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Abstract

Understanding the associations between brain biomarkers (BMs) and cognition

across age is of paramount importance. Five hundred and sixty-two participants

(19–80 years old, 16 mean years of education) were studied. Data from structural T1,

diffusion tensor imaging, fluid-attenuated inversion recovery, and resting-state func-

tional magnetic resonance imaging scans combined with a neuropsychological evaluation

were used. More specifically, the measures of cortical, entorhinal, and parahippocampal

thickness, hippocampal and striatal volume, default-mode network and fronto-parietal con-

trol network, fractional anisotropy (FA), and white matter hyperintensity (WMH) were

assessed. z-Scores for three cognitive domains measuring episodic memory, executive func-

tion, and speed of processing were computed. Multiple linear regressions and interaction

effects between each of the BMs and age on cognition were examined. Adjustments were

made for age, sex, education, intracranial volume, and then, further, for general cognition and

motion. BMs were significantly associated with cognition. Across the adult lifespan, slow

speedwas associated with low striatal volume, low FA, and highWMHburden. Poor execu-

tive function was associated with low FA, while poor memory was associated with high

WMHburden. After adjustments, results were significant for the associations: speed-FA and

WMH, memory-entorhinal thickness. There was also a significant interaction between hip-

pocampal volume and age in memory. In age-stratified analyses, the most significant associa-

tions for the young group occurred between FA and executive function,WMH, andmemory,

while for the old group, between entorhinal thickness and speed, andWMHand speed, exec-

utive function. Unique sets of BMs can explain variation in specific cognitive domains across

adulthood. Such results provide essential information about the neurobiology of aging.
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1 | INTRODUCTION

Although relationships between indices of brain and cognition have

been examined in aging, the relative relationships of different brain

biomarkers (BMs) and cognitive functions across age remain relatively

unexplored. Identification of biological factors that are associated with

cognition in healthy aging can help our understanding about the

underlying mechanisms of aging.

Existing literature on specific BMs has shown an association with

cognition, cognitive changes over time and neurodegenerative dis-

eases as well (Jack et al., 2010; Leow et al., 2009). Both BMs and cog-

nition tend to change with age and more dramatically at late stages of

adulthood. Significant age-related decreases in total brain volume

(BV), as well as in hippocampal and temporal lobe volume occur across

the adult age range (Scahill et al., 2003). In healthy aging, white matter

volume decreases and is greater than the decrease of the gray matter
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volume (Salat, Kaye, & Janowsky, 1999). Normal aging has been also

associated with declines in specific cognitive domains, mostly in mem-

ory, speed of processing, and executive function (Harada, Natelson

Love, & Triebel, 2013). As mentioned in a review (Bressler & Menon,

2010), the weight of evidence for the association between brain and

cognition has now shifted from individual brain areas to the conjoint

function of brain areas working together as large-scale networks.

Thus, examining more than one individual BM contributes to a more

principled and systematic approach to the investigation of cognitive

function.

A study by Hedden et al., 2016 in 186 cognitively healthy older

adults aged 65–90 years, revealed that age-related variation in cogni-

tion was associated with multiple, preselected BMs, with significant

ones varying across cognitive domain. In this study, fractional anisot-

ropy (FA) and striatal volume were strongly associated with processing

speed and executive function, whereas hippocampal volume was asso-

ciated with episodic memory. A different study showed an association

between amyloid burden and episodic memory, and white matter

hyperintensity (WMH) burden to executive function (Hedden et al.,

2012). Studies using magnetic resonance imaging (MRI) and positron

emission tomography (PET) scans examining the link between brain

measurements and aging across the lifespan revealed significant associ-

ations for functional and structural connectivity (Betzel et al., 2014), dif-

fusion tensor imaging (DTI) white matter tract (Lebel et al., 2012;

Storsve, Fjell, Yendiki, & Walhovd, 2016), and subcortical structures

(Coupe et al., 2017) with aging. Across the lifespan, a recent examina-

tion of subcortical gray matter structures suggested that in a longitudi-

nal aging cohort, the volume of all structures except the caudate and

globus pallidus decreased linearly (Narvacan, Treit, Camicioli, Martin, &

Beaulieu, 2017). Thus, differences in brain morphometry are observed

with aging, pointing the effect that these might have to cognition. The

above studies, both cross-sectional and longitudinal, examined these

associations across the whole lifespan using mostly individual measures

of the brain trajectories. However, the underlying links between brain

modalities and cognition have not yet been fully explored. Furthermore,

a lot of interest has been in investigating the role of brain in specific

pathologies (DeLisi et al., 1995; Luerding, Weigand, Bogdahn, &

Schmidt-Wilcke, 2008). By taking a step back, and finding the relation-

ships between brain and cognition in neurologically and psychiatric

intact adults, we can obtain a more lucid portrait of how brain func-

tions. Examining the relative effect sizes of the BM-cognition associa-

tions, as well as the age-related change in these relationships, is of

great interest.

