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The chromatic polynomial

The chromatic polynomial χΓ(Q) of a graph Γ, for Q ∈ Z+, is the
number of colorings of the vertices of Γ with the colors 1, . . . , Q
where no two adjacent vertices have the same color.

•
χΓ(Q) =

∑

S⊂{edges of Γ}
(−1)|S|Qk(S)

where k(S) is the number of connected components of the graph
which has the same vertices as Γ and whose edge set is given by S.
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The chromatic polynomial

• The contraction-deletion rule: given any edge e of Γ which is not
a loop,

χΓ(Q) = χΓ\e(Q)− χΓ/e(Q)

If Γ contains a loop then χΓ ≡ 0.
If Γ has no edges and V vertices, then χΓ(Q) = QV .

= −e

G G\e G/e
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Tutte identities

W.T. Tutte (1969):

the “golden identity”: for a planar triangulation T ,

χT (φ + 2) = (φ + 2) φ3 V (T )−10 (χT (φ + 1))2,

where V (T ) is the number of vertices of the triangulation.

φ denotes the golden ratio, φ = 1+
√

5
2 .
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Tutte identities

Another Tutte’s relation:

χZ1
(φ + 1) + χZ2

(φ + 1) = φ−3[χY1
(φ + 1) + χY2

(φ + 1)],

where Yi, Zi are planar graphs which are locally related as follows:

Z1 Z2 Y1 Y2

Figure:
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Outline

Reference: P. Fendley and V. Krushkal, Tutte chromatic identities
from the Temperley-Lieb algebra, Geometry and Topolology
13(2009), 709-741 [arXiv:0711.0016]

Outline:

Define the chromatic algebra CQ
n .

Basic idea: consider the contraction-deletion rule as a linear
relation in the vector space spanned by graphs, rather than just a
relation defining the chromatic polynomial.

The Markov trace of a graph is the chromatic polynomial of its
dual.

Identities such as Tutte’s can then be understood as finding
elements of the trace radical: elements of the chromatic algebra
which, multiplied by any other element of the algebra, are in the
kernel of the Markov trace.
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Outline

Tutte’s polynomial relation:

χZ1
(φ + 1) + χZ2

(φ + 1) = φ−3[χY1
(φ + 1) + χY2

(φ + 1)]

Z1 Z2 Y1 Y2

Prove that the relation

Ẑ1 + Ẑ2 = φ−3 [ Ŷ1 + Ŷ2 ]

holds in the chromatic algebra Cφ+1
2 :

Ẑ1 Ẑ2 Ŷ1 Ŷ2
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Outline

Outline:

Construct a map: chromatic algebra −→ Temperley-Lieb algebra:

CQ
n −→ TLd

2n, Q = d2

The trace radical in the Temerley-Lieb algebra is well-understood:
the Jones-Wenzl projectors at special values of d.

Pull them back to get elements in the trace radical of the
chromatic algebra.
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Outline

Outline:

Construct a map: chromatic algebra −→ Temperley-Lieb algebra:

CQ
n −→ TLd

2n, Q = d2

The trace radical in the Temerley-Lieb algebra is well-understood:
the Jones-Wenzl projectors at special values of d.

Pull them back to get elements in the trace radical of the
chromatic algebra.

Result: A generalization of Tutte’s relation for the chromatic

polynomial at Q = 2 + 2 cos
(

2πj
n+1

)
. Recursive formula.
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Outline

These values of Q: Q = 2 + 2 cos
(

2πj
n+1

)
are generalizations of

Beraha numbers: Bn = 2 + 2 cos
(

2π
n+1

)
(B5 = φ + 1).

Tutte conjectured the existence of chromatic polynomial relations
for each Beraha number.
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Outline

These values of Q: Q = 2 + 2 cos
(

2πj
n+1

)
are generalizations of

Beraha numbers: Bn = 2 + 2 cos
(

2π
n+1

)
(B5 = φ + 1).

Tutte conjectured the existence of chromatic polynomial relations
for each Beraha number.

Beraha experimentally observed (in the 1970s) that the zeros of
the chromatic polynomial of large planar triangulations seem to
accumulate near these numbers (Bn).

Another Tutte’s result:

|χT (φ + 1)| ≤ φ5−k

where T is a planar triangulation and k is the number of its
vertices.

Analogue for other Beraha numbers??
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the Temperlay-Lieb algebra

The Temperley-Lieb algebra in degree n, TLn, is an algebra over
C[d] generated by 1, E1, . . . , En−1 with the relations

E2
i = Ei, EiEi±1Ei =

1
d2

Ei, EiEj = EjEi for |i−j| > 1.

