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1. Introduction

A central open problem in the classification theory of topological four-
manifolds is to determine the validity of four-dimensional surgery and five-
dimensional s-cobordism theorems without fundamental group restrictions.
By work of M. Freedman [2], [3] the class of groups for which these theo-
rems hold (“good groups”) includes the groups of polynomial growth. Re-
cently Freedman and Teichner [6] showed that, more generally, the groups
of subexponential growth are good. It is expected [3] that the theorems fail
for free (non-abelian) groups; this conjecture is known as theA-B-slice
problem. A more precise conjecture states that the Whitehead double of the
Borromean RingsWh(Bor) is not (freely) slice. In this paper we study the
“relative-slice” reformulation of this problem, introduced in [4]. Our main
theorem may be viewed as a result in link theory, while providing some
evidence towards the conjecture. Recall the following definition from [4].

Definition. A pair of disjoint links(L, H) in S3 is calledrelatively sliceif
the components ofL bound disjoint embedded (topologically flat) disks in
the handlebodyB4 ∪H 2-handles, where the2-handles are attached toB4

along the components ofH with zero framings.
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This is a generalization of the usual notion of a slice link (which corre-
sponds to the case of an empty linkH in the definition above.) The second
link H is the “helping” link, and to determine whether(L, H) is relatively
slice means to measure, in some sense, the difference between the linksL
andH. The surgery conjecture for free groups fails if and only if link pairs
in a certain infinite family are not relatively slice, see [4] for a precise de-
scription. The main result of this paper, based on recent developments ([4],
[10], [11]) in link homotopy theory, is that a restricted class of link pairs
is not relatively slice, see Theorem 1 in Sect. 3. An example of a link pair,
shown to be not relatively slice, is given in Fig. 2. The main difference of
links considered here from the general case, arising from surgery, is in thatL
andH are allowed to interact only in a “controlled” way, see definition 3.1.
This result may also be thought of as an extension of the Link Composition
Lemma of Freedman and Lin (this analogy is made precise in example 3.4.)
Some of the techniques developed in the proof may be applied to the general
relative-slice problem.

The notion of link homotopy, introduced by J. Milnor [13], is a weaker
equivalence relation than the usual isotopy of links (components of a link
are allowed to self-intersect during a link homotopy.) Thus links modulo
link-homotopy are easier to study; for example, there is a simple algebraic
characterization of homotopically trivial links: a link is null-homotopic if
and only if its Milnor’sµ̄-invariants with non-repeating coefficients vanish.
Theµ̄-invariants are “higher-order linking numbers”, derived from nilpotent
qutients of the link group. A motivation behind the relative-slice approach to
the surgery conjecture is that while all known obstructions to slicing vanish
for Wh(Bor), one may hope that a certain relative version of link homotopy
theory will show that all corresponding link pairs are not relatively slice.
In fact, Theorem 1 proves that for link pairs in the (restricted) family, the
components ofL do not even bounddisjoint maps of disksin B4 ∪H 0-
framed2-handles. Similarly to the recent works [4], [7], [10], [11], we use
a combination of the classical Milnor’s algebraic approach, and of four-
dimensional geometric techniques.

The outline of the proof of the main result (Theorem 1) is as follows.
Assume a link pair(L, H) is relatively-slice. The disks bounded by the
components ofL may be assumed to be transverse to the cocores of the
2-handles attached toB4 alongH. Disregarding these2-handles,L bounds
in B4 disjoint planar surfaces, the other boundary components of which are
untwisted parallel copies of the components ofH. Given a componenth
of H, any planar surface may have many boundary components parallel to
h. Lemma 3.6, proved in Sect. 6, changes the surfaces, reducing the num-
ber of boundary components while preserving their disjointness. After this
step is applied the linking of surfaces in the four-ball is reflected, in some
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sense, in linking of their boundaries inS3, which can then be measured
usingµ̄-invariants. This step cannot, in general, be achieved without intro-
ducing gropes. We allow insertion of gropes in the surfaces since in terms
of link homotopy disjoint gropes of a sufficiently large class are as good as
disjoint disks, compare Grope Lemma 2.8. Now theµ̄-invariants of links in
S3 are used to define homomorphisms between certain free abelian groups.
The presumed planar surfaces, connecting these links inB4, force relations
between thēµ-invariants, giving an overdetermined linear algebraic prob-
lem and leading to a contradiction. The Link Composition Lemma, Grope
Lemma [4], [11] and additivity of̄µ-invariants [10] play a crucial role in
formulating this linear algebraic problem.

In a special case we also present an alternative geometric proof. It is
based on a Bing doubling construction for surfaces, due to M. Freedman,
which is described in the Appendix. We also give both an algebraic and
a geometric argument for the “pull-up procedure” for surfaces in the four-
ball, used in formulating linear algebra, and which is the main tool in dealing
with the indeterminacy of̄µ-invariants in our proof. We present both of these
alternative viewpoints, as it is unclear which of the two approaches may be
more beneficial in the search for an obstruction to surgery. The organization
of the paper is as follows.

2. Preliminary results in link homotopy.

3. Main theorem: linear algebra and the relative-slice problem.

4. A geometric proof in the Bing double case.

5. Technical lemmas.

6. A pull-up procedure for surfaces in the four-ball.

7. Appendix: Bing doubling a pair of pants (after Michael Freedman).

Acknowledgements.This work is based on my Ph.D. thesis (1996) at the University of
California, San Diego. I would like to express my deep gratitude to my advisor Michael
Freedman and thank him for introducing me to the problem and encouraging my work on
it. Section 7 in this paper consists of my notes on his results. I would like to thank Peter
Teichner for many discussions and for his encouragement. I thank the Institut des Hautes
Etudes Scientifiques for their hospitality and support while a large part of this work was
carried out, and the Alfred P. Sloan Foundation for their support; this paper was prepared
for publication during my stay at the Max-Planck-Institut für Mathematik.

2. Preliminary results in link homotopy

In this section we recall background material on Milnor groups,µ̄-invariants
and gropes from [13], [14], [7]. We also review results in link-homotopy the-
ory, established in [4], [10], [11]. Of particular importance for applications to
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the relative-slice problem are Link Composition Lemma 2.5, Grope Lemma
2.8 and the additivity of̄µ-invariants (Theorem 2.4.)

The free group on generatorsg1, . . . , gk will be denoted byFg1,...,gk
.

Given a groupG, its lower central series is defined inductively byG1 = G,
G2 = [G, G], . . . , Gq = [G, Gq−1].

We briefly review the definition of̄µ-invariants from [14]. LetL =
(l1, . . . , ln) be an oriented link inS3. Given a positive integerq, the quotient
π1(S3

r L)/(π1(S3
r L))q is generated by meridiansm1, . . . , mn to the

components ofL. Let w1, . . . , wn be some words inm1, . . . , mn which
represent the untwisted longitudes in this group, thenπ1(S3

rL)/(π1(S3
r

L))q has the presentation

< m1, . . . , mn|[m1, w1], . . . , [mn, wn], (Fm1,...,mn)q > .

The Magnus expansion homomorphismM : Fm1,...,mn −→ Z{x1, . . . , xn}
into the ring of formal non-commutative power series in the indeterminates
x1, . . . , xn is defined byM(mi) = 1 + xi, M(m−1

i ) = 1 − xi + x2
i ± . . .

for i = 1, . . . , n. Let

M(wj) = 1 + ΣµL(I, j)xI

be the expansion ofwj , where the summation is over all multiindicesI =
(i1, . . . , ik) with entries between1 andn, andxI = xi1 · . . . · xik , k > 0.
This expansion defines for each such multiindexI the integerµL(I, j).
Let ∆L(i1, . . . , ik) denote the greatest common divisor ofµL(j1, . . . , js)
wherej1, . . . , js, 2 ≤ s ≤ k − 1 is to range over all sequences obtained by
cancelling at least one of the indicesi1, . . . , ik and permuting the remaining
indices cyclicly.

Let µ̄L(I) denote the residue class ofµL(I) modulo∆L(I). For each
multiindexI of length|I| ≤ q the residue class̄µL(I) is anisotopy invariant
of the linkL, wherēµL(I) is defined using the quotientπ1(S3

rL)/(π1(S3
r

L))q.

2.1. Link homotopy and Milnor groups.

Two n-component linksL andL′ in S3 are said to belink-homotopicif they
are connected by a 1-parameter family of immersions such that different
components stay disjoint at all times.L is said to behomotopically trivialif
it is link-homotopic to the unlink.L is almost homotopically trivialif each
proper sublink ofL is homotopically trivial.

