxel-wise
one-sample t contrasts obtained by averaging across all
three tasks within both speed of processing and FR
domains. The keys of common, significant activation for
each domain are illustrated in Figure 5 and summarized
in Tables 1–3.

For both networks, we found widespread bilateral
parietal, frontal, temporal, and occipital activation, with
additional frontal regions involved for the FR network.
Inferior parietal activation has been found across a wide
range of reasoning tasks (Hampshire et al., 2011; Woolgar
et al., 2010; Kalbfleisch, Van Meter, & Zeffiro, 2007; Wright,
Matlen, Baym, Ferrer, & Bunge, 2007; Lee et al., 2006;
Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997)
in the past, accompanied by lateral frontal activation as
well. For PS, we found additional temporal, occipital, and
thalamic areas. These areas are indicative of perceptual
and working memory processing and have been retrieved
before in neuroimaging explorations of the one consti-
tuent task of the PS domain that has been brought to
the scanner repeatedly: the digit–symbol substitution task
(Forn et al., 2009; Usui et al., 2009).

Conclusions

The observation that performance on multiple cognitive
tests clusters into specific abilities that can be described
by latent variables is long standing. The underlying as-
sumption has been that these latent variables capture
the common features of sets of tasks and are supported
statistically but, by their nature latent abilities, are not
observable. In this report, we sought neurobiological in-
stantiation of these latent abilities. We showed that two
sets of tests that have repeatedly been known to describe

two different abilities, speed of processing and FR, have dis-
tinct neural substrates that replicate the logic of latent vari-
able modeling: Each neural substrate is common to tests
within a domain but is not applicable to the tests in the other
domain. The brain areas associated with these two cog-
nitive abilities are consistent with those reported in pre-
vious functional imaging studies of individual tasks.
We also demonstrated that the topographic similarity

of the neural substrates underlying two tasks is related
to the similarity of the performance on the two tasks.
This observation directly links the commonality in cog-
nitive performance to commonality of the underlying
neural network. In summary, these observations empiri-
cally affirm that latent variables, which are unobservable,
can be made manifest on the neural and behavioral
level.

Table 1. Areas of Significant Activation and Deactivation that
Are Unique for the FR Reference Domain

x y x lod(p) AAL_label

Positive activation

−48 −48 46 17.5034 Parietal_Inf_L

−36 −60 44 15.767 Angular_L

52 −34 52 15.6967 Parietal_Inf_R

48 12 40 15.4119 Precentral_R

−38 54 2 15.1475 Frontal_Mid_L

34 −82 32 15.0633 Occipital_Mid_R

−4 −66 0 14.898 Lingual_L

34 56 2 14.623 Frontal_Mid_R

−48 16 36 14.6021 Frontal_Inf_Oper_L

−6 −62 54 14.5038 Precuneus_L

Negative activation

−10 20 6 −14.6893 Caudate_L

12 42 −2 −14.2058 Frontal_Med_Orb_R

6 36 4 −14.0522 Cingulum_Ant_R

8 16 8 −13.5408 Caudate_R

−2 12 0 −10.6975 No AAL label

−28 10 −24 −10.4459 Temporal_Pole_Sup_L

−10 42 6 −10.0847 No AAL label

10 22 −2 −7.9925 Caudate_R

lod( p) denotes the sign-weighted decadic logarithm of the uncorrected
p values, that is, a value of 3 corresponds to a positive correlation with
p < .001, a value of −4 to a negative correlation with p < .0001, and so
forth. For the correction by the number for voxels in the analysis, we
have an uncorrected lod( p) with a magnitude of at least 7 with cluster
size of >100 voxels. For positive activations, we only show the most
significant 10 noncerebellar locations.
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Our study offered a unique opportunity to observe
whether task-related brain activation naturally clusters
into some of the cognitive ability domains proposed by
Salthouse and Ferrer-Caja. A stimulating recent debate
(Haier et al., 2014) has highlighted the often ambiguous
nature of solutions to multivariate data decompositions
employed to discover latent variables. Multiple rotation
schemes can be imposed, and to avoid any problems of
“double dipping,” attribution of neuroscientific meaning
to any latent factors demands that the rationale rotation
scheme has a strong a priori motivation, which is not con-
founded with the interpretation of the factor structure

itself. Our study avoids such difficulties by employing
Salthouse and Ferrer-Caja’s assignment of tasks to refer-
ence abilities: After eliminating common areas of activa-
tion, the latent-ability neural networks were evident
from direct observation of the patterns of activation of
each task and their mutual correlation. Further validation
was provided by split-sample analyses: For the preferred
assignment of tasks into reference abilities according to
Salthouse and Ferrer-Caja, the out-of-sample prediction
of the reference ability label from a training data set was
the best.