Define TL = ∪nTLn. The indeterminate d may be specialized to a
complex number, and then it is denoted TLd

n.
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the Temperlay-Lieb algebra

The Temperley-Lieb algebra in degree n, TLn, is an algebra over
C[d] generated by 1, E1, . . . , En−1 with the relations

E2
i = Ei, EiEi±1Ei =

1
d2

Ei, EiEj = EjEi for |i−j| > 1.

Define TL = ∪nTLn. The indeterminate d may be specialized to a
complex number, and then it is denoted TLd

n.

Pictorially, an element of TLn is a linear combination of
1−dimensional submanifolds in a rectangle R. Each submanifold
meets both the top and the bottom of the rectangle in exactly n
points. The multiplication corresponds to vertical stacking of
rectangles. Generators:

1 = E1 = 1
d E2 = 1

d
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the Temperlay-Lieb algebra

Relation: Any circle in a picture may be erased and then the
element in the algebra is multiplied by d

The trace trd : TLd
n −→ C is defined on rectangular pictures by

connecting the top and bottom endpoints by disjoint arcs and
evaluating d#circles.

The scalar product on TLn is defined by 〈a, b〉 = tr(a b̄).
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the Temperlay-Lieb algebra

,
= = d2
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Chromatic algebra

The chromatic algebra is defined as isotopy classes of graphs in a
rectangle modulo local relations:

= −e

G G/e G\e

Figure: Relation (1) in the chromatic algebra

= 0.= (Q− 1) ·
,

Figure: Relations (2), (3) in the chromatic algebra



The Tutte polynomial relations for planar and surface graphs

Chromatic algebra

Consider the set Gn of the isotopy classes of planar graphs G
embedded in the rectangle R with n endpoints at the top and n
endpoints at the bottom of the rectangle.

Let Fn denote the free algebra over C[Q] with free additive
generators given by the elements of Gn. The multiplication is given
by vertical stacking. Define F = ∪nFn.

The chromatic algebra in degree n, Cn, is an algebra over C[Q]
which is defined as the quotient of the free algebra Fn by the ideal
In generated by the relations (1), (2), (3).

(1) If e is an inner edge of a graph G which is not a loop, then
G = G/e−G\e.
(2) If G contains an inner edge e which is a loop, then
G = (Q− 1) G\e.
(3) If G contains a 1−valent vertex (in the interior of the
rectangle), then G = 0.
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Chromatic algebra

The trace, trχ : C̄Q −→ C is defined on the additive generators
(graphs) G by connecting the endpoints of G by arcs in the plane
(denote the result by G) and evaluating

Q−1 · χ
Ĝ
(Q).

Tr = =

Figure: An example of the evaluation of the trace: The trace
= (Q− 1)2(Q− 2).
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Chromatic algebra

There is a presentation of the chromatic algebra in terms of
trivalent graphs:

CQ
n is isomorphic to the algebra generated by trivalent graph in a

rectangle, modulo local relations:

+ = + = 0.

,

Figure: Relations in the trivalent presentation of the chromatic algebra.
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Chromatic algebra

Consider the algebra homomorphism Φ: Cd2

n −→ TLd
2n:

Φ
= −1

d

Φ
d ·

The factor in the definition of Φ corresponding to a k−valent
vertex is d(k−2)/2. The overall factor for a graph G is the product
of the factors d(k(V )−2)/2 over all vertices V of G.



The Tutte polynomial relations for planar and surface graphs

Chromatic algebra

Let G be a planar graph. Then

Q−1 χQ(Ĝ) = Φ(G)

Here Q = d2. Therefore, the following diagram commutes:

CQ
n

trχ

²²

Φ // TLd
2n

trd

²²
C = // C

For example, for the theta-graph G,

Q−1χQ(Ĝ) = (Q− 1)(Q− 2) = d4 − 3d2 − 4 = Φ(G).

G

Ĝ

d ·Φ(G) =

Figure:
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Chromatic algebra

d − + +

+ 1
d + + − 1

d2

The expansions of Q−1 χQ(Ĝ), Φ(G) where G is the theta graph.
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Chromatic algebra

The trace radical of an algebra A consists of elements a such that
〈a, b〉 = 0 for all b in A.

Corollary: The pullback of the trace radical in TLd
2n to Cd2

n is in
the trace radical of the chromatic algebra.