For a groupπ normally generated byg1, . . . , gk its Milnor group (with
respect tog1, . . . , gk) Mπ is defined to be the quotient ofπ by its subgroup
� [gi, g

h
i ] : 1 ≤ i ≤ k, h ∈ π �. Mπ is nilpotent of class≤ k + 1,
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in particular it is a quotient ofπ/(π)k+1, and is generated by the quotient
images ofg1, . . . , gk. The Milnor groupM(L) of a link L is defined to be
Mπ1(S3

r L) with respect to its meridiansmi.
Milnor showed in [13] that the Magnus expansion induces a well defined

injective homomorphismMM :M(Fm1,...,mk
) −→ R(x1, . . . , xk) into the

ring R(x1, . . . , xk) which is the quotient ofZ{x1, . . . , xk} by the ideal
generated by monomialsxi1· · ·xir with some index occuring at least twice.
Letwn ∈ MFm1,...,mn−1 be a word representingln in Mπ1(S3

r (l1 ∪ . . .∪
ln−1)). Thenµ̄-invariants ofL with non-repeating coefficients may also be
defined by the equation

MM(wn) = 1 + ΣµL(I, n)xI

where summation is over all multiindicesI with non-repeating entries be-
tween1 andn−1, andµ̄L(I, n) is the residue class ofµL(I, n) modulo the
indeterminacy∆L(I, n), defined above.

The Milnor group ofL is the largest common quotient of the fundamental
groups of all links link-homotopic toL, hence one has the following result.

Theorem 2.1 (Invariance under link homotopy [13])If L andL′ are link
homotopic then their Milnor groups are isomorphic. In particular, for any
multiindexI with non-repeating entries̄µL(I) = µ̄L′(I).

Isotopy of links is a special kind ofconcordance, and it is a result of
Stallings that Milnor’s invariants are preserved under this more general
equivalence relation.

Theorem 2.2 (Concordance invariance [15])If L and L′ are concordant
then all their µ̄-invariants coincide. In fact, ifL ⊂ S3 × {0} and L′ ⊂
S3 × {1} are connected inS3 × I by disjoint immersed annuli thenL and
L′ are link-homotopic([8], [9], [12]).

The next result gives an algebraic criterion for a link to be null-homotopic.

Lemma 2.3 ([13]) For ann-component linkL, the following conditions are
equivalent:

(i) L is homotopically trivial,
(ii) the components ofL bound disjoint immersed disks inB4,
(iii) M(L) ∼= M(Fm1,...,mn) with the isomorphism carrying a meridian
to li to the generatormi of the free group,
(iv) all µ̄-invariants ofL with non-repeating coefficients vanish.

It follows from Lemma 2.3 thatL is almost homotopically trivial if and
only if all its µ̄-invariants with non-repeating coefficients of length less
thann vanish. In particular, ifL is almost homotopically trivial then its
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µ̄-invariants with non-repeating coefficients of lengthn are well-defined
integers.

The following two results play a crucial role in formulating the linear-
algebraic obstruction in the proof of main theorem in this paper. For two
oriented linksL′ = (l′1, . . . , l′n) andL′′ = (l′′1 , . . . , l′′n) in S3, separated by
a 2-sphere, letL′]L′′ = (l1, . . . , ln) denote a link thei-th component of
which is obtained by taking a connected sum (ambient surgery along an arc)
of the componentsl′i andl′′i respecting their orientations,i = 1, . . . , n. The
sumL′]L′′ depends in general on the choice of bands inS3, but in each case
the choice will be clear from the context.

Lemma 2.4 (Theorem 1 in [10])Let L′ = (l′1, . . . , l′n) and L′′ = (l′′1 ,
. . . , l′′n) be two oriented links inS3, separated by a2-sphere. Then for any
choice of connecting bands (in particular, they may intersect the separat-
ing 2-sphere more than once) and for any multiindexI, the indeterminacy
∆L′]L′′(I) is a multiple of g.c.d.(∆L′(I), ∆L′′(I)), and

µ̄L′]L′′(I) ≡ µ̄L′(I) + µ̄L′′(I) mod (g.c.d.(∆L′(I), ∆L′′(I))).

In particular, if L′ andL′′ are both almost homotopically trivial, then so is
L′]L′′, and

µ̄L′]L′′(1, . . . , n) = µ̄L′(1, . . . , n) + µ̄L′′(1, . . . , n).

We will now recall a version of the Link Composition Lemma, most con-
venient for our applications. It states that the first non-vanishingµ̄-invariants
are multiplicative under composition. Given a linkL̂ = (l1, . . . , lk+1) in S3

and a linkQ = (q1, . . . , qm) in the solid torusS1 ×D2, their “composition”
is obtained by replacing the last component ofL̂ with Q. More precisely, it
is defined asC = (c1, . . . , ck+m) := (l1, . . . , lk, φ(q1), . . . , φ(qm)), where
φ: S1×D2 ↪→ S3 is a0-framed embedding whose image is a tubular neigh-
borhood oflk+1. The meridian{1}×∂D2 of the solid torus will be denoted
by ∧ and we putQ̂ := Q ∪ ∧.

Theorem 2.5 (Link Composition Lemma: Theorem 2.3 in [4], Theorem 3
and remark after its proof in [11])If bothL̂ andQ̂ are almost homotopically
trivial, then so is their compositionC = L ∪ φ(Q), and

µ̄C(1, . . . , k + m) = µ̄
L̂
(1, . . . , k + 1) · µ̄

Q̂
(1, . . . , m,∧).

In particular, if L̂andQ̂are both homotopically essential inS3 thenL∪φ(Q)
is also homotopically essential.
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Fig. 1 Two gropes of class4

2.2. Gropes and the lower central series.

A grope is a special pair (2-complex, circle). A grope has aclassk =
1, 2, . . . ,∞. For k = 1 a grope is defined to be the pair (circle, circle).
For k = 2 a grope is precisely a compact oriented surfaceΣ with a single
boundary component. Fork finite ak-gropeis defined inductively as follow:
Let {αi, βi, i = 1, . . . , genus} be a standard symplectic basis of circles for
Σ. For any positive integerspi, qi with pi + qi ≥ k andpi0 + qi0 = k for at
least one indexi0, ak-grope is formed by gluingpi-gropes to eachαi and
qi-gropes to eachβi.
The proof of the next lemma, and additional properties of gropes may be
found in [7], [11].

Lemma 2.6 (Lemma 2.1 in [7])For a space X, a loopγ lies inπ1(X)k, 1 ≤
k < ω, if and only ifγ bounds a map of somek-grope. Moreover, the class
of a grope(G, γ) is the maximalk such thatγ ∈ π1(G)k.

Given a surfaceS, anS-like gropeof classk is a2-complex obtained by
replacing a2-cell in S with ak-grope. For example, one hasannulus-likek-
gropes; sphere-like gropes are sometimes also referred to asclosedgropes.
Given a spaceX, theDwyer’s subgroupφk(X) of H2(X; Z) is the set of
all homology classes represented by maps of closed gropes of classk into
X.

Theorem 2.7 (Dwyer’s Theorem [1])Letk be a positive integer and letf :
X −→ Y be a map inducing an isomorphism onH1 and an epimorphism
onH2/φk. Thenf induces an isomorphism onπ1/(π1)k.

If two links are concordant, then by theorem 2.2 they are link-homotopic.
Grope Lemma (originally formulated in [4] in the case when one of the links
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is trivial) shows that the same conclusion holds if instead of disjoint annuli
connecting the links inS3 × [0, 1] one has disjoint immersed annulus-like
gropes of a sufficiently large class.

Theorem 2.8 (Grope Lemma: Theorem 2 in [11])Twon-component links
in S3 are link homotopic if and only if they cobound disjointly immersed
annulus-like gropes of classn in S3 × I.

Corollary 2.9 (Grope-concordance invariance)Let L = (l1, . . . , ln) and
L′ = (l′1, . . . , l′n) be two links inS3×{0} andS3×{1} respectively. Suppose
there are disjoint immersed annulus-like gropesA1, . . . , An of classn in
S3 × [0, 1] with ∂Ai = li ∪ l′i, i = 1, . . . , n. Then for any multiindexI with
non-repeating entriesµ̄L(I) = µ̄L′(I).

3. Main theorem: linear algebra and the relative-slice problem

In this section we state the main result, theorem 1, and outline its proof,
deferring verification of technical lemmas to sections 5 and 6.

Notation 3.1 Let k andm be positive integers. Consider a chain of solid
tori

W−k, R−(k−1), . . . , W−2, R−1, W−1, W1, R1, W2, . . . , Rm−1, Wm

and links in them,Li ⊂ Wi, i = −k, . . . , m andHj ⊂ Rj , j = −(k −
1), . . . , m − 1, as in Fig. 2. SetL = ∪iLi, H = ∪jHj . The chain of solid
tori will be fixed throughout the proof of theorem 1, they are important only
for visualizing the structure of the links. Once these tori are fixed, one may
consider various linksLi, Hj in them; theorem 1 applies to an infinite family
of such link pairs(L, H).

An essential feature of this definition is that there are two sublinks ofL
in the center of the chain:L−1 andL1, while to the left and to the right the
links Li andHj alternate. Note that the chain ends in both directions with
sublinks ofL.

Given a solid torusT = S1 × D2, following the convention of [4], we
denote its meridian{1} × ∂D2 by ∧T , or simply by∧ when there is no
danger of confusion. Given a linkK in the interior ofT , putK̂ := K ∪∧. A
link K in T is said to be∧-homotopically essential, ∧-homotopically trivial,
or ∧-almost homotopically trivialif K̂ satisfies this property, see Sect. 2.1
for relevant definitions.