Existing literature suggests significant associations between specific

BMs and specific aspects of cognition in older adults. However, most

of the existing literature has examined a limited amount of BMs, mostly

one single biomarker and its association with aging and cognition, and

the sample sizes are usually focused on specific age or clinical groups,

limiting the generalizability of the results. Examining the associations

between multiple BMs and cognition across adulthood in cognitively

normal adults can aid the understanding of the mechanisms underlying

cognitive function in aging, before a neurodegeneration or a general

pathology appears. Thus, we aimed to examine the associations

between BMs and cognition, in a large sample of cognitively normal

participants, not only in the later stages of adulthood, but across the

adult life span. Associations were examined for nine brain measure-

ments. We also examined interaction effects between each of the BMs

and age on cognition. These associations were tested in three different

cognitive domains.

We hypothesized that BMs such as regional/total BV and thickness,

mean FA, functional connectivity, and WMH burden would be nega-

tively associated with age and positively with cognition. Associations

would be significant not only examining the individual BMs but also

after evaluating the conjoint role of all the BMs simultaneously in cogni-

tion. We expected associations to differ by cognitive domain. Our main

goal was to examine the associations between cognitive domains and

BMs over and above age—and other demographic factors—although

these individual factors could still be age related. In the age-stratified

group, we also expected to reveal unique associations between specific

cognitive domains and BMs, over and above the relationship to general

cognition.

2 | MATERIALS AND METHODS

The data set consisted of participants from two studies: The reference

ability neural network (RANN), and the cognitive reserve (CR) studies.

The RANN study was designed to identify networks of brain activity

uniquely associated with performance across adulthood of each of

the four reference abilities: memory, reasoning, speed of processing,

and vocabulary (Habeck et al., 2016). The CR study was designed to

elucidate the neural underpinnings of CR and the concept of brain

reserve (Stern, 2012). Both studies share similar recruitment proce-

dure and data collection. All participants were native English speakers,

and right-handed. Individuals with any major neurological or psychiatric

conditions that could affect their cognitive status were excluded, as

were those with mild cognitive impairment or dementia. A score equal

or greater than 130 was required on the Mattis Dementia Rating Scale

(Mattis, 1988) for the inclusion in the studies, and score no or minimal

complaints on a questionnaire about their functionality (Blessed,

Tomlinson, & Roth, 1968). Both RANN and CR have been approved by

the Institutional Review Board of Columbia University. More detailed

information about the two studies can be found in previous publica-

tions (Habeck et al., 2016; Habeck et al., 2017; Razlighi, Habeck,

Barulli, & Stern, 2017; Stern, 2009; Stern, 2012; Stern et al., 2014).

2.1 | Imaging data

We used data from structural T1, DTI, fluid-attenuated inversion

recovery (FLAIR), and resting-state functional MRI scans. All scans

were acquired on the same 3.0 Tesla Philips Achieva MRI scanner.

We attempted to use the same BMs analyzed in Hedden et al. as this

study is most similar to our approach, analytical method, and aims;

however, data for fluoro-deoxy-glucose PET imaging and amyloid bur-

den were not available for our sample. Thus, out of the BMs used

based on previous publications and on theoretical importance,
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we incorporated the following nine measurements: cortical, entorhi-

nal, and parahippocampal thickness, hippocampal and striatal volume,

FA, default-mode network (DN), fronto-parietal control network

(FPCN), and WMH.

2.2 | Volume and cortical thickness

A T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo

(MPRAGE) scan was acquired with Echo Time/Repetition Time (TE/TR) of

3/6.5 ms and flip angle of 8�, in-plane resolution of 256 × 256, field of

view of 25.6 × 25.6 cm2, and 165–180 slices in axial direction with slice

thickness/gap of 1/0 mm. FreeSurfer (v5.1.0) software for human brain

imaging analysis (http://surfer.nmr.mgh.harvard.edu/) was used for the

reconstruction of the T1 scans (Fischl et al., 2002; Fischl et al., 2004). We

used the following measures: cortical thickness (total, mm), entorhinal

thickness (mean right and left, mm), parahippocampal thickness (mean right

and left, mm), hippocampal volume (sum of right and left, mm3), and striatal

volume (sum of right and left, mm3). Thickness in cortical regions was com-

puted using the standard FreeSurfer parcellation (Desikan et al., 2006).

