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1. Introduction

A central open problem in the classification theory of topological four-
manifolds is to determine the validity of four-dimensional surgery and five-
dimensional s-cobordism theorems without fundamental group restrictions.
By work of M. Freedman [2], [3] the class of groups for which these theo-
rems hold (“good groups”) includes the groups of polynomial growth. Re-
cently Freedman and Teichner [6] showed that, more generally, the groups
of subexponential growth are good. It is expected [3] that the theorems fail
for free (non-abelian) groups; this conjecture is known asAhB-slice
problem A more precise conjecture states that the Whitehead double of the
Borromean Ring$V h(Bor) is not (freely) slice. In this paper we study the
“relative-slice” reformulation of this problem, introduced in [4]. Our main
theorem may be viewed as a result in link theory, while providing some
evidence towards the conjecture. Recall the following definition from [4].

Definition. A pair of disjoint links(L, H) in S is calledrelatively sliceif
the components of bound disjoint embedded (topologically flat) disks in
the handlebody3* Uy 2-handles, where the-handles are attached &'
along the components éf with zero framings.
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This is a generalization of the usual notion of a slice link (which corre-
sponds to the case of an empty lifikin the definition above.) The second
link H is the “helping” link, and to determine whethgt, H) is relatively
slice means to measure, in some sense, the difference between the links
andH. The surgery conjecture for free groups fails if and only if link pairs
in a certain infinite family are not relatively slice, see [4] for a precise de-
scription. The main result of this paper, based on recent developments ([4],
[10], [11]) in link homotopy theoryis that a restricted class of link pairs
is not relatively slice, see Theorem 1 in Sect. 3. An example of a link pair,
shown to be not relatively slice, is given in Fig. 2. The main difference of
links considered here from the general case, arising from surgery, is ib that
andH are allowed to interact only in a “controlled” way, see definition 3.1.
This result may also be thought of as an extension of the Link Composition
Lemma of Freedman and Lin (this analogy is made precise in example 3.4.)
Some of the techniques developed in the proof may be applied to the general
relative-slice problem.

The notion of link homotopy, introduced by J. Milnor [13], is a weaker
equivalence relation than the usual isotopy of links (components of a link
are allowed to self-intersect during a link homotopy.) Thus links modulo
link-homotopy are easier to study; for example, there is a simple algebraic
characterization of homotopically trivial links: a link is null-hnomotopic if
and only if its Milnor’s i-invariants with non-repeating coefficients vanish.
Thep-invariants are “higher-order linking numbers”, derived from nilpotent
gutients of the link group. A motivation behind the relative-slice approach to
the surgery conjecture is that while all known obstructions to slicing vanish
for Wh(Bor), one may hope that a certain relative version of link homotopy
theory will show that all corresponding link pairs are not relatively slice.
In fact, Theorem 1 proves that for link pairs in the (restricted) family, the
components of. do not even boundisjoint maps of diskin B Uy 0-
framed2-handles. Similarly to the recent works [4], [7], [10], [11], we use
a combination of the classical Milnor’s algebraic approach, and of four-
dimensional geometric techniques.

The outline of the proof of the main result (Theorem 1) is as follows.
Assume a link pair(L, H) is relatively-slice. The disks bounded by the
components of. may be assumed to be transverse to the cocores of the
2-handles attached #B* along H. Disregarding thes2-handles L bounds
in B* disjoint planar surfaces, the other boundary components of which are
untwisted parallel copies of the componentsbf Given a component
of H, any planar surface may have many boundary components parallel to
h. Lemma 3.6, proved in Sect. 6, changes the surfaces, reducing the num-
ber of boundary components while preserving their disjointness. After this
step is applied the linking of surfaces in the four-ball is reflected, in some
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sense, in linking of their boundaries %, which can then be measured
usingji-invariants. This step cannot, in general, be achieved without intro-
ducing gropes. We allow insertion of gropes in the surfaces since in terms
of link homotopy disjoint gropes of a sufficiently large class are as good as
disjoint disks, compare Grope Lemma 2.8. Now thimvariants of links in

S3 are used to define homomorphisms between certain free abelian groups.
The presumed planar surfaces, connecting these link4 jiforce relations
between thgi-invariants, giving an overdetermined linear algebraic prob-
lem and leading to a contradiction. The Link Composition Lemma, Grope
Lemma [4], [11] and additivity ofi-invariants [10] play a crucial role in
formulating this linear algebraic problem.