Theorem 1 Letk, m be positive integers, and let(L, H) be a chain of links,
as in definition 3.1. Assume that for eachi = −k, . . . , m,

(i) the linkLi is ∧-homotopically essential,
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L−3 H−2 L−2 H−1 L−1 L1 H1 L2 H2 L3

W−k R−(k−1) R−1 W−1 W1 R1 Rm−1 Wm

Fig. 2 A chain of solid tori and an example of links in them. The “helping” linksHi are
drawn dashed. There are two sublinks ofL in the center:L−1 andL1, while to the left and
to the right of the center, the linksLi andHj alternate. The chain ends in both directions
with sublinks ofL

(ii) the link Li is almost homotopically trivial in the solid torusWi, and
(iii) each linkLi andHj separately is isotopic inS3 to an unlink.

Then(L, H) is not relatively slice. Moreover, the components ofL do not
even bound disjoint maps of disks inB4 ∪H 0-framed2-handles.

Remarks.Condition (i) is an essential assumption. It may be replaced by
the assumption that, for eachi, Li becomes∧-homotopically essential after
adding some number of parallel copies to its components; then Theorem
1 still implies that(L, H) is not relatively slice. (Assume that(L, H) is
relatively slice. Add the parallel copies and denote the new link byLi again.
The pair(L, H) is still relatively slice since the new components ofL bound
parallel copies of the old slices.) Note that there is no such restriction on the
links Hj .

Condition (ii) is a technical assumption which is slightly stronger than
L̂i be almost homotopically trivial inS3. This latter condition could be
assumed without loss of generality by omitting some of the components of
Li if necessary.

We include condition (iii) since it makes arguments technically easier,
and it is satisfied by the link pairs, arising in connection with the surgery
conjecture [4]. This condition corresponds to the fact that the links describe
1-handles in a Kirby handle diagram of a certain4-manifold.

It has been emphasized that the chain of links in Theorem 1 ends with
sublinks ofL in both directions. The conclusion certainly fails in general,
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if this is not the case. One can easily modify the following example to see
this.

Example 3.2The simplest example of(L, H) satisfying the assumptions of
theorem 1 is the case when each linkLi andHj consists just of the core
circle of the corresponding solid torusWi (respectivelyRj .) One may give in
this case an elementary proof, reducing the problem to linear algebra, using
linking numbers. The reader may want to keep this example in mind while
going through the proof of Theorem 1, since most technical difficulties in
the proof correspond to generalizing linking numbers toµ̄-invariants.

Example 3.3A more general family of examples is obtained from the previ-
ous one by (iterated) Bing doubling, as in Fig. 2. (See Sect. 7 for a discussion
about Bing doubles.) In Sect. 4 we present a geometric proof of theorem 1
in this special case.

Example 3.4Consider the trivial casek = m = 1, that is, the linkH is
empty, andL = L−1∪L1. SinceL−1 andL1 are∧-homotopically essential,
Link Composition Lemma 2.5 implies thatL is homotopically essential,
hence by lemma 2.3 its components do not bound disjoint maps of disks
in B4. Thus theorem 1 may be thought of as a generalization of the Link
Composition Lemma.

Briefly the idea of the proof of theorem 1 is as follows. We will show that
the components ofL do not even bound disjoint maps of disks inB4 ∪H 0-
framed2-handles. Assume on the contrary thatL bounds disjoint maps of
disks. Since a small perturbation will leave these maps disjoint, one may
assume that the disks bounded by the components ofL are smoothly im-
mersed. The disks may also be assumed to be transverse to the cocores of the
2-handles attached toB4 alongH. Disregarding these2-handles,L bounds
in B4 disjoint planar surfaces, the other boundary components of which
are untwisted parallel copies of the components ofH. Given a component
h of H, any planar surface may have many boundary components parallel
to h. In particular, each surface may have many boundary components in
every solid torusRj . Lemma 3.6, stated below, changes the surfaces, pre-
serving their disjointness, so that the surface bounded by each component
of L has precisely one boundary component in each solid torusRj . After
this step is applied the linking of surfaces in the four-ball is reflected, in
some sense, in linking of their boundaries inS3, which can then be mea-
sured usinḡµ-invariants. This step cannot, in general, be achieved without
introducing gropes. We allow insertion of gropes in the surfaces since in
terms of link homotopy disjoint gropes of a sufficiently large class are as
good as disjoint disks, compare Grope Lemma 2.8. Now we can formulate a
linear-algebraic obstruction. Thēµ-invariants of links in the solid tori{Wi}
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and{Rj} are used to define a homomorphism between certain free abelian
groups. (One can show that thēµ-invariants in question are well-defined
integers.) The presumed planar surfaces, connecting these links inB4, force
relations between thēµ-invariants, giving an overdetermined linear alge-
braic problem and leading to a contradiction. Link Composition Lemma
2.5, Grope Lemma 2.8 and additivity ofµ̄-invariants (Lemma 2.4) play a
crucial role in formulating this linear algebraic problem.

Notation 3.5 For each componentl of L, let Pl denote the (immersed)
planar surface it bounds inB4. Also for each sublinkK of L, denote∪l∈KPl

by PK . Fix an orientation for each surfacePl, and let the components of
L be oriented as their boundaries. Let∂ = ∪l∈L∂Pl denote the union of
boundaries of all surfaces.

The proof of the next result is given in Sect. 6; also see the remarks after
lemma 6.3.

Lemma 3.6 Let(L, H) be a pair of links as in Theorem 1, and letn be a pos-
itive integer. Then the associated planar surfaces{Pl}l∈L can be modified,
possibly changing their boundary components other thanL, introducing
self-intersections and inserting gropes of classn so that

i) For each componentl of L and for eachj = −(k − 1), . . . , m − 1, Pl

has exactly one boundary component in the solid torusRj ,
ii) Pl ∩ Pl′ = ∅ if l 6= l′,
iii) (∂ r L) is a ribbon link contained in∪jRj .

Proof of Theorem1. Suppose, as above, that the components ofL bound
disjoint maps of disks inB4 ∪H 0-framed2-handles or, equivalently, that
they bound inB4 disjoint immersed planar surfaces, the other boundary
components of which are untwisted parallel copies of the components ofH.
Apply lemma 3.6 withn = |L|, the number of components ofL, so from
now on we will assume conditions i)-iii) in 3.6. Letni denote the number
of components ofLi. By assumptions of Theorem 1,̂Li is homotopically
essential and almost homotopically trivial, hence itsµ̄-invariants with non-
repeating coefficients of lengthni + 1 are well-defined integers and by
lemma 2.3 at least one of them is non-zero. Order the components so that
µ̄

L̂i
(1, . . . , ni,∧) 6= 0. (By cyclic symmetry of̄µ-invariants [14] one may

assume without loss of generality that there is a non-trivialµ̄-invariant with
last index∧.) We will fix this order on the components of each linkLi for
the rest of the proof.

Notation 3.7 Let W (respectivelyR) denote the free abelian group with a
free generator for each solid torusWi (respectivelyRj):

W = Z <W−k, . . . , W−1, W1, . . . , Wm >,
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R = Z <R−(k−1), . . . , R−1, R1, . . . , Rm−1 > .

These groups have ranks(k + m) and(k + m − 2) respectively.

The location of the links{Li} and{Hj} in S3, and the presumed planar
surfaces, connecting them inB4, define homomorphisms

A: W −→ R and B: R −→ W

as follows. Fix−k ≤ i ≤ m and−(k − 1) ≤ j ≤ m − 1. Recall that
by lemma 3.6 the (planar surface)-like grope bounded by each component
of Li has exactly one boundary component in the solid torusRj . Hence
Li,j := ∂PLi ∩ Rj is anni-component link, whereni is the number of
components ofLi. The linkLi,j and the gropesPLi are ordered, according
to the order onLi. Let each linkLi,j be oriented as the boundary ofPLi .

Lemma 3.8 The linkL̂i,j is almost homotopically trivial for each(i, j) ∈
{−k, . . . ,−1} ×{1, . . . , m − 1} ∪ {1, . . . , m} × {−(k − 1), . . . ,−1}. In
particular, for any such pair(i, j), µ̄

L̂i,j
(1, . . . , ni,∧Rj ) is a well-defined

integer.

The proof of lemma 3.8 is given in Sect. 5. LetR∗ andW ∗ denote the dual
abelian groups, and defineA′: W −→ R∗, B′: R −→ W ∗ by

A′(Wi)(Rj) = µ̄
L̂i,j

(1, . . . , ni,∧Rj )

if (i, j) ∈ {−k, . . . ,−1} × {1, . . . , m − 1} ∪ {1, . . . , m}
×{−(k − 1), . . . ,−1},

A′(Wi)(Rj) = 0 otherwise;

B′(Rj)(Wi) = µ̄
L̂i

(1, . . . , ni,∧Wi) if the tori Rj andWi link,

B′(Rj)(Wi) = 0 otherwise.

In this definition the linksLi andLi,j are labelled by1, . . . , ni, respecting
the fixed order. The homomorphismsA: W −→ R andB: R −→ W are
obtained fromA′ andB′ via the isomorphismsW ∗ ∼= W , R∗ ∼= R defined
by the chosen bases. LetC denote the composition

C = B ◦ A: W −→ W.