2.3 | Fractional Anisotropy

Two sets of DTI images were acquired with each set having

56 directions using these parameters: b = 800 s/mm2, TE = 69 ms,

TR = 7,645–7,671 ms, FOV = 22.4 × 22.4 cm2, flip angle = 90�,

in-plane resolution 112 × 112 voxels, acquisition time 9 min 27 s, slice

thickness = 2 mm (no gap), and 75 slices. The two data sets were then

concatenated and processed with Tracts Constrained by Underlying

Anatomy DTI, distributed as part of the FreeSurfer library that pro-

duces 18 major white matter tracts, as described in previous publica-

tions (Li, Tsapanou, Qolamreza, & Gazes, 2018; Yendiki et al., 2011).

For each participant, the means of FA for each of the 18 tracts were

used to create a single-averaged FA variable, which was entered into

subsequent analyses.

2.4 | Functional connectivity analysis

A resting-state scan was acquired with TE/TR of 20/2,000 ms and

flip angle of 72�, in-plane resolution of 112 × 112, field of view of

22.4 × 22.4 cm2, and 37 slices in axial direction with slice thickness/gap

of 3/0 mm. After slice-timing correction, realignment, band-pass tem-

poral filtering and scrubbing to correct for motion artifacts, DN, and

FPCN intranetwork connectivity were computed as the mean pairwise

connectivity in all possible pairs located within the DN and FPCN, as

detailed in the taxonomy by Power et al. (2011). We also took the

mean framewise displacement from all the functional neuroimaging

scans of each participant and used it as a covariance of no interest in all

our analyses.

2.5 | White matter hyperintensity

FLAIR images for visualization of WMH were used with the following

parameters: TR/TI (ms) 11,000/2,800 TE (ms): 125 in plane resolution

256 × 189, FOV 23.0 × 17.96 cm, and 30 slices with slice thickness/

gap of 4/0.5 mm. For the extraction of the WMH, we used the Lesion

Segmentation Tool (LST), which is a toolbox for Statistical Parametric

Mapping (SPM), able to segment T2 hyperintense lesions in FLAIR

images. Lesions were segmented by the lesion growth algorithm

(Schmidt et al., 2012) as implemented in the LST version 2.0.15 (www.

statistical-modelling.de/lst.html) for SPM. Following standard conven-

tion, WMH volumes were log transformed (resulting in a normal distri-

bution) and treated as a continuous variable, with higher values

indicating greater WMH burden.

2.6 | Neuropsychological factor scores

Each participant underwent an extensive neuropsychological evalua-

tion. Although some cognitive tests might examine different functions

at the same time (Whiteside et al., 2016), for the purposes of the cur-

rent study, based on previous similar publications (Hedden et al.,

2016) and according to our neuropsychological battery, we created

three specific cognitive domains measuring; episodic memory, speed

of processing, and executive function. The tests used based on our

battery were the following:

Episodic memory: Selective Reminding Test, delayed

recall, total correct (Buschke & Fuld, 1974). Speed

of processing: The Wechsler Adult Intelligence Scale,

Third edition (WAIS-III) Digit-Symbol, total correct

(D. 1997), Trail Making Test (TMT)-A, total time (R. 1978).

Executive function: fluency: ControlledWord Association

(C-F-L) and Category Fluency (animals), total correct

(Benton AL 1989). Working memory: WAIS-III Letter-

Number Sequencing, total correct (D. 1997). Switching:

Incongruent–congruent (mean), TMT B–TMT A (time).

Albert Einstein

z-scores for each cognitive domain were derived based on the

means and standard deviations (SD) of all participants. The z-scores were

averaged within cognitive domain to derive the composite cognitive

score. Higher z-score indicates better cognitive performance (reaction

times for speed of processing were reversed and z-transformed). We

also created a general cognition variable by summing up the three

above cognitive subcategories. We further ran a principal-axis factor

analysis as an alternative indicator of general cognition, and the pat-

tern of the results was similar, thus, we decided to currently report

the results of the general cognition-sum variable.

2.7 | Statistical analysis

All statistical analyses were performed using the Statistical Package

for the Social Sciences (SPSS) 23 (SPSS, Chicago, IL). Nominally signifi-

cant alpha values were defined as p < .05.

We initially explored the correlations between age, each of the

cognitive domains and each of the BMs.
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Multiple linear regression models were performed to examine

the association between BMs and cognition. All the nine BMs

entered simultaneously in the model and were treated as predic-

tors, while the performance on each of the individual cognitive

domains, were the outcomes. As this is an exploratory analysis,

we chose not to use a strict correction for the multiple compari-

sons; however, we approached this issue by adding all the

measurements simultaneously in the same statistical model.

