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SURGERY ON CLOSED 4-MANIFOLDS WITH

FREE FUNDAMENTAL GROUP

VYACHESLAV S. KRUSHKAL AND RONNIE LEE

The 4-dimensional topological surgery conjecture has been established for a class
of groups, including the groups of subexponential growth (see [6], [13] for recent
developments), however the general case remains open. The full surgery conjecture
is known to be equivalent to the question for a class of canonical problems with free
fundamental group [5, Chapter 12]. The proof of the conjecture for “good” groups
relies on the disk embedding theorem (see [5]), which is not presently known to hold
for arbitrary groups. However, in certain cases it may be shown that surgery works
even when the disk embedding theorem is not available for a given fundamental
group (such results still use the disk-embedding theorem in the simply-connected
setting, proved in [3].) For example, this may be done when the surgery kernel
is represented by π1 -null spheres [4], or more generally by a π1 -null submanifold
satisfying a certain condition on Dwyer’s filtration on second homology [7]. Here
we state another instance when the surgery conjecture holds for free groups. The
following results are stated in the topological category.

Theorem 1. Let X be a 4-dimensional Poincaré complex with free fundamental

group, and assume the intersection form on X is extended from the integers. Let

f : M −→ X be a degree 1 normal map, where M is a closed 4-manifold. Then the

vanishing of the Wall obstruction implies that f is normally bordant to a homotopy

equivalence f ′ : M ′ −→ X .

In the canonical surgery problems, X has free fundamental group and trivial π2 ,
however what makes them harder to analyze is the interplay between the homotopy
type of X , and the topology of the boundary. Our result sidesteps this by considering
closed manifolds. We also prove a related splitting result:

Theorem 2. Let M be a closed orientable 4-manifold with free fundamental group,

and suppose the intersection form on M is extended from the integers. Then M is

s-cobordant to a connected sum of ♯nS1 × S3 with a simply-connected 4-manifold.

Note that if the surgery conjecture fails for free groups, then for both theorems
above there is, in general, no extension to 4-manifolds with boundary. The as-
sumption on the intersection pairing in theorem 2 is necessary, since there are forms
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not extended from the integers, for example for π1
∼= Z [8]. It follows from the

classification of 4-manifolds with infinite cyclic fundamental group that under the
assumptions of theorem 2, if π1(M) ∼= Z then M is homeomorphic to a connected
sum of S1×S3 with a simply-connected 4-manifold [5]. The s-cobordism conjecture
for free non-abelian groups remains open.

A brief outline of the proof of theorem 1 is as follows. It may be assumed that
π1(f) is an isomorphism, and ker(π2(f)) is a direct sum of standard planes. Using the
assumption on the intersection form, we construct a complex K = ∨nS1 ∨K0 , where
K0 is simply-connected, and a map X −→ K , inducing isomorphisms on π1 and π2 .
The inverse preimage of a collection of points {pi} , one in each circle summand of
K , under the composition h : M −→ X −→ K , is arranged to be a disjoint union of
3-spheres in M , at the expense of further stabilizing M . Now consider 2-spheres in
M , representing a hyperbolic basis of ker(π2(f)); they are surgered along disks lying
in the 3-spheres, and we show that the resulting elements of π2 also form a hyperbolic
basis of the surgery kernel. However, the new 2-spheres lie in a simply-connected
4-manifold, thus the disk embedding theorem yields embedded transverse pairs of
spheres, concluding the argument. In the proof of theorem 2 one also has to keep
track of the Lagrangians in the surgery kernel, so that the constructed cobordism is
a Zπ1 -homology product.

Theorem 2 also follows from the results of [1], [2]. However, there the authors
additionally assume that M is smooth, while the conclusion is still topological. Under
the assumption π2(X) = 0, the splitting theorem 2 is also stated in [9]. Our result
is entirely in the topological category, and the line of argument is different from the
above papers. In particular, instead of using 5-dimensional surgery theory, our proof
gives a more explicit geometric construction of the s-cobordism.