HereB is a fixed homomorphism determined by the links{Li} in Theorem
1. The mapA is “variable”, and is given by the presumed slices forL. The
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goal is to find an obstruction for anyA. Note that the (non-trivial) entries of
the matricesA andB with respect to the fixed bases are given by

Aj,i = µ̄
L̂i,j

(1, . . . , ni,∧Rj ), Bi,j = µ̄
L̂i

(1, . . . , ni,∧Wi).

Herei ranges from−k to m andj ranges from−(k − 1) to m − 1.

Remarks.The µ̄-invariants in the definition ofB are well-defined integers
and are non-trivial, by the assumptions of Theorem 1. By Lemma 3.8, the
µ̄-invariants definingA are also well-defined. It was necessary to fix an order
on the components of the linksLi andLi,j for further arguments since the
µ̄-invariants of a given link depend, in general, on the order of indices. Note
that all constructions do not depend on the links{Hj}.

The proof of the following result essentially reduces to Link Composition
Lemma 2.5 and grope-concordance invariance 2.9, and is given in Sect. 5.

Lemma 3.9 Let(L, H) be a link pair, satisfying the assumptions of theorem
1. Then the associated matrixC is skew-symmetric.

With respect to the chosen basesC may be written as a block matrix

C =
(

0 C ′′
C ′ 0

)

whereC ′ is an m×k matrix,C ′′ is a k ×m matrix, and Lemma 3.9 states
thatC ′ = −(C ′′)t. Consider the entryC−1,1 of the matrixC:

C−1,1 =
m−1∑

i=−(k−1)

B−1,i · Ai,1.

This sum is equal toB−1,−1 ·A−1,1, sinceB−1,i = 0 unlessi = −1. Recall
that

B−1,−1 = µ̄
L̂−1

(1, . . . , n(−1),∧W−1) and

A−1,1 = µ̄
L̂1,−1

(1, . . . , n1,∧R−1).

By Link Composition Lemma 2.5,

C−1,1 = B−1,−1 · A−1,1 = µ̄L−1∪L1,−1(1, . . . , n(−1) + n1).

Similarly,

C1,−1 = µ̄L−1,1∪L1(1, . . . , n(−1) + n1).

By lemma 3.9,C−1,1 = −C1,−1. The proof of 3.9 only uses the fact that the
solid tori in definition 3.1 withnegativeindices are linked in a chain, and also
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that the tori withpositiveindices are linked. It would also hold if the toriW−1
andW1 in the center were not linked. We will now use this remaining piece
of information to find a contradiction. Consider the four central solid tori
R−1, W−1, W1, R1, the linksL−1, L1 and the (planar surfaces)-like gropes
PL−1 , PL1 they bound inB4. These gropes have boundary components in
each solid torusRj , j = −(k−1), . . . , m−1. Disregarding all other gropes,
we will now modifyPL−1 andPL1 so that they satisfy

(i) ∂(PL−1 ∪ PL1) ⊂ R−1 ∪ W−1 ∪ W1 ∪ R1, and

(ii) ∂PL1 ∩ R1 = ∅, ∂PL−1 ∩ R−1 = ∅,

and are still disjoint from each other. In other words, the pairs of the corre-
sponding components ofL−1 andL−1,1, and ofL1 andL1,−1 will cobound
in B4 disjointly immersed annulus-like gropes of classn = |L|.

The boundary components of the gropes in question, lying in the solid
tori ∪j 6=−1,1Rj , form a slice link by condition (iii) of Lemma 3.6. Attach a
collar B3 × I to B4 near eachRj for j 6= −1, 1 and let these links bound
disjoint disks in the attached collars. This takes care of condition (i).

To get condition (ii) notice that by Lemma 3.6 (iii),(∂PL1 ∪∂PL−1)∩R1
is a ribbon link, so it is concordant in a collarS3 × [0, 1] onB4 to the unlink.
By theorem 2.2 this concordance may be changed into a link homotopy
A ⊂ S3 × [0, 1]. Let the solid torusW1 move between times0 and1 by an
isotopy in the complement ofA. W−1 is a small torus linkingW1 at each
time. InS3 × {1}, the solid torusW1 lies in the complement of the unlink
(∂PL1 ∪∂PL−1)∩R1. Fix a componentl of L1. By the almost triviality ofL1
in the solid torusW1 (assumption (ii) of Theorem 1), there is a further link
homotopy inS3×[1, 2] supported inW1 so that all components ofL1 except
l become small unlinked circles, andl is a long curve inW1 ⊂ S3 × {2}.
Now the corresponding boundary component∂Pl ∩ R1 may be taken off
the rest of the link and capped off with a disk, after possibly introducing
self-intersections ofPl. Applying this argument to each componentl of L1
between times1 and2, and then running the link-homotopyA backwards in
S3 × [2, 3] gives the first part of (ii). Its second part is achieved analogously.

The result of this argument is that the linksL−1, L−1,1 andL1, L1,−1
cobound inB4 disjoint immersed annulus-like gropes of classn. An argu-
ment, similar to the proof of grope-concordance invariance 2.9 shows that
under these conditions

µ̄L1∪L−1,1(1, . . . , n(−1) + n1) + µ̄L1∪L−1(1, . . . , n(−1) + n1)
+µ̄L1,−1∪L−1(1, . . . , n(−1) + n1) = 0.
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This fact is stated and proved rigorously as lemma 5.2 in Sect. 5. SinceL̂−1

andL̂1 are homotopically essential, and due to the choice of the labeling of
their components, Link Composition Lemma 2.5 implies

µ̄L−1∪L1(1, . . . , n(−1) + n1) 6= 0, so

C1,−1 = µ̄L−1,1∪L1(1, . . . , n(−1) + n1)
6= −µ̄L−1∪L1,−1(1, . . . , n(−1) + n1)
= C−1,1.

However, Lemma 3.9 impliesC−1,1 = −C1,−1, and this contradiction con-
cludes the proof of Theorem 1.ut

4. A geometric proof of Theorem 1 in the Bing double case

In this section we use a geometric construction described in the appendix
(lemma 7.1) to prove Theorem 1 in the special case when each linkLi is an
iterated Bing double of the core circle of the corresponding solid torusWi,
see Fig. 2 and the Appendix. We state this result in the following lemma.

Lemma 4.1 Let(L, H) be a chain of links, as in definition 3.1, whereLi is
an iterated Bing double of the core circle of the corresponding solid torus
Wi, for eachi. Assume that the linkH is isotopic inS3 to the unlink. Then
the pair(L, H) is not relatively slice.

Proof.LetT denote a solid torus obtained fromW1 by enlarging it to include
also the linksH1, L2, . . . , Hm−1, Lm, compare Figs. 2 and 3. Consider this
solid torus asT = T × {1} ⊂ T × [0, 1]. Consider the links in it as a Kirby
handle diagram, where{Hi} describe1-handles, and{Li} are the attaching
curves of0-framed2-handles, Fig. 3. LetM denote the4-manifold with the
attaching regionT × {0}, defined by this Kirby diagram:

M := T × [0, 1] r (standard slices forH1 ∪ . . . ∪ Hm−1)
∪L1∪...∪Lm⊂T×{1} 0-framed 2-handles.

Define T ′ and M ′ analogously, using the linksL−1, H−1, . . . , H−(k−1),
L−k, Fig. 4.

Proposition 4.2 There exists a∧-homotopically essential linkK (a sym-
metric iterated Bing double of the core) in the attaching regionT × {0}
of M , such that the components ofK bound disjoint disks inM . Similarly,
there is a linkK ′ with the analogous properties in the attaching region
T ′ × {0} of M ′.
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M

0 0 0
0

0

L1 H1 Hm−1 Lm

T

Fig. 3

M ′

0

0

0

L−k H−(k−1) H−1 L−1

T ′

Fig. 4

Remark.The2-handles ofM , attached alongL1 ⊂ T ×{1}, do not provide
the required disks: their attaching regions cannot, in general, be pushed
down toT × {0} since the slices forH1 are missing from the collar.

Proof of Proposition4.2. Recall that the linksLi, Hj are contained in the
solid tori Wi, Rj ⊂ T = T × {1} ⊂ M respectively,i = 1, . . . , m,
j = 1, . . . , m − 1. For eachi, let ci denote the core circle ofWi. Note
that there is a planar surfaceP in T × [0, 1], cobounded by the corec of
T ×{0} and by the curvesc1, . . . , cm, which is disjoint from the links{Hj}
and from the slices they bound, Fig. 5. Choose a largen, so that then-
iterated symmetric Bing double is a refinement of each iterated Bing double
L1, . . . , Lm (see the Appendix for definitions.) An application of Corollary
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c

P

c1 c2 cm

T × {1}

T × {0}

Fig. 5

7.2 gives planar surfacesP1, . . . , P2n , all boundary components of which in
T × {1} bound disjoint disks in the attached2-handles. Their union gives
the disks required by lemma.ut
Let f : T ↪→ S3 andf ′: T ′ ↪→ S3 be0-framed embeddings such thatf(T ),
f ′(T ′) is a standard pair of Hopf-linked solid tori.