Adjustments were made for age, sex, education, and intracranial

volume (ICV). As motion could play a significant role in the associa-

tion between BMs and cognition, we further controlled for it. We

did not have measured motion for the structural acquisitions; how-

ever, for most of the subjects, we had the resting-Blood oxygena-

tion level dependent (BOLD) scan and associated realignment

information, which we used as a further covariate.

In order to examine any age-related differences in the relation-

ship between brain morphometry and cognition, we created three

age groups (young: 19–39, middle: 40–59, old: 60–80), and per-

formed the same multiple linear regression models with the nine

BMs added simultaneously as predictors and each of the cognitive

domains as the outcome, stratified by age group. Analysis was first

unadjusted and then adjusted for age, sex, education, and ICV.

Results are reported for further adjustment by general cognition in

order to indicate which of the relations are specific, or unique, to

cognitive ability as opposed to being shared with general cognition,

and then, motion as well.

We also performed across the whole adult-range generalized lin-

ear model analyses to examine interactions between BMs and age for

their effect on cognition, with each of the cognitive domains as the

dependent variable, and each of the BMs as the predictor. We exam-

ined the main effect of all the variables and the interaction effect

between each of the BMs and age on the cognitive domains. The

models were first unadjusted and then adjusted for the covariates

mentioned above.

3 | RESULTS

Our sample consisted of 562 participants, with 56.8% women, and had a

mean age of 54 (SD: 17) years, and a mean education of 16 (SD: 2.4)

years. Demographic, cognitive, and BMs characteristics of the partici-

pants, both overall and within the three age ranges, are presented in

Table 1.

Table 2 displays the bivariate correlations between age, cognitive

domain scores, and brain measures. Age was significantly associated

with each of the cognitive domains and each of the BMs as well. The

strongest associations were noticed between cortical thickness,

striatal volume, and WMH and all the cognitive domains. Further

exploratory relations between age—as a continuous variable—and

each of the cognitive domain/each of the BMs was plotted and added

in the Supporting Information.

Exploratory multiple linear regression models for the total sam-

ple predicting each cognitive domain and using all nine BMs simul-

taneously showed unique significant associations for the following:

speed of processing with striatal volume, FA, and WMH burden;

executive function with FA; and episodic memory with WMH burden

(Supporting Information, Table S1). The significance of the whole model

was F: 12.067, p ≤ .0001. After adjusting for the covariates, results

remained significant for the associations between speed and both FA

and WMH (Figure 1), while memory was associated with entorhinal

thickness (Table 3). The significant associations remained unchanged

even after controlling for motion.

TABLE 1 Characteristics of the participants in total and in three age groups

Age
19–39, N = 147
M:29 (SD:5)

40–59, N = 123
M:51 (SD:5)

60–80, N = 292
M:67 (SD:5)

Total, N = 562
M:54 (SD:5)

Sex, women, N (%) 98 (66.7) 57 (46.3) 164 (56.2) 319 (56.8)

Education (years), mean (SD) 15.9 (2.3) 16 (2.3) 16.3 (2.4) 16 (2.4)

Speed, mean (SD) 0.72 (0.7) 0.056 (0.8) −0.36 (0.8) 0.0003 (0.9)

Executive, mean (SD) 0.20 (0.6) −0.012 (0.7) −0.11 (0.6) −0.011 (0.6)

Episodic memory, mean (SD) 0.62 (0.7) 0.13 (0.9) −0.34 (1) 0.0 (1)

General cognition, mean (SD) 1.5 (1.4) 0.7 (1.7) −0.8 (1.7) −0.01 (1.9)

Cortical thickness (mm), mean (SD) 2.63 (0.1) 2.56 (0.1) 2.48 (0.1) 2.54 (0.1)

Entorhinal thickness (mm), mean (SD) 3.36 (0.4) 3.42 (0.4) 3.3 (0.4) 3.34 (0.4)

Parahippocampal thickness (mm), mean (SD) 2.81 (0.3) 2.75 (0.3) 2.7 (0.3) 2.7 (0.3)

Hippocampal volume (mm3), mean (SD) 4,220.3 (419.7) 4,198.4 (448.8) 3,804.2 (464.7) 4,013 (491.8)

Striatum volume (mm3), mean (SD) 4,614.8 (474.9) 4,279.7 (529.2) 3,878.2 (562.5) 4,179.9 (617.8)

DN, mean (SD) 0.090 (0.05) 0.070 (0.03) 0.064 (0.03) 0.073 (0.04)

FPCN, mean (SD) 0.075 (0.05) 0.063 (0.04) 0.06 (0.04) 0.065 (0.04)

FA, mean (SD) 0.453 (0.02) 0.448 (0.02) 0.438 (0.02) 0.444 (0.02)