In a special case we also present an alternative geometric proof. It is
based on a Bing doubling construction for surfaces, due to M. Freedman,
which is described in the Appendix. We also give both an algebraic and
a geometric argument for the “pull-up procedure” for surfaces in the four-
ball, used in formulating linear algebra, and which is the main tool in dealing
with the indeterminacy gi-invariants in our proof. We present both of these
alternative viewpoints, as it is unclear which of the two approaches may be
more beneficial in the search for an obstruction to surgery. The organization
of the paper is as follows.

2. Preliminary results in link homotopy.

3. Main theorem: linear algebra and the relative-slice problem.

4. A geometric proof in the Bing double case.

5. Technical lemmas.

6. A pull-up procedure for surfaces in the four-ball.

7. Appendix: Bing doubling a pair of pants (after Michael Freedman).
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2. Preliminary results in link homotopy

In this section we recall background material on Milnor grogpsvariants
and gropes from [13], [14], [7]. We also review results in link-homotopy the-
ory, established in[4], [10], [11]. Of particular importance for applications to
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the relative-slice problem are Link Composition Lemma 2.5, Grope Lemma
2.8 and the additivity ofi-invariants (Theorem 2.4.)

The free group on generatogs, . .., g, Will be denoted byFy, ., .
Given a group?, its lower central series is defined inductively@y = G,
G?=1[G,q)],...,G1=[G,G1].

We briefly review the definition ofi-invariants from [14]. Letl. =

(I1,...,1,) be an oriented link 5. Given a positive integey, the quotient
m1(S% L) /(7 (S® . L))? is generated by meridians, ..., m, to the
components ofL. Let wy,...,w, be some words imn4,...,m, which

represent the untwisted longitudes in this group, thei$® . L) /(71 (S3
L)) has the presentation

<mi, ... ,mplmi,wi], . M, wa], (B )T >

The Magnus expansion homomorphidih F,,, .. — Z{z1,...,zn}

into the ring of formal non-commutative power series in the indeterminates
Z1,..., T, is defined byM (m;) = 1 + x;, M(mlfl) =1-x; +x?:|:...
fori=1,...,n. Let

M(wj) =1+ Xur(l, j)zr

be the expansion af;, where the summation is over all multiindicés=
(i1,...,1) with entries betweet andn, andz; = x;, - ... - z;,, k > 0.
This expansion defines for each such multindethe integeruy, (1, 7).

Let Ag(i1,...,ix) denote the greatest common divisorof(j1, . - -, js)
wherejq, ..., js, 2 < s < k — 1isto range over all sequences obtained by
cancelling at least one of the indicgs. . . , i, and permuting the remaining
indices cyclicly.

Let iz (1) denote the residue class of (1) modulo Az (I). For each
multiindexI of length|I| < g the residue clasg;, (/) is anisotopy invariant
ofthelink L, whereji, (1) is defined using the quotient (S3\. L) /(1 (S®~
L)".

2.1. Link homotopy and Milnor groups.

Two n-component linkd, andL’ in S? are said to béink-homotopidf they
are connected by a 1-parameter family of immersions such that different
components stay disjoint at all timesis said to benomotopically trivialif
it is link-homotopic to the unlinkLZ is almost homotopically triviaif each
proper sublink off. is homotopically trivial.

For a groupr normally generated by, . . ., gi its Milnor group (with
respecttay, ..., gr) M« is defined to be the quotient afby its subgroup
< [giygt :1 <i <k, he€nr> Mnisnilpotent of clasx< k + 1,
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in particular it is a quotient of-/(r)**+1, and is generated by the quotient
images ofg1, . . ., gx. The Milnor groupM (L) of a link L is defined to be
M1 (S? ~ L) with respect to its meridians;.

Milnor showed in [13] that the Magnus expansion induces a well defined
injective homomorphismd/M: M (F,, ...m,) — R(x1,...,xx) into the
ring R(z1,...,x;) which is the quotient oZ{x1,...,z;} by the ideal
generated by monomials,- - -z;, with some index occuring at least twice.
Letw,, € MF,,, .. m, , beawordrepresentirgin M (S3~ (I U...U
l.—1)). Theng-invariants ofL with non-repeating coefficients may also be
defined by the equation

MM(w,) =1+ Xur(I,n)xs

where summation is over all multiindicdswith non-repeating entries be-
tweenl andn—1, andjz, (1, n) is the residue class @fz, (1, n) modulo the
indeterminacyAr, (I, n), defined above.

The Milnor group ofL is the largest common quotient of the fundamental
groups of all links link-homotopic td., hence one has the following result.

Theorem 2.1 (Invariance under link homotopy [13]) L and L’ are link
homotopic then their Milnor groups are isomorphic. In particular, for any
multiindex/ with non-repeating entriegy, (1) = i/ (I).