Proposition 4.3 Let(L, H) be a pair of links as in Lemma 4.1, and suppose
that (L, H) is relatively slice. Then there exist disjoint embeddings of the
handlebodiesM , M ′ into the four-ballD4, extending the embeddingsf , f ′,
fixed above, of their attaching regions intoS3 = ∂D4.

Proof. Consider the linksL, H in f(T ) ∪ f ′(T ′) ⊂ S3 = ∂B4, and let
D4 denote the4-ball obtained fromB4 by attaching a collarS3 × [0, 1],
identifying S3 × {1} with ∂B4, so that∂D4 = S3 × {0}. SinceH is an
unlink, the2-handles attached toB4 with 0−framings alongH in the relative
slicing of (L, H) may be disjointly embedded inS3 × [0, 1] in a standard
way.

For M , a collar on the attaching region, union with the1-handles, is
mapped diffeomorphically onto(f(T ) × [0, 1] r 2-handles attached toB4

along H1 ∪ . . . ∪ Hm−1). Consider the analogous embedding of the1-
handles ofM ′. An embedding of the2-handles ofM andM ′ is provided
by the relative-slice assumption on(L, H). ut

Consider the∧-essential linksf(K) andf(K ′), given by Proposition
4.2, in the Hopf-linked solid torif(T ), f(T ′) ⊂ S3 = ∂D4. By Link
Composition Lemma 2.5 the linkf(K)∪f ′(K ′) is homotopically essential.



380 V.S. Krushkal

T ′ T T ′′

L′ K
L′′

c′ c′′

Fig. 6

However, Propositions 4.2 and 4.3 imply that the components off(K) ∪
f ′(K ′) bound disjoint disks inD4, hence by lemma 2.3 it is homotopically
trivial. This contradiction concludes the proof of lemma 4.1.ut

5. Technical lemmas

First we will prove two lemmas which establish additivity ofµ̄-invariants
in the presence of planar surfaces inB4 bounded by links. These results are
used in the proof of theorem 1.

Lemma 5.1 Let L′ = (l′1, . . . , l′k), K = (lk+1, . . . , ln) andL′′ = (l′′1 , . . . ,
l′′k) be∧-almost homotopically trivial oriented links in three linked solid tori
T ′, T andT ′′ as in Fig. 6. LetL′]L′′ = (l1, . . . , lk) denote a connected sum
of L′ andL′′, such that the connecting bands lie in the complement ofT .
Then(L′]L′′) ∪ K is almost homotopically trivial, and

µ̄(L′]L′′)∪K(1, . . . , n) = µ̄L′∪K(1, . . . , n) + µ̄L′′∪K(1, . . . , n).

Proof. Let c denote the core circle of the middle solid torusT , and letc′,
c′′ be the meridians ofT ′ andT ′′ respectively. The link(L′]L′′) ∪ c is a
connected sum ofL′ ∪ c′ andL′′ ∪ c′′, hence Lemma 2.4 implies

µ̄(L′]L′′)∪c(1, . . . , k, c) = µ̄L′∪c′(1, . . . , k, c′) + µ̄L′′∪c′′(1, . . . , k, c′′).

The link (L′]L′′) ∪ K may be viewed as a composition of(L′]L′′) ∪ c and
of K. Link Composition Lemma 2.5 and the equality above give

µ̄(L′]L′′)∪K(1, . . . , n) = µ̄(L′]L′′)∪c(1, . . . , k, c) · µ̄
K̂

(k + 1, . . . , n,∧T ) =

(µ̄L′∪c′(1, . . . , k, c′) + µ̄L′′∪c′′(1, . . . , k, c′′)) · µ̄
K̂

(k + 1, . . . , n,∧T ) =
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T1 T2 T3 T4

K
L

K′
L′

Fig. 7

µ̄L′∪K(1, . . . , n) + µ̄L′′∪K(1, . . . , n).

ut
Lemma 5.2 Let T1, . . . , T4 be a chain of solid tori inS3, containing links
K = (l1, . . . , lp)L = (lp+1, . . . , lr),K ′ = (l′1, . . . , l′p),L′ = (l′p+1, . . . , l

′
r)

respectively, as in Fig. 7. Assume there are immersed annulus-like gropes
Ai of classr in B4 with ∂Ai = li ∪ l′i, i = 1, . . . , r andAi ∩ Aj = ∅ for
i 6= j, and let the links be oriented as boundaries of the gropes. AssumeK ′
andL are almost homotopically trivial in the solid torus and homotopically
trivial in S3 and thatK andL′ are∧-almost homotopically trivial. Then

µ̄K∪L(1, . . . , r) + µ̄K′∪L(1, . . . , r) + µ̄K′∪L′(1, . . . , r) = 0.

Remarks.By Link Composition Lemma 2.5 the linksK ∪ L, K ′ ∪ L and
K ′ ∪ L′ are almost homotopically trivial, and thēµ-invariants above are
well-defined integers. Note that the statement of lemma 5.2 is well-defined
with respect to the choice of orientations of the gropes. If orientation of one
of the gropes is reversed, each term in the equality above changes its sign.

Proof of Lemma5.2. LetM4 denoteB4
r (A2 ∪ . . . ∪ Ar). For eachi, fix

a meridianmi to li andm′
i to l′i. Clearly,H1(M4; Z) is freely generated

by m1, . . . , mr. As in the proof of Theorem 1 in [11], one can show that
H2(M4; Z)/φr+1 is freely generated by the tori – circle normal bundles over
l1, . . . , lr and by the Clifford tori in the neighborhoods of self-intersection
points of theAi. Hereφr+1 denotes a term in the Dwyer’s filtration, defined
in Sect. 2.2. The relations given by the Clifford tori are among the defining
relations of the Milnor group on meridians to first stages of the gropes. By
Dwyer’s theorem 2.7,

Mπ1(M4) ∼=< m2, . . . , mr|[m2, l2], . . . , [mr, lr], MFm2,...,mr >,
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whereF denotes the free group generated bym2, . . . , mr. Since the com-
ponentsl1 andl′1 are missing, it follows from assumptions on the links and
by Link Composition Lemma 2.5 that the link(l2, . . . , lr, l

′
2, . . . , l

′
r) is ho-

motopically trivial, so its Milnor group is the free Milnor group generated
by m2, . . . , mr, m

′
2, . . . , m

′
r:

M(l2 ∪ . . . ∪ lr ∪ l′2 ∪ . . . ∪ l′r) ∼= M(Fm2,...,mr,m′
2,...,m′

r
).

In particular, the relations[mi, li] are consequences of the relations in this
free Milnor group, soM(π1M

4) ∼= M(Fm2,...,mr). Consider the commu-
tative diagram

M(l2 ∪ . . . ∪ lr ∪ l′2 ∪ . . . ∪ l′r)
i−−−→ Mπ1(M4)

M1

y M2

y
R(x2, . . . , xr, x

′
2, . . . , x

′
r)

φ−−−→ R(x2, . . . , xr)

wherei is the map induced by inclusion,i(mi) = mi, i(m′
i) = mgi

i for
somegi ∈ Mπ1(M4); φ(xi) = xi, φ(x′

i) = (1 + γi)(1 + xi)(1 + γ̄i) − 1,
whereM2(gi) = γi, M2(g−1

i ) = γ̄i. The homomorphismsM1 andM2 are
the Magnus expansions. Notice thati is a well-defined homomorphism of
Milnor groups, sincei(mi) and i(m′

i) commute with their conjugates in
Mπ1(M4).

Letµ1 andµ2 be the coefficients ofx2x3 · · ·xr in the expansionsM2(l1)
and M2(l′1) respectively. The componentsl1 and l̄′1 are conjugate in
Mπ1(M4) since they cobound a grope of classr in M4, henceµ1 = −µ2.
Herel̄′1 denotesl′1 with the opposite orientation. The coefficientµ1 is equal

to the sum of coefficients of all terms of the formx(′)
2 x

(′)
3 . . . x

(′)
r in M1(l1),

where the notation indicates that each multiple is eitherxi or x′
i, and the

analogous statement holds forµ2.
Since(l′2, . . . , l′p) is homotopically trivial in the solid torusT3, µ1 =

µ̄K∪L(1, . . . , r). To computeµ2 notice that by the almost triviality ofK ′
in the solid torusT3 a non-trivial term of the form above has to contain
x′

2 · · ·x′
p. Similarly by the almost triviality ofL in the solid torusT2 it has

to contain eitherxp+1 · · ·xr or x′
p+1 · · ·x′

r. The only two possibilities are
x′

2 · · ·x′
pxp+1 · · ·xr andx′

2 · · ·x′
px

′
p+1 · · ·x′

r, soµ2 = µ̄K∪L(1, . . . , r) +
µ̄K′∪L(1, . . . , r). This concludes the proof of Lemma 5.2.ut

The remaining part of this section contains the proofs of Lemmas 3.8
and 3.9.