WMH burden, mean (SD) 0.71 (0.9) 1.62 (1) 2.67 (1) 1.91 (1.3)

Abbreviations: DN, default-mode network; FA, fractional anisotropy; FPCN, fronto-parietal control network; WMH, white matter hyperintensity.
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We repeated the multiple linear regression models including all

nine BMs simultaneously, stratifying age into three groups: young

(19–39), middle (40–59), and old (60–80). Unadjusted results are sum-

marized in Supporting Information, Table S2. Speed of processing was

predicted by entorhinal thickness, striatal volume, FA, and WMH in

the old group. No significant predictions were noted in the other two

age groups. Executive function was associated with entorhinal thick-

ness and FA in the young group, FA in the middle-aged group, and

with WMH in the old group. Episodic memory was associated with

hippocampal volume in the young group. No significant predictions

were noted in the other two age groups. We then reran these ana-

lyses, adjusting for age, gender, education, and ICV (Table 4). Associa-

tions remained significant as follows: speed with entorhinal thickness

and WMH in the old group, executive function with FA in the young

group, and WMH in the old group (Figure 2), and episodic memory

with hippocampal volume and WMH in the young group (Figure 3).

We then added general cognition as an additional covariate (see foot-

note of Table 4, indicating which associations disappeared upon inclu-

sion of general cognition as covariate). None of the above noted

associations between biomarkers and cognition remained significant.

However, several new associations were noted. In the young group:

executive function with hippocampal volume (B = 0.000, β = 0.248,

p = .009), and episodic memory with hippocampal volume (B = 0.000,

β = −0.280, p = .006). In the old group: episodic memory with WMH

(B = 0.207, β = 0.189, p = .028). The significant associations remained

unchanged even after controlling for motion. Table 5 sums the signifi-

cant associations between the BMs and the cognitive domains based

on the linear regressions, both across the whole age range and in the

three age groups. WMH burden seems to be the better predictor for

both the total sample and the young–old groups, followed by FA for

the total and the young group, and entorhinal thickness for the total

and the old group.

We then performed generalized linear model analyses examining

potential interactions between BMs and age in their effect on each of

the cognitive domains. These analyses were run across the total sam-

ple. Results showed a significant interaction effect between hippo-

campal volume and age on episodic memory (B = 1.078, p = .031)

(Figure 4), such that as age increased, the association between hippo-

campal volume and memory performance was stronger. This associa-

tion remained significant even after adjusting for sex, education, and

ICV (B = 9.758, p = .050). However, this association did not survive

when general cognition and motion were added as further covariates.

There were no other significant interaction effects between age and

the rest of the BMs on any cognitive domain or general cognition.

4 | DISCUSSION

Our aim was to examine the associations between BMs and cognition

not only in older adults but also extend these analyses to ages 19–80.

We found significant associations between specific BMs and cognition

in cognitively healthy adults. Our results are generally in agreement

with previous studies examining age-related variation in cognition in

relation to BMs. In order to sum up the major results of Columbia study

and that of Hedden's et al., which is the most close to our study in older

adults, we conclude the following: Hedden et al. showed that multiple

BMs were associated with age-related variation in cognition in older

adults. The largest relationships linked FA, FPCN, and amyloid burden

with speed, executive function, and episodic memory. Partial correla-

tion and regression analyses revealed that FA and striatal volume were

associated with speed and executive function, while hippocampal vol-

ume with episodic memory. Results from the Columbia study showed

that in older adults, entorhinal thickness was associated with speed of

processing, while WMH was associated with executive function and

TABLE 2 Correlations for age, cognitive domains, and BMs, in the total sample

1 2 3 4 5 6 7 8 9 10 11 12

Age

Speed −.54**

Executive −.21** .44**

Episodic memory −.43** .36** .31**

Cortical thickness −.57** .37** .2** .31**

Entorhinal thickness −.11* .17** .10* .11* .39**

Parahippocampal thickness −.21** .22** .16** .21** .35** .27**

Hippocampal volume −.41** .28** .21** .18** .33** .3** .27**

Striatal volume −.55** .38** .24** .23** .36** .18** .10* .58**

1. DN −.29** .12* .10 .14* .26** .07 .13* .09 .16**

FPCN −.17** .05 .02 .10 .19** .05 .04 .03 .11* .31**

FA −.32** .30** .24** .19** .27** .10* .13* .32** .36** .16* .14*

WMH burden .69** −.39** −.16** −.35** −.46** −.09* −.27** −.27** −.2** −.19** −.16** −.20*

Abbreviations: BM, brain biomarker; DN, default-mode network; FA, fractional anisotropy; FPCN, fronto-parietal control network; WMH, white matter

hyperintensity.