Isotopy of links is a special kind afoncordanceand it is a result of
Stallings that Milnor’'s invariants are preserved under this more general
equivalence relation.

Theorem 2.2 (Concordance invariance [15lf) L and L’ are concordant
then all their -invariants coincide. In fact, if. ¢ S2 x {0} and L’ C

83 x {1} are connected i3 x I by disjoint immersed annuli thefand

L’ are link-homotopid[8], [9], [12]).

The nextresult gives an algebraic criterion for a link to be null-homotopic.

Lemma 2.3 ([13]) For ann-component link, the following conditions are
equivalent:
() L is homotopically trivial,
(i) the components af bound disjoint immersed disks i,
(i) M(L) = M(Fm,,...m,) With the isomorphism carrying a meridian
to [; to the generatorn; of the free group,
(iv) all p-invariants of L with non-repeating coefficients vanish.

It follows from Lemma 2.3 thaL is almost homotopically trivial if and
only if all its m-invariants with non-repeating coefficients of length less
thann vanish. In particular, ifL is almost homotopically trivial then its
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p-invariants with non-repeating coefficients of lengttare well-defined
integers.

The following two results play a crucial role in formulating the linear-
algebraic obstruction in the proof of main theorem in this paper. For two
oriented linksL' = (I4,...,1,,) andL” = (If,...,1”) in S3, separated by
a 2-sphere, let/tL” = (l4,...,l,) denote a link the-th component of
which is obtained by taking a connected sum (ambient surgery along an arc)
of the components and!/ respecting their orientations= 1,...,n. The
sumL/tL" depends in general on the choice of band$inbut in each case
the choice will be clear from the context.

Lemma 2.4 (Theorem 1 in [10])Let L' = (I},...,I}) and L” = (I},

.., 1"y be two oriented links i$3, separated by &-sphere. Then for any
choice of connecting bands (in particular, they may intersect the separat-
ing 2-sphere more than once) and for any multiindexhe indeterminacy
AL’jiL” (I) isa muItlpIe of g.C.d.(AL/(I), A[/l([)), and

s (1) = i () + fige (1) mod (g.c.d.(Ay (1), Apr(1))).

In particular, if L’ and L” are both almost homotopically trivial, then so is
L'tL”, and

ﬂL’tiL”(lw . .,n) = [LL/(l, - ,’I’L) —{—ﬂL//(l, - ,n).

We will now recall a version of the Link Composition Lemma, most con-
venient for our applications. It states that the first non-vanishimyariants
are multiplicative under composition. Given a link= (I1, ..., ly1)in S3
and alink@Q = (q1, .. ., qn) inthe solid toruss* x D?, their “composition”
is obtained by replacing the last componenfoﬁ/ith Q. More precisely, it

is defined ag” = (Cl, ceey Cker) = (ll, R (b(ql), ceey (b(qm)), where
¢: 81 x D? — S3isa0-framed embedding whose image is a tubular neigh-
borhood ofl;., 1. The meridian{1} x 9D? of the solid torus will be denoted

by A and we put) := Q U A.

Theorem 2.5 (Link Composition Lemma: Theorem 2.3 in [4], Theorem 3
and remark after its proof in [11l) both L and( are almost homotopically
trivial, then so is their compositio@' = L U ¢(Q), and

pc(l,...,k+m):ﬂz(l,...,k+1)-p@(l,...,m,A).

In particular, if L and@ are both homotopically essentialfit thenLU(Q)
is also homotopically essential.



Four dimensional topological surgery 369

Fig. 1 Two gropes of clasd

2.2. Gropes and the lower central series.

A gropeis a special pair (2-complex, circle). A grope haslassk =
1,2,...,00. Fork = 1 a grope is defined to be the pair (circle, circle).
Fork = 2 a grope is precisely a compact oriented surfaceith a single
boundary component. Féffinite ak-gropeis defined inductively as follow:
Let{a;, 5;,i = 1,...,genus} be a standard symplectic basis of circles for
Y. For any positive integers;, ¢; with p; + ¢; > k andp;, + ¢;, = k for at

least one indexy, a k-grope is formed by gluing;-gropes to each; and
g;-gropes to eacly;.

The proof of the next lemma, and additional properties of gropes may be
found in [7], [11].

Lemma 2.6 (Lemma2.1in [7])For aspace X, aloop liesin7(X)*, 1 <
k < w, if and only ify bounds a map of sormegrope. Moreover, the class
of a grope(G, v) is the maximak such thaty € 71 (G)*.

Given a surface, anS-like gropeof classk is a2-complex obtained by
replacing &-cell in S with ak-grope. For example, one hasnulus-likek