Proof of Lemma3.8. Fix−k ≤ i ≤ −1 and1 ≤ j ≤ m, the case(i, j) ∈
{1, . . . , m} × {−(k − 1), . . . ,−1} is treated analogously. SupposeL̂i,j is
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not almost homotopically trivial. By Lemma 3.6 (iii),Li,j is homotopically
trivial in S3, hence it contains a∧Rj -essential proper sublink. LetF be the
family of all ∧-essential sublinks of the linksLi,1, . . . , Li,m−1 and letn be
the minimal number of components among the links inF . By assumption,
n < ni, whereni = |Li|. Consider a linkM in F which hasn components,
and which is rightmost among all such links. In other words, ifM ⊂ Hp

andM ′ ⊂ Hp′ is another link inF with p′ > p, then|M ′| > n. Denote the
components ofLi, corresponding toM , by k1, . . . , kn.

Let Rp, 1 ≤ p ≤ m − 1, be the solid torus containingM , soM is a
sublink of Li,p. The solid torusWp+1 links Rp on the right, and by Link
Composition Lemma 2.5 the linkM ∪Lp+1 is homotopically essential and,
by the minimality property ofM , M ∪Lp+1 is almost homotopically trivial.
Also by the choice ofM , the link M ′ := (∂Pk1 ∪ . . . ∪ ∂Pkn) ∩ Rp+1 is
∧-homotopically trivial (in the casep = m − 1, this is a vacuous link).

Now consider the link(k1∪. . .∪kn)∪Lp+1 and the (planar surfaces)-like
gropes it bounds. Consider the solid toriRi, Wi, Ri+1 andRp, Wp+1, Rp+1.
As in the part of the proof of Theorem 1 contained in Sect. 3 (independent of
this lemma) the gropes in question may be modified so that their boundary
components are contained in these six solid tori, and so that∂PLp+1∩Rp+1 =
∅, ∂PLp+1 ∩ Rp = ∅. The link(k1, . . . , kn) in Wi is a proper sublink ofLi,
so by assumption (ii) in Theorem 1 it is homotopically trivial in the solid
torusWi. This means that the link under consideration inRi ∪Wi ∪Ri+1 is
homotopically trivial. Attach a collar toB4 and let this link bound disjoint
immersed disks in it.

The link left in the boundary of the four-ball is(M ∪ Lp+1 ∪ M ′) ⊂
Rp ∪Wp+1 ∪Rp+1. In the casep = m−1 this already gives a contradiction
with the Grope Lemma 2.8:M ∪ Lp+1 is a homotopically essential link
bounding inB4 disjoint gropes of a large class. The contradiction finishes
the proof of lemma 3.8 in this case.

Supposep < m − 1. The link M ′ is ∧-homotopically trivial, however
it might be not homotopically trivial in the solid torusRp+1. We will use
lemma 5.1 to find a contradiction with the Grope Lemma. Connect the
corresponding components ofM andM ′ by arcs in the annulus-like gropes
they bound inB4. By Lemma 6.4 these arcs may be pulled up to(S3

rWp+1)
without introducing intersections between the gropes bounded by different
components ofM , but they might now intersectPLp+1 . These intersections
are resolved by first pushing them down to the first stages of the gropes
(see 2.5 in [5]) and then performing finger moves onPLp+1 that create new
boundary components forPLp+1 – small circles linking the arcs inS3. Each
intersection point between thek-th and thel-th stages of two gropes creates
2k+l small circles.
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The following argument shows how to modify the gropes in order to
eliminate these new boundary components, without changing the rest of the
link. Fix one of these new circles,c, and recall thatc and some componentl
of Lp+1 coubound a punctured (planar surface)-like grope, and are allowed
to intersect. The link(Lp+1 r l) is homotopically trivial in the solid torus
Wp+1. LetA be a link-homotopy in a collarS3× [0, 1] onB4 which restricts
to null-homotopy of(Lp+1 r l) in Wp+1. The link M ∪ M ′ is ribbon, so
the whole linkK := (M ∪ (Lp+1 r l) ∪ M ′∪ small circles) is concordant,
hence by Theorem 2.2 link-homotopic inS3 × [1, 2] to the unlink. (The
componentl moves between times0 and2 by an isotopy in the complement
of K). In S3× [2, 3], c can be just taken off the rest of the linkK∪l, possibly
introducing intersections betweenc andl, and capped off with a disk. Now
run the homotopyA backwards (except forc) in S3 × [3, 4]. This procedure
is repeated to eliminate all small circles.

Now take the band sum ofM andM ′ along the arcs we have inS3
r

Wp+1 and apply Lemma 5.1 to conclude that the link(M]M ′) ∪ Lp+1 is
homotopically essential. By Grope Lemma 2.8 this contradicts the existence
of gropes of large class it bounds inB4. This means that the link̂Li,j is in
fact almost homotopically trivial and concludes the proof of Lemma 3.8.

ut
Proof of Lemma3.9. Fix −k ≤ i ≤ −1 and1 ≤ j ≤ m, and consider
the solid toriRj−1, Wj andRj . Let Li,j−1]Li,j = (l1, . . . , lni) denote a
connected sum ofLi,j−1 and Li,j such that the connecting bands lie in
the complement of the solid torusWj . Label the components ofLj by
ni + 1, . . . , ni + nj . (The labelings of both links should obey the order
defined in the proof of Theorem 1.) The following proposition provides a
geometric interpretation of the mapC.

Proposition 5.3

Ci,j = µ̄Li∪(Lj,i−1]Lj,i)(1, . . . , ni + nj)

for −k ≤ i ≤ −1 and2 ≤ j ≤ m − 1;

Ci,1 = µ̄Li,1∪L1(1, . . . , ni + n1),

Ci,m = µ̄Li,m−1∪Lm(1, . . . , ni + nm).

The analogous equalities also hold for1 ≤ i ≤ m and−(k−1) ≤ j ≤ −1.

Proof.For j 6= 1, m,

Ci,j =
m−1∑

p=−(k−1)

Bi,p · Ap,j = Bi,i · Ai,j + Bi,i+1 · Ai+1,j ,
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sinceBi,p = 0 unlessp = i− 1, i. Recall that the (non-trivial) entries of the
matricesA, B are given by

Bi,p = µ̄
L̂i

(1, . . . , ni,∧Wi), Ap,i = µ̄
L̂i,k

(1, . . . , ni,∧Rk
).

Hence

Ci,j = µ̄
L̂i

(1, . . . , ni,∧) · µ̄
L̂j,i−1

(1, . . . , nj ,∧)

+µ̄
L̂i

(1, . . . , ni,∧) · µ̄
L̂j,i

(1, . . . , nj ,∧).

By Composition Lemma 2.5 (i) and Lemma 5.1 this is equal to

µ̄Li∪Lj,i−1(1, . . . , ni + nj) + µ̄Li∪Lj,i+1(1, . . . , ni + nj)
= µ̄Li∪(Lj,i]Lj,i)(1, . . . , ni + nj).ut

The proof of Lemma 3.9 is divided into two steps. We will first prove that
Ci,j = −Cj,i for (i, j) 6= (−1, 1), (1,−1). Consider two groups of three
solid tori each:Ri−1, Wi, Ri andRj−1, Wj , Rj , the linksLi, Lj and the
(planar surfaces)-like gropesPLi , PLj they bound inB4. As in the proof of
Theorem 1 in Sect. 3, one may assume that∂PLi ∩ (Ri−1 ∪ Ri) = ∅ and
∂PLj ∩ (Rj−1 ∪ Rj) = ∅. One may also assume that∂PLi and∂PLj are
disjoint from all other solid tori except the six ones under consideration.

Connect the corresponding components ofLi,j−1 and ofLi,j by arcs in
the gropes they bound. They can be pulled up to arcs inS3

rWj , but possibly
intersections betweenPLi andPLj are introduced. These intersections can
be resolved by finger moves which produce new boundary components for
PLj – small circles linking the connecting arcs inS3. Just as in the proof of
lemma 3.8, these circles can be disregarded. Apply the same arguments to
the triple of toriRi−1, Wi, Ri.

Now there are two(ni + nj)-component links inS3: Li ∪ (Lj,i−1]Lj,i)
andLj∪(Li,j−1]Li,j), separated by a2-sphere and disjoint singular annulus-
like gropes inB4 connecting them. An application of Proposition 5.3 and
the grope-concordance invariance (Corollary 2.9) conclude the proof of step
1.

It remains to be shown thatC−1,1 = −C1,−1. This is a formal linear-
algebraic argument that uses the result of step 1 and the fact thatC factors
through the near-diagonal matrixB. It follows from the definition thatA,
B andC are block matrices

A =
(

0 A′′
A′ 0

)
, B =

(
B′ 0
0 B′′

)
, C =

(
0 −C ′′
C ′ 0

)
We have proved in step 1 thatC ′ andC ′′ are related as follows:

C ′ =
(

v c′
D w

)
, C ′′ =

(
vt Dt

c′′ wt

)
.
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Herec′ = C1,−1 andc′′ = C−1,1 are integers,v is a row of length(k − 1),
w is a column of height(m − 1) andD is an(m − 1) × (k − 1)-matrix. We
need to show thatc′ = c′′. The blocksB′, B′′ of B are of the form

B′ =




b−k 0 0 0 0
b−(k−1) b−(k−1) 0 0 0

...
0 0 b−3 b−3 0
0 0 0 b−2 b−2
0 0 0 0 b−1




,

B′′ =




b1 0 0 0 0
b2 b2 0 0 0
0 b3 b3 0 0

...
0 0 0 bm−1 bm−1
0 0 0 0 bm




wherebi = µ̄
L̂i

(1, . . . , ni,∧Wi) 6= 0, i = −k, . . . , m. Let B1, B2 denote
the rows with the entries

B1 = (b−1/b−2,−b−1/b−3, . . . , (−1)kb−1/b−k),
B2 = (b1/b2,−b1/b3, . . . , (−1)mb1/bm).