*Significance level < .05.; **Significance level < .01.

3836 TSAPANOU ET AL.



memory. Expanding across the adulthood, speed of processing was

associated with striatal volume, FA, and WMH, executive function with

FA, and memory with WMH.

Different cognitive functions have been linked to either very spe-

cific brain areas or a combination of different brain modalities, with

new atlases being developed recently mapping the association

between brain and cognition (Varoquaux et al., 2018). FA and WMH

were significantly associated with cognitive performance in our

analyses. These two BMs have been associated with cognition in pre-

vious research. It was suggested that FA can be a useful measure for

early detection of age-related cognitive change, and specifically for

changes in executive function (Grieve, Williams, Paul, Clark, & Gordon,

2007). Another study showed that areas with decreased FA in

deep-WMH predicted poor general cognition, as opposed to high-

grade periventricular hyperintensities, suggesting the involvement of

cortico-subcortical circuits in cognitive deficits only in deep-WMH

F IGURE 1 Scatterplot for the association between speed of processing and the covariate-residualized WMH burden in the total sample. Age,
sex, education, and the remaining BMs were used as covariates. Lower speed of processing was associated with higher WMH burden in the total
sample. BM, brain biomarker; WMH, white matter hyperintensity

TABLE 3 Multiple linear regressions for the association between BMs and each of the cognitive domains, for the total sample, adjusted for
age, sex, education, and ICV

BMs

Speed B, β, p Executive B, β, p Episodic memory B, β, p

R2 = .391 R2 = .158 R2 = .216

Age −.017 −.322 .002 −.003 −.086 .469 −.017 −.300 .011

Education .030 .078 .169 .040 .155 .019 .015 .037 .572

Sex .253 .140 .044 .080 .066 .409 −.008 −.004 .957

ICV 8.684 .151 .063 8.680 .227 .017 −2.979 −.005 .957

Cortical thickness −.082 −.011 .878 .038 .008 .926 .238 .029 .711

Entorhinal thickness .222 .094 .119 .150 .096 .175 .352 .144 .038

Parahippocampal thickness .012 .004 .949 .067 .030 .657 .235 .067 .308

Hippocampal volume .000 −.068 .381 −1.722 −.014 .875 .000 −.084 .339

Striatal volume .000 .110 .215 −4.889 −.049 .633 −2.411 −.016 .878

DN −.062 −.003 .961 .892 .062 .366 −.236 −.010 .876

FPCN −.330 −.0016 .781 −.248 −.018 .781 −.931 −.042 .511

FA 7.540 .173 .004 3.722 .130 .062 2.149 .047 .486

WMH burden −.133 −.182 .023 −.041 −.084 .356 −.130 −.170 .067

Abbreviations: BM, brain biomarker; DN, default-mode network; FA, fractional anisotropy; FPCN, fronto-parietal control network; ICV, intracranial volume;

WMH, white matter hyperintensity.
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TABLE 4 Multiple linear regression for the association between BMs and each of the cognitive domains, stratified by age group, adjusted for
age, sex, education, ICV, and then additionally for general cognition (a)