The trace radical of the Temperley-Lieb algebra is well-understood
(Jones, Wenzl, Goodman):

It is non-trivial precisely for d = 2 cos(πj/n), and for these values
it is generated by the Jones-Wenzl projector.
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Chromatic algebra

Ẑ1 + Ẑ2 = φ−3 [ Ŷ1 + Ŷ2 ]

Ẑ1 Ẑ2 Ŷ1 Ŷ2

Φ maps the dual of Tutte’s relation to the 4-th Jones-Wenzl
relation (at d = φ):

P (4) = − d
d2−2

+ 1
d2−2

+ −d2+1
d3−2d

− 1
d3−2d

+ d2

d4−3d2+2
− d

d4−3d2+2
+ 1

d4−3d2+2
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Chromatic algebra

P
(2m−2) − 1

d · ∆2m−3

∆2m−2

P
(2m−2)

P
(2m−2)

− 1
d · (∆2m−3)2

∆2m−1∆2m−2

P
(2m−2)

P
(2m−2)

P
(2m−2)

Figure: A recursive formula for the pull-back P
(2m)

of the Jones-Wenzl
projector P (2m) in the chromatic algebra.
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Chromatic algebra

Theorem

For a planar triangulation Ĝ,

χ
Ĝ
(φ + 2) = (φ + 2) φ3 V (Ĝ)−10 (χ

Ĝ
(φ + 1))2 (1)

where V (Ĝ) is the number of vertices of Ĝ.
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Chromatic algebra

Theorem

For a planar triangulation Ĝ,

χ
Ĝ
(φ + 2) = (φ + 2) φ3 V (Ĝ)−10 (χ

Ĝ
(φ + 1))2 (2)

where V (Ĝ) is the number of vertices of Ĝ.

Idea of the proof: Construct a map

Cφ+2 −→ Cφ+1 × Cφ+1

and apply the trace:

Cφ+2

²²

// (Cφ+1/R)× (Cφ+1/R)

²²
C = // C
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Chromatic algebra

More conceptually, Tutte’s golden identity is a consequence of
level-rank duality for SO(N) topological quantum field theories.

In particular, the level-rank duality implies that the SO(3)4 and
SO(4)3 theories are isomorphic, and the latter splits into a product
of two copies of SO(3)3/2,

SO(3)4 −→ SO(3)3/2 ⊗ SO(3)3/2

The partition function of an SO(3) theory is given in terms of the
chromatic polynomial, specifically χ(φ + 2) for SO(3)4 and
χ(φ + 1) for SO(3)3/2.
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The Tutte polynomial

The Tutte polynomial of a graph G:

TG(X,Y ) =
∑

H⊂G

Xc(H)−c(G) Y n(H).

The summation is taken over all spanning subgraphs H of G.

c(H) denotes the number of connected components of the graph
H, and n(H) is the nullity of H, defined as the rank of the first
homology group H1(H).

(n(H) may also be computed as c(H) + e(H)− v(H), where e
and v denote the number of edges and vertices of H, respectively.)
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The Tutte polynomial

Basic properties of the Tutte polynomial: the contraction-deletion
rule, and the duality

TG(X, Y ) = TG∗(Y, X)

where G is a planar graph, and G∗ is its dual.

(The vertices of G∗ correspond to the connected regions in the
complement of G in the plane, and two vertices are connected by
an edge in G∗ whenever the two corresponding regions are
adjacent.)
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The Tutte polynomial

Now suppose G is a ribbon graph (a graph embedded in a surface
Σ). Consider the polynomial

PG,Σ(X, Y, A, B) =
∑

H⊂G

Xc(H)−c(G) Y k(H) As(H)/2 Bs⊥(H)/2

Here s(H) dentes the genus of the surface obtained as a regular
neighborhood of the graph H in Σ, and s⊥(H) is the genus of the
surface obtained by removing a regular neighborhood of H from Σ.
Denote by i the embedding G −→ Σ, and define

k(H) := dim (ker (i∗ : H1(H;R) −→ H1(Σ;R))).
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The Tutte polynomial

The polynomial P satisfies the contraction-deletion rule,

PG = PGre + PG/e,

and it satisfies a duality relation, analogous to the duality of the
Tutte polynomial os planar graphs:

PG (X, Y,A, B) = PG∗ (Y,X, B, A).

Reference: V. Krushkal, Graphs, links, and duality on surfaces,
arXiv:0903.5312
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The Tutte polynomial

The well-known Bollobás-Riordan polynomial of ribbon graphs is
defined by

BRG,S(X, Y, Z) =
∑

H⊂G

(X−1)r(G)−r(H) yn(H) Zc(H)−bc(H)+n(H).

Let v(H), e(H) denote the number of vertices, respectively edges,
of H, and let c(H) be the number of connected components.
Then r(H) = v(G)− c(H), n(H) = e(H)− r(H), and bc(H) is
the number of boundary components of the surface S.

The polynomial BRG,S is a universal polynomial of ribbon graphs,
satisfying the contraction-deletion rule.

The Bollobás-Riordan polynomial of a ribbon graph may be
obtained as a specialization of the polynomial PG:

BRG,S(X,Y, Z) = Y g PG,Σ(X − 1, Y, Y Z2, Y −1).