Remark. The idea of our proof extends in certain cases to 4-manifolds with bound-
ary. Recall from the outline above that the proof considers point inverses h−1(pi),
changes them into 3-spheres, up to a cobordism of M , and reduces the problem to
the simply-connected setting. For M with non-empty boundary, if there is a map
h : M −→ K with h−1(pi)∩∂M = S2 , for each i, then the same proof yields 3-disks,
and the argument goes through. Compare this with the general case: for example if
h−1(pi) ∩ ∂M are tori, they cannot necessarily be arranged to bound disjoint solid
tori, even up to an s-cobordism of M , see [12]. This illustrates the difference between
the closed case, considered here, and the canonical surgery problems.

Before proceeding with the proof of the theorems, we state a preliminary result.
Here we introduce a 2-complex K which will serve as a reference for the homotopy
data while the cobordisms are being constructed.

Lemma 3. Let X be a 4-dimensional Poincaré complex with free fundamental

group, and suppose the intersection form on X is extended from the integers. Then
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there is a simply-connected complex K0 and a map g : X −→ K = ∨nS1 ∨ K0 ,

inducing isomorphisms on π1 and π2 .

Proof. By [17, §0.2] we may replace X by a homotopy equivalent 4-complex with a
single top cell. Following [14], consider the 3-type (π1, π2, k) of its 3-skeleton X(3) .
Here π1 = π1(X), π2 = π2(X) is a module over π1 , and the invariant k vanishes,
since k is an element of H3(π1; π2) = 0. The assumption on the intersection form
implies that π2(X) ∼= A ⊗Z Zπ1 where A is an abelian group, and the intersection
form on π2(X) is induced from a form on A. Let K0 = K(A, 2), and set

K = K(π1, 1) ∨ K(A, 2) = ∨nS1 ∨ K0,

then K(3) has the same algebraic 3-type as X(3) . It is proved in [14] that any
homomorphism of 3-types is induced by a map between the 3-complexes. Hence
there is a map g : X(3) −→ K , inducing isomorphisms on π1 and π2 .

We claim that the obstruction o to extending g over the top cell of X , o ∈
H4(X; π3(K)), vanishes. Since π3(K0) = 0, by Hilton-Milnor’s theorem π3(K) is
generated by the Whitehead products [α · a, β · b], where a, b ∈ π2(K0), and α 6= β ∈
π1 . Suppose o does not vanish, then the value of o on the fundamental cycle in X is
non-trivial in π3(K). Since g induces isomorphisms on π1 and π2 , the attaching map
of the 4-cell has a non-trivial component [α · a, β · b] ∈ π3(X

(3)), where α 6= β ∈ π1 ,
and a, b,∈ A. However, the intersection number of two classes in π2(X) is determined
by the value of the attaching map of the 4-cell on their Whitehead product in X(3) .
In particular, in the situation above the intersection (αa) · (βb) is in Z, contradicting
the assumption on the intersection pairing on X , and the assumption α 6= β .

Proof of theorem 1. Following the proof on the higher-dimensional surgery theorem
[17] (see also [5, Chapter 11]), we may assume that f induces an isomorphism on
π1 , and the kernel of π2(f) is a direct sum of standard planes. Since the intersection
pairing on X is induced from the integers, the same is true for the intersection form
on M . Consider a map g : X −→ K given by lemma 3, and arrange the composition
h = gf : M −→ K to be transverse to a collection of points p1, . . . , pn , different
from the basepoint, one in each circle summand of K . (See [16] or [5, §9.6] for
the statement of transversality in the topological category.) Denote the 3-manifold
h−1(pi) by Pi , and set P = ∐nPi . Changing the map h by a homotopy if necessary,
we may assume that Pi is connected, for each i.