Age-related differences were not the main interest of
this study; however, for completeness, we tested our
CV measures for behavior and mean task activation
patterns for relationships with age by way of permutation
tests along a median age split with 1,000 iterations. Neither
the topographic nor behavioral CV showed any difference
as a function of age group.

Cognitive psychologists have long recognized that
latent variables provide a more accurate description of an
underlying cognitive ability than any single test. Similarly,
we propose that these common neural networks can
better capture the neural substrates of a cognitive ability
than imaging observations based on a single task. This

Table 2. Areas of Significant Activation ( p(corrected) < .05)
for the PS Reference Domain

x y z lod(p) AAL_label

Positive activation

14 −86 −8 35.734 Lingual_R

−16 −84 −10 33.7132 Lingual_L

24 −84 −10 31.0423 Lingual_R

38 −70 −12 30.9997 Occipital_Inf_R

−14 −22 12 27.0871 Thalamus_L

32 30 0 26.9557 Insula_R

−42 −78 −2 26.0493 Occipital_Inf_L

38 −78 8 25.7111 Occipital_Mid_R

−40 −4 46 25.3444 Precentral_L

12 −92 10 23.6805 Cuneus_R

Negative activation

−8 −54 30 −29.557 Precuneus_L

−50 −68 30 −29.2834 Angular_L

52 −64 32 −27.5507 Angular_R

10 −50 28 −26.5538 Precuneus_R

−8 −58 14 −20.0947 Precuneus_L

−6 −50 20 −18.1589 Precuneus_L

−36 −18 16 −14.2445 Insula_L

58 −60 14 −13.456 Temporal_Mid_R

40 −16 12 −12.6603 Insula_R

−16 42 46 −11.8694 Frontal_Sup_L

lod( p) denotes the sign-weighted decadic logarithm of the uncorrected
p values, that is, a value of 3 corresponds to a positive correlation with
p < .001, a value of −4 to a negative correlation with p < .0001, and so
forth. For the correction by the number for voxels in the analysis, we
have an uncorrected lod( p) with a magnitude of at least 7 with cluster
size of >100 voxels. For both signs of activations, we only show the
most significant 10 noncerebellar locations. “AAL_label” was obtained
from the AAL template in the software package MRIcron.

Table 3. Areas of Significant Activation ( p(corrected) < .05)
Common for Both Domains

x y z lod(p) AAL_label

Positive activation

18 −94 −4 29.3483 Calcarine_R

−40 −40 40 28.358 Parietal_Inf_L

−2 −82 −10 28.0189 Calcarine_L

−44 −66 −14 26.9939 Fusiform_L

−24 −66 40 26.512 Parietal_Sup_L

32 22 4 24.7064 Insula_R

30 −90 −8 24.6746 Occipital_Inf_R

−38 −80 −8 24.5743 Occipital_Inf_L

46 10 26 24.4257 Frontal_Inf_Oper_R

−16 −96 −8 24.2717 Occipital_Inf_L

Negative activation

0 54 −6 −16.8982 Frontal_Med_Orb_L

0 36 −4 −14.7772 Cingulum_Ant_R

lod( p) denotes the sign-weighted decadic logarithm of the uncorrected
p values, that is, a value of 3 corresponds to a positive correlation with
p < .001, a value of −4 to a negative correlation with p < .0001, and so
forth. For the correction by the number for voxels in the analysis we
have an uncorrected lod( p) with a magnitude of at least 7 with cluster
size of >100 voxels. For both signs of activations, we only show the
most significant 10 noncerebellar locations. “AAL_label” was obtained
from the AAL template in the software package MRIcron.
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assumption departs from traditional cognitive neuro-
science research, which focuses on discovering the neural
concomitants of single tasks. The identification of latent
ability neural networks can have great practical utility.
For example, it has been observed many times that per-
formance on the two cognitive abilities addressed in this
report declines with aging. However, as we demonstrated
here, both the structure of the latent variables for these
constructs and the underlying neural networks remained
the same: No significant differences along a median age
split could be observed. However, with substantially
boosted numbers of observations, the possible depen-
dence of the latent ability networks’ CV on age can be
elucidated more completely, giving insight into the mech-
anisms of normal cognitive aging and possibly providing
diagnostic utility for identifying pathological cognitive
aging. Low behavioral performance scores might, in them-
selves, not yet constitute pathological aging if unaccom-
panied by a substantial reduction in the integrity and
distinctiveness of latent ability neural networks. CV at
the neural level, which, in contrast to behavioral perfor-
mance, can be quantified for a single participant, could
be an informative additional metric by which to judge
participants’ cognitive profiles. Our current report con-
stitutes a first step in the better understanding of the
neural underpinnings of cognitive aging and intelligence
in general.
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