BMs Speed B, β, p Executive B, β, p Episodic memory B, β, p

Young

R2 = .256 R2 = .385 R2 = .314

Age .009 .066 .678 .039 .342 .019a .031 .227 .146

Education .066 .176 .178 .083 .280 .018a .021 .059 .639

Sex .566 .381 .059 .242 .202 .259 .471 .328 .093

ICV 3.091 .057 .823 −6.363 −.148 .518 1.266 .239 .330

Cortical thickness .124 .019 .889 .005 .001 .993 .398 .063 .635

Entorhinal thickness .214 .124 .371 .339 .244 .052 .277 .167 .216

Parahippocampal thickness .008 .003 .983 .091 .041 .723 .195 .073 .559

Hippocampal volume −4.456 −.026 .864 .000 .152 .260 −.001 −.374 .013

Striatal volume .000 .324 .086 .000 .314 .064 .000 .098 .585

DN 1.797 .128 .373 1.907 .168 .194 3.079 .227 .106

FPCN −.057 −.004 .978 −.774 −.067 .567 1.354 .089 .487

FA 7.872 .218 .107 8.550 .304 .014a 4.944 .142 .276

WMH burden −.098 −.131 .354 −.085 −.143 .247 −.261 −.357 .010a

Middle

R2 = .143 R2 = .247 R2 = .160

Age −.041 −.265 .163 −.034 −.266 .125 −.050 −.296 .118

Education −.022 −.061 .683 −.001 −.002 .986 .019 .049 .741

Sex .478 .280 .116 .188 .130 .417 .224 .119 .494

ICV 1.956 .316 .197 3.080 .584 .011a 4.280 .063 .794

Cortical thickness −1.295 −.132 .441 .259 .031 .841 −.819 −.076 .654

Entorhinal thickness .039 .016 .920 .138 .068 .650 .496 .188 .246

Parahippocampal thickness .295 .089 .543 .303 .107 .430 .248 .068 .638

Hippocampal volume .000 .104 .593 .000 −.078 .664 7.029 .033 .863

Striatal volume .000 −.115 .566 .000 −.306 .104 .000 −.178 .371

DN −.574 −.021 .892 .648 .028 .844 2.200 .072 .634

FPCN −1.033 −.054 .734 −.215 −.013 .927 −3.601 −.170 .278

FA 8.304 .182 .220 6.608 .173 .210 8.560 .171 .246

WMH burden −.066 −.076 .655 .102 .139 .381 −.079 −.083 .622

Old

R2 = .306 R2 = .211 R2 = .154

Age −.018 −.124 .259 −.018 −.192 .101 −.052 −.275 .029a

Education .054 .186 .079 .045 .237 .036a .018 .048 .684

Sex −.029 −.019 .875 .055 .057 .663 −.343 −.179 .190

ICV 9.405 .230 .070 6.835 .257 .057 −2.032 −.039 .780

Cortical thickness .232 .035 .767 −.074 −.017 .891 1.049 .122 .358

Entorhinal thickness .467 .237 .035a .171 .134 .259 .249 .099 .422

Parahippocampal thickness −.159 −.057 .616 −.231 −.128 .292 .396 .112 .380

Hippocampal volume .000 −.272 .054 −9.989 −.097 .513 −2.652 −.013 .933

Striatal volume .000 .189 .204 2.789 .031 .845 .000 −.123 .462

DN −.991 −.049 .623 1.550 .118 .268 −3.290 −.128 .253

FPCN .165 .008 .931 .242 .019 .854 −1.997 −.080 .465

FA 5.257 .143 .166 −.887 −.037 .734 −2.406 −.051 .656

WMH burden −.309 −.374 .001a −.166 −.309 .011a −.047 −.043 .738

Abbreviations: BM, brain biomarker; DN, default-mode network; FA, fractional anisotropy; FPCN, fronto-parietal control network; WMH, white matter

hyperintensity.
aThese associations did not survive after controlling also for general cognition.
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(Soriano-Raya et al., 2014). Our results suggest a significant association

of FA and WMH burden with different cognitive domains across the

whole adult age range, in cognitively healthy participants. Furthermore,

our results reveal the significance of FA and WMH for cognition over

and above other BMs, in contrast to most of the existing studies that

focused on individual BMs only. Specifically, in our study, low FA was

associated with low speed of processing, while high WMH burden was

associated with slow speed of processing and low episodic memory

across age. As both diffusion imaging data and signal abnormalities in

the white matter are not regionally localized, it is reasonable that these

BMs are associated with performance in multiple cognitive domains.

Our results indicate that the association between hippocampal

volume and memory becomes stronger as people age. Subtle differ-

ences in the hippocampal size could be more influential in older adults,

especially in the cognitive domain of memory. Moreover, we could

hypothesize that within the context of lower hippocampal volume,

F IGURE 2 Scatterplot for the association between speed of processing and the covariate-residualized WMH burden in the old group. Age,
sex, education, and the remaining BMs were used as covariates. Lower speed of processing was associated with higher WMH burden in the old
group. BM, brain biomarker; WMH, white matter hyperintensity

F IGURE 3 Scatterplot for the association between episodic memory and the covariate-residualized WMH burden in the young group. Age,
sex, education, and the remaining BMs were used as covariates. Lower performance in episodic memory was associated with higher WMH
burden in the young group. BM, brain biomarker; WMH, white matter hyperintensity
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people with even slightly higher volume perform better in memory.

An extensive review (Van Petten, 2004) reports similarly interesting

results of the relationship between memory and hippocampal volume,

with the association appearing quite weak for older adults. Based on

this review, results seem to vary across age, while statistical method-

ology appears to play a significant role to this. We cannot also over-

look the fact that our domain of episodic memory is consisted of a

single score. Creating a memory domain consisted of a combination of

more memory scores could probably be more sensitive to the mea-

surement of the specific cognitive function.

Greater variance in executive function (R2 = .385) and episodic

memory (R2 = .314) can be better explained by the specific set of BMs

in young adults than in older ones (R2 = .211, R2 = .154, respectively)

in our study. Results for speed of processing, however, revealed that

greater variance in the specific domain can be explained by the spe-

cific BMs in older adults (R2 = .306) than the younger group

(R2 = .256). Associations remained significant even after adjusting for

age, sex, education, and ICV. Other factors not included in the model

might play a significant role for the remaining variance in cognition.