For i = 1, . . . , n, consider a framed link Li ⊂ Pi such that the surgery on Pi along
Li gives the 3-sphere (cf [10]), and let L = ∐Li . If the components of L bounded
disjoint embedded disks with interiors in M rP and with appropriate framings, then
P could be ambiently surgered to get a collection of disjoint 3-spheres, geometrically
dual to the generators of π1(M). Since this cannot be expected in general, we perform
surgery along the link L on the 4-manifold M , and denote the result by N . Here
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for the surgeries on M we use the framing of L, determined by the framing of L in
P . The components of L bound disjoint embedded disks with the required framings
in N , thus the map h is bordant to h′ : N −→ K , with (h′)−1(pi) = S3 .

Since L is null-homotopic in M , its components bound disjoint embedded disks
in M . This implies that N is homeomorphic to M , connected summed with several
copies of S2 × S2 , and also with copies of the twisted bundle S2×̃S2 . The framed
link L may be chosen so that P × I ∪L 2-handles is spin [10], so if ω2(M) = 0 then
ω2(N) is also trivial. If ω2(M) 6= 0, note that H2(M ; Z) consists of spherical classes,
thus M♯S2×̃S2 ∼= M♯S2 × S2 . In either case, we may assume N ∼= M♯k(S2 × S2),
and we have a normal bordism from the map f : M −→ X to a map N −→ X .

At this point we caution that without a restriction on the intersection pairing on
M , one could still consider a map M −→ ∨nS1 , classifying π1 , and construct N as
above. (A similar construction is used in [9] in a proof of the stable 4-dimensional
Kneser’s conjecture.) Now the intersection form on N (the form on M , stabilized
by adding several hyperbolic pairs), is extended from the integers, since N contains
3-spheres, geometrically dual to the generators of π1 . Certainly, in this general case
one cannot hope to de-stabilize N while preserving the 3-spheres.

Returning to the proof, denote N0 = closure(N r (∐S3 × I)). Then π2(N) ∼=
π2(N0) ⊗Z Zπ1 , and moreover

ker[π2(N) −→ π2(K)] ∼= ker[π2(N0) −→ π2(K0)] ⊗Z Zπ1.

Consider a standard hyperbolic basis for ker[π2(N) −→ π2(K)], say {ai, bi} . Arrange
these 2-spheres to be transverse to ∐S3 , and let the circles of intersection bound
maps of disks in the 3-spheres. Consider two copies of each disk, lying in S3 ×{−ǫ}
and S3 ×{ǫ} respectively, and use them to surger the spheres ai, bi . In other words,
we cut out an annulus out of each 2-sphere, and glue in the disks described above.
The resulting 2-spheres lie in the complement of ∐S3 , and we connect them to the
basepoint by arcs in N0 . The constructed classes αi, βi ∈ π2(N0) are homologous,
but not necessarily homotopic to ai, bi . For example, suppose bi intersects S3 in a
circle. Cutting bi as above, we get two spheres b′i and b′′i with bi = b′i + b′′i ∈ π2(N),
while βi = b′i + g b′′i . Here g is the generator of π1(N) dual to the given S3 .

Since {αi, βi} are homologous to the original hyperbolic basis, these classes freely
generate

ker[H2(N0) −→ H2(K0)] ∼= ker[π2(N0) −→ π2(K0)],

hence they also freely generate

ker[π2(N) −→ π2(K)] = ker[π2(N) −→ π2(X)]

as a module over π1 . Moreover, {αi, βj} is a collection of (algebraically) transverse
pairs of spheres in N0 , and the disk embedding theorem in the simply-connected
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setting [3], [5, §5.1] gives a collection of embedded transverse pairs, homotopic to
{αi, βi} . Surgering them out yields a homotopy equivalence f ′ : M ′ −→ X .

Proof of theorem 2. Since M is homotopy equivalent to a Poincaré complex (cf [11,
Chapter 3]), there is a map f : M −→ K , satisfying the conclusions of lemma 3.
As in the proof of theorem 1, arrange it to be transverse to a collection of points
p1, . . . , pn , one in each circle summand of K , and denote Pi = f−1(pi), P = ∐nPi .
We may assume that Pi is connected, for each i.

For i = 1, . . . , n, consider a framed link Li ⊂ Pi such that the surgery on Pi along
Li gives the 3-sphere, and let L = ∐Li . We denote the surgery on M4 along the
link L with the corresponding framings by N . Define

W1 = M × [0, 1] ∪ 2−handles; ∂W1 = M ∐ N.

As in the proof of theorem 1, the link L may be chosen so that N ∼= M♯kS2 × S2 .
The intersection form over Zπ1 on N is the form on M , plus k standard planes.
We fix notation, {ai, bi} , for a hyperbolic basis of ker[π2(N) −→ π2(K)], where
{bi} correspond to the belt spheres of the 2-handles of W1 . Let A, B be the Zπ1 -
submodules of π2(N), (freely) generated by the {ai} and {bi} respectively, then

ker[π2(N) −→ π2(K)] ∼= A ⊕ B.

Note that the homomorphism φ : A −→ B , induced by the intersection pairing:
φ(a) = Σj(a · bj)bj , is an isomorphism: φ(ai) = bi for each i.

The components of L bound in N disjoint embedded framed disks, provided by the
4-dimensional surgeries. Use these disks to ambiently surger each Pi = f−1(pi) in N

into the 3-sphere. Denote N0 = closure(N r (∐S3 × I)). As in the proof of theorem
1, consider 2-spheres αi , βi ⊂ N0 , homologous (but not necessarily homotopic) to
ai , bi . These are obtained by arranging the intersections ai, bi∩∐S3 to be transverse;
each circle of intersection bounds a map of a disk in S3 , and we surger ai and bi

along these disks. Finally, connect the resulting spheres to the basepoint by arcs in
N0 to get αi , βi .

Proposition 4. The classes {αi} freely generate the Zπ1 -module A.

Proof. The map f : M −→ K extends to a map g : N −→ K ∨k (S2 ×S2), inducing
isomorphisms on π1 and π2 , and so that π2(g) maps ai, bi to the generators āi, b̄i of
the corresponding π2(S

2 × S2). Here k is the number of components of the link L.
Set

K ′

0 = K0 ∨
k (S2 × S2) ∪ 3−cells, K ′ = ∨nS1 ∨ K ′

0

where the 3-cells are attached to {āi} , and note that A = ker[π2(N) −→ π2(K
′)].

Since {αi} are homologous to {ai} , the collection {αi} freely generates
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ker[H2(N0) −→ H2(K
′

0)]
∼= ker[π2(N0) −→ π2(K

′

0)];

thus they are also free generators over Zπ1 of

ker[π2(N0) −→ π2(K
′

0)] ⊗Z Zπ1
∼= ker[π2(N) −→ π2(K

′)] ∼= A.

The spheres {αi , βj} form a collection of algebraically transverse pairs in N0 , and
the disk embedding theorem in the simply-connected setting [3], [5, §5.1] implies that
they are homotopic to embedded transverse pairs α′

i , β ′

i . Set

W2 = N × [0, 1] ∪ 3−handles

where the 3-handles are attached to the spheres α′

i ⊂ N × {1} , and let M ′ be the
corresponding surgery on N . Consider the cobordism W = W1 ∪N W2 between M

and M ′ . Since there are only 2- and 3-handles, the chain complex for the relative
Zπ1 homology groups is 0 −→ C3 −→ C2 −→ 0, where Ci is the Zπ1 -module, freely
generated by the i-handles, cf [15]. The boundary homomorphism is given by the
intersection numbers of the attaching spheres of the 3-handles with the belt spheres
of the 2-handles. Using proposition 4, observe that the homomorphism C3 −→ C2

is identified with the isomorhism φ : A −→ B considered earlier in the proof. Thus
W is an h-cobordism, and since π1(M) is free, its Whitehead group is trivial, and
so W is an s-cobordism as asserted in the theorem.
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