Note that

c′ = B2 · w, v = B2 · D, c′′ = B1 · vt, wt = B1 · Dt.

Hence

c′ = B2 · w = B2 · (B1 · Dt)t = B2 · D · Bt
1,

c′′ = B1 · vt = B1 · (B2 · D)t = B1 · Dt · Bt
2,

soc′ = (c′′)t = c′′. This concludes the proof of Lemma 3.9.ut

6. A pull-up procedure for surfaces in the four-ball

The purpose of this section is to describe a “pull-up” procedure for arcs in
surfaces, properly immersed in(B4, S3). In some sense linking of surfaces
in B4 is reflected in linking of their boundaries inS3 after the procedure is
applied. Consider two examples as an elementary illustration of this idea.
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(i)

h

l1

l2

l3

(ii)

l1

l2

l3 = ∂D

∂P

(iii)

l2

l3

∂P

∂D

Fig. 8 Example 6.1

Example 6.1LetL = (l1, l2, l3) be the Borromean rings and letH = (h) be
a small circle linkingl1, Fig. 8 (i). As before,H is drawn dashed.L may be
unlinked by intersectingl1 andl2 two times, with the opposite signs. These
intersections may be resolved by lettingl2 go twice (algebraically trivially)
over the2-handle attached toh. Forgetting the2-handle, this exhibitsl1 and
l3 as boundaries of disks, andl2 bounds inB4 a disjoint from them pair of
pantsP , the other two boundary components of which are parallel copies
of h, Fig. 8 (ii). Just looking at∂P in S3, it is unclear whether these two
boundaries ofP are “essential”, or whether they can be cancelled to replace
the pair of pantsP by a disk bounded byl2.

Connect this algebraically cancelling pair of components of∂P by an
arcα in P , and pull this arc by an ambient isotopy toS3 = ∂B4. The arc
α links in B4 the diskD bounded byl3, and to preserve disjointness ofP
andD, α will pull to S3 a little patch ofD. PuncturingD will introduce a
new boundary component ofD, linking α in S3. Taking connected sum of
two components of∂P alongα gives Fig. 8 (iii), whereP andD are annuli.
Now the link seen in the tubular neighborhoodN of h is clearly essential
(considered with the meridian ofN .)

Example 6.2Consider the unlinkL = (l1, l2), and letH = (h) be a merid-
ian to l1, as in the previous example, Fig. 9 (i). Consider disjoint disks
bounded byl1 andl2, pushed fromS3 into B4. Move the diskP , bounded
by l2, by an ambient isotopy ofB4 ∪h 2-handle, so that it goes geometri-
cally twice over the2-handle. Figure 9 (ii) shows the link inS3 = ∂B4

(disregarding the2-handle.) Note that the link in the neighborhood ofh is
identical to that in the previous example. Applying toP the same procedure
as above, however, takes∂P off l1, Fig. 9 (iii).

To state the general result, let(L, H) be a relatively slice pair of links, so
the components ofL bound disjoint disks inB4 ∪H,0−framings 2−handles.
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(i)

h

l1

l2

(ii)

l1

l2∂P

(iii)

l1

l2∂P

Fig. 9 Example 6.2

For each componenth of H, let Nh denote its tubular neighborhood – the
attaching region of the corresponding2-handle. One may assume that all
solid tori Nh are disjoint from each other and fromL. Disregarding the
2-handles,L bounds inB4 disjoint planar surfaces, the other boundary
components of which are untwisted parallel copies of the components ofH.
For each componentl of L, let Pl denote the surface it bounds inB4, and
let ∂ = ∪l∈L∂Pl denote the boundary of all surfaces.

Lemma 6.3 Let (L, H) be a pair of links withH an unlink, and letn be
a positive integer. Assume that the components ofL bound disjoint disks in
B4 ∪H 0-framed2-handles. Then the associated planar surfaces{Pl}l∈L

can be modified, possibly changing their boundary components other than
L, introducing self-intersections and inserting gropes of classn, so that

i) for each l ∈ L and for eachh ∈ H, Pl has exactly one boundary
component inNh,

ii) Pl ∩ Pl′ = ∅ if l 6= l′,
iii) (∂ r L) is a ribbon link contained in∪h∈HNh.

Remarks.Property (i) is the main result of the lemma, while (iii) says that it
can be achieved without making the link inS3 much worse – to start with,
(∂ r L) ⊂ ∪h∈HNh was an unlink. The conclusion that the link is ribbon
implies, in particular, that all its̄µ-invariants vanish. In the applications of
lemma 6.3,n will be the number of components ofL. We allow insertion of
gropes of classn in the surfaces because in terms of link homotopy, disjoint
gropes of a sufficiently large class are as good as disjoint disks, compare
Grope Lemma 2.8.

Lemmas 3.6 and 6.3 slightly differ in that the solid torusRj in the
statement of 3.6 is replaced by the tubular neighborhoodNh here (so that
lemma 6.3 could potentially be applicable to more general link pairs than
those considered in Theorem 1.) However, the proofs of these lemmas are
identical.
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We give two proofs of lemma 6.3. The first proof is more elementary,
and is reduced to an algebraic lemma about nilpotent groups. The second
proof is geometric and is more explicit. We present two arguments, since
both may be useful in the study of the general relative-slice problem. For
the first proof we need the following lemma.

Lemma 6.4 (Lemma 14 in [10])LetΣ = Σ1 ∪ . . . ∪ Σk be a collection of
properly immersed disjoint compact connected surfaces inB4 with∂Σi 6= ∅
for eachi = 1, . . . , k. Let(α, ∂α) be an arc in(B4

r Σ, S3
r ∂Σ), and let

n be a positive integer. Then there exists an arcβ ⊂ S3
r∂Σ with∂β = ∂α

such thatα ∪ β bounds an immersed gropeG of classn in B4
r Σ.

Remarks.One can easily construct an example of surfacesΣ and an arcα
such thatα ∪ β does not bound inB4

r Σ an immerseddiskfor any choice
of β. Lemma 6.4 also holds if the surfacesΣ are replaced by a collection of
properly immersed disjointgropes.

Proof of Lemma6.3. For each componenth of H and for each planar surface
P with ∂P ∩ Nh = ∅, introduce a thin finger leading fromP to Nh ⊂ S3,
disjoint from all other surfaces, so that a new boundary component ofP
– a small circle inNh – is introduced. Now if some planar surfaceQ has
more than one boundary component inNh, say,∂Q ∩ Nh = q1 ∪ . . . ∪ qs,
s > 1, connect eachqi, i = 1, . . . , s − 1 by an arcαi in Q with qs. Since
each surface has a boundary component inNh, Lemma 6.4 provides an arc
βi ⊂ Nh such thatαi ∪βi bounds an immersed gropeGi in the complement
of other surfaces. Singular surgeries onQ alongGi, i = 1, . . . , s−1 improve
Q to satisfy condition (i) above without violating (ii) and (iii). Applying this
procedure to each torusNh and surfaceQ, we get a collection of (planar
surfaces)-like gropes{Pl} of classn bounded by the components ofL
satisfying conditions (i)-(iii). ut
Alternative proof of Lemma6.3. Fix a componenth of H. For each surfaceP
with ∂P ∩Nh = ∅ introduce a thin finger leading toNh ⊂ S3, disjoint from
all other surfaces, so that a new boundary component ofP – a small circle
in Nh – is introduced. The proof consists of(n + 1) steps which gradually
improve the planar surfaces.

Step1. Suppose a surfaceA has more than one boundary component in
Nh. Denote∂A ∩ Nh by l11, . . . , l

1
k (the superscript indicates the number of

the step). Connect the componentsl1i , i = 1, . . . , k−1 with l1k by embedded
arcsαi ⊂ A andβi ⊂ (Nh r ∂). Let ∆i denote an immersed disk bounded
byαi∪βi in B4. SupposeP 6= A is a surface intersecting∆i. Perform finger
moves onP along arcs in∆i connecting the intersection pointsP ∩∆i with
βi. This makesP disjoint from∆i but introduces new boundary components
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(i)

αi ⊂ A

l1i

l1k

βi

P

∆i

(ii)

l11 l12 l1k

Fig. 10

of P – small circles linkingβi in S3. Figure 10 (i) illustrates this move in
the lower dimension(B3, S2).