For instance, biomarkers like amyloid burden (McConathy & Sheline,

2015) or cerebral blood flow as measured by arterial spin labeling

(De Vis et al., 2018) have been associated with cognition and could

explain behavioral performance in different cognitive domains. We

used a priori chosen markers, mostly associated with cognition in

older adults; however, future studies including a greater variety of

BMs, the role, and interaction of which in cognition has not been fully

explored yet, will provide us with important information about the

core of the neurobiology of aging. Overall, we found that with age

TABLE 5 *Significant associations between the BMs and the cognitive domains, based on the linear regression models, in the total sample,
and in the three age groups. Model adjusted for age, sex, education, and ICV

Speed Executive Episodic memory

Total Young Middle Old Total Young Middle Old Total Young Middle Old

Cortical thickness

Entorhinal thickness * *

Parahippocampal thickness

Hippocampal volume *

Striatal volume

DN

FPCN

FA * *

WMH burden * * * *

Abbreviations: BM, brain biomarker; DN, default-mode network; FA, fractional anisotropy; FPCN, fronto-parietal control network; WMH, white matter

hyperintensity.

F IGURE 4 Scatterplot for the interaction effect between hippocampal volume and age on episodic memory, in total sample with a median
split age of 60 years old
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some associations between specific BMs and cognitive domains are

quite strong, while others not. Both cognition and brain morphometry

change over time, with some cognitive domains like speed of

processing having a slower decline or even getting improved-like

vocabulary—(Kemper & Kemtes, 2000), and some brain modalities

having similarly increased decline—mostly in the limbic system—

(Gunbey et al., 2014) or not a significant change over time. Our results

are in accordance with existing literature suggesting that age-related

changes in cognition vary considerably across individuals and cogni-

tive domains, with some cognitive functions appearing more suscepti-

ble than others to the effects of aging (Glisky, 2007).

We repeated our multiple regression analyses with adjusting for a

global cognition covariate, in order to evaluate whether the BMs' rela-

tionships to a specific cognitive domain exceed what is already provided

by global cognition. A few studies have explored this shared and unique

variance in cognition, and based on Salthouse et al., only by simulta-

neous consideration of both shared and unique influences is it possible

to accurately identify the contribution of unique influences (Salthouse

et al., 2015). In the age-stratified analyses, after adjusting for general

cognition, the observed associations between specific BMs and cogni-

tive domains were no longer significant, although the association was

significant for general cognition. However, in some cases, new associa-

tions with specific domains appeared. Thus, it might be more accurate

to give more emphasis to the significant associations between each of

the cognitive domains and the BMs after controlling for general cogni-

tion. These analyses showed that for young adults, executive function

and episodic memory were associated with hippocampal volume.

For older adults, episodic memory was associated with WMH burden.

We could thus note that the general cognitive status might affect the

unique contribution of each individual domain. Hence, individual cogni-

tive domains, although examining different cognitive performances,

they might all be connected to each other.

There are some limitations in the current study. The cross-

sectional design does not provide information about the direction of

causality of the results. Furthermore, the a priori selection of BMs

might exclude some other biomarkers associated with cognitive per-

formance and which could explain greater age-related variation in

cognition. We implemented only previously studied and broadly avail-

able analysis techniques, as replication and standardization across

large-scale studies is important for establishing robust relationships

between brain morphometry and cognitive performance.

There are also some significant strengths. Most of the existing

studies are limited in their ecological validity by examining specific

subgroups. By expanding to the whole age range of adulthood, we

can early define brain measures that are associated with cognition,

and probably, contribute to a healthy aging. Thus, strength of the cur-

rent study is that we examined the association between BMs and cog-

nition not only in the elderly but also across the whole adult age

range. Furthermore, compared to previous publications, we used a

larger sample size. Another strength of the study is that we performed

multiple regressions taking into account the role of the general cogni-

tion, providing us with more accurate information about the unique

contribution of the BMs. Finally, by using multiple linear regression

models, we adjusted for all the BMs, and we made further adjust-

ments for other factors that may contribute to the association

between brain and cognition (age, sex, education, and ICV).

In conclusion, specific BMs are associated with cognitive perfor-

mance, in cognitively normal adults across the whole adult age range.

WMH seems to be the strongest predictor of cognition, as it is linked

to all the three cognitive domains and most associations remain signif-

icant both across the whole age range and separately in the different

age groups. Results could have significant implications in public health

and provide important information about the factors need to be con-

trolled in order to ensure well-maintained brain function.
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