Apply this procedure to every surfaceP 6= A intersecting∆i, making
all finger moves disjoint from each other. Now perform singular surgery on
A along∆i, so that the two boundary componentsl1i andl1k are connected
by a band alongβi, Fig. 10 (ii). The disk∆i was made disjoint from all
planar surfaces exceptA, so the only singularities possibly created by the
surgery are self-intersections ofA. An application of this construction to
each1 ≤ i ≤ k − 1 implies property (i) forA andNh, but possibly creates
in Nh many new boundary components of other surfaces. Apply this to
each planar surfaceA that has more than one boundary component inNh,
not taking into consideration the small circles created by the previousA’s
during this step. Notice that these small circles are better than the original
componentsl1i ’s in the sense that they bound gropes of class2 (genus one
surfaces) inS3 disjoint from each other and from all other curves (punctured
circle bundles overl1k.) This is the progress achieved by step 1.

If step 1 did not introduce any small linking circles to the bands, this
would be the end of the process (for the componenth): each surface would
have exactly one boundary component inNh.

Stepk, 2 ≤ i ≤ n. Suppose after step(k − 1) a surfaceB has more
than one boundary component inNh. Denote∂B ∩ Nh by lk−1, lk1 , . . . , lkm
wherelk1 , . . . , lkm are small circles andlk−1 is the “long curve” created by
stepk − 1. Connectlk1 , . . . , lkm to lk−1 by arcs inB and inNh and proceed
as in Step 1. Many new little circleslk+1

j ’s are introduced, however they
bound inS3 disjoint gropes of classk. Their stages2 throughk are parallel
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l1

l2i

l3j

Nh

Fig. 11 l3j bounds a grope of class3

copies of the gropes of class(k − 1), bounded bylki ’s. Figure 11 shows the
situation after step 2.

Step(n + 1). The small circles introduced during stepn bound disjoint
from each other and from all curves inS3 gropes of classn. Push these gropes
into B4 and consider them as parts of “planar surfaces”. Now each (planar
surface)-like grope has exactly one boundary component inNh. Condition
(iii) holds since to start with(∂ r L) was an unlink, and the singularities
introduced at each step are ribbon.ut

7. Appendix. Bing doubling a pair of pants (after Michael Freedman)

This section describes a geometric construction, lemma 7.1, which is used in
Sect. 4 to give an alternative proof of theorem 1 in the special case when each
link Li is a Bing double. We also present a related construction, lemma 7.3,
which may be applied directly to theA-B-slice problem (see [4]) to show that
homotopically essential links are notA-B-slice for certain decompositions
(A, B). Given a linkL = (l1, . . . , ln) which is assumed to be(A, B)-
slice, the idea is to find for eachi a ∧-essential link in the attaching region
of one of the handlebodiesAi, Bi the components of which bound disjoint
immersed disks in the handlebody. IfL is homotopically essential, this gives
a contradiction with the Link Composition Lemma.
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Fig. 12 Bing double

An untwisted Bing doubleB(L) of a linkL is obtained by replacing each
component ofL within its neighborhood by two components of the form
An untwistediteratedBing double ofL is defined inductively, starting with
L and at each step Bing doubling some of the components of the link given
by the previous step. A special case – an untwistedsymmetrick-iterated
Bing double ofL is Bk(L). Note thatL is trivially an iterated Bing double
of itself.

Lemma 7.1 (Bing doubling a pair of pants)Let P be a pair of pants (disk
with three punctures) with∂P = α∪β∪γ and setM = P ×D2. Letα′ and
α′′ denote the components of the untwisted Bing double of the core circle
α×{0} in α×D2; define analogouslyβ′, β′′ ⊂ β×D2 andγ′, γ′′ ⊂ γ×D2.

(i) Then there exist disjoint embedded pairs of pantsP ′, P ′′ ⊂ M with
∂P ′ = α′ ∪ β′ ∪ γ′ and∂P ′′ = α′′ ∪ β′′ ∪ γ′′.
(ii) Let N denoteM/self-plumbings, a thickening ofP/self-intersections.
Then there exist disjoint immersed pairs of pantsP ′, P ′′ ⊂ N with ∂P ′ =
α′ ∪ β′ ∪ γ′ and∂P ′′ = α′′ ∪ β′′ ∪ γ′′.

Proof.M will be thought of as a subset ofS3×[0, 1] with α×D2 ⊂ S3×{0}
andβ × D2, γ × D2 ⊂ S3 × {1} and such that the obvious Morse function
on S3 × I has just one critical point onP . The pairs of pantsP ′, P ′′ in
case (i) are described in the time slicesS3 × {t}, 0 ≤ t ≤ 1, in Fig. 13.
The Morse function has two critical points onP × D2, they correspond to
the first arrow and the last arrow in the figure. (More precisely, the critical
points lie on∂(P × D2).) The middle arrow, between times1/2 and3/4,
corresponds to the critical points of index one on the surfacesP ′ andP ′′,
one critical point for each surface.

To prove (ii) notice that after an isotopy, the singular points of the quotient
map π: P −→ P/self-intersections may be assumed to lie in a collar
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β′′

γ′

γ′′

Fig. 13 Bing doubling a pair of pants

α× [0, ε] ⊂ P , below all critical points of the Morse function. Now consider
the two curves of the Bing double on Fig. 12. One of them can be shrunk
by an ambient isotopy of the solid torus to be very short, at the expense of
making the other curve long. In other words, the image of one curve under
the projectionS1 × D2 −→ S1 lies in a small neighborhood of a point,
while the image of the other curve covers most of the circle. Thus it may be
assumed that only one of the pairs of pantsP ′, P ′′ described in (i) intersects
the singular set of the quotient mapM −→ N . This concludes the proof of
Lemma 7.1. ut
Corollary 7.2 Let P be a planar surface with the boundary components
α, β1, . . . , βn and setN = P × D2/self-plumbings. Fix an integerk ≥ 1
and letβ1

i , . . . , β
(2k)
i denote the components of the untwisted symmetrick-
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M4

α′ α′′

γ

γ

0
0

Fig. 14 A schematic picture, and a Kirby handle diagram forM4

iterated Bing double ofβi in βi × D2, i = 1, . . . , n; define analogously
α1, . . . , α(2k) ⊂ α × D2. Then there exist disjoint immersed (embedded if
N = P × D2) planar surfacesP 1, . . . , P (2k) ⊂ N with ∂P j = αj ∪ βj

1 ∪
. . . ∪ βj

n, j = 1, . . . , 2k.

Proof.AssumeN = P × D2, the general case with self-plumbings follows
as in the proof of Lemma 7.1. The proof is by induction on the number of
boundary components ofP . The casen = 2 is proved by induction onk. If
k = 1, this is Lemma 7.1, and the casek > 1 follows by an application of
Lemma 7.1 to the pairs of pants for(k − 1)-iterated Bing doubles, provided
by the induction hypothesis onk. Assume the statement holds fori < n.
GivenP with ∂P = α ∪ β1 ∪ . . . ∪ βn, choose a circleγ in the interior of
P cuttingP into a pair of pantsP1 with ∂P1 = γ ∪ β1 ∪ β2 and a planar
surfaceP2 with ∂P2 = α ∪ γ ∪ β3 ∪ . . . ∪ βn. By Lemma 7.1 applied to
P1 and the induction hypothesis applied toP2 the statement also holds for
i = n. ut

We will now describe a related construction which may be applied to
the A-B-slice problem to show that homotopically essential links are not
A-B-slice for certain decompositions(A, B).

Lemma 7.3 Let(S, γ) be a once-punctured torus,N = S×D2, and letα ⊂
∂N be an embedded curve representing a standard generator ofH1(N ; Z).
Denote byα′, α′′ the components of the untwisted Bing double ofα in a
tubular neighborhoodα × D2

ε ⊂ ∂N and setM = N ∪α′,α′′ 2−handles.
The precise description ofM is given in terms of the Kirby handle diagram,
Fig. 14.
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Then the componentsγ′ and γ′′ of the untwisted Bing double ofγ in
γ × D2 bound inM disjoint immersed disksD′, D′′.

Proof. Figure 15 describes disjoint immersed pairs of pantsP ′, P ′′ ⊂ N
with ∂P ′ = α′ ∪β′ ∪ γ′, ∂P ′′ = α′′ ∪β′′ ∪ γ′′. Hereβ′ is a parallel copy of
α′′ andβ′′ is a parallel copy ofα′. NowD′, D′′ are obtained fromP ′, P ′′ by
attaching the cores of the corresponding2-handles and their parallel copies
to α′, α′′, β′, β′′. Note that each diskD′, D′′ goes over both2-handles.

ut
Remark.More generally, in the notations of lemma 7.3,letα1, . . . , αn denote
the components of an untwisted iterated Bing double ofα in α × D2

ε , and
let M denoteN ∪α1,...,αn 2−handles. Then there exists an integerk ≥ 1
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such that the componentsγ1, . . . , γ(2k) of the untwisted symmetrick-iterated

Bing double ofγ bound inM disjoint immersed disksD1, . . . , D(2k)

Proof. Let k be an integer large enough so that the symmetrick-iterated
Bing double ofα is a refinement of the given Bing double. (Notice that its
components bound disjoint embedded disks in the attached2−handles.) Let
P ′, P ′′ be the pairs of pants as in the proof of lemma 7.3. Now an iterated
application of Lemma 7.1 toP ′, P ′′ concludes the proof of this remark.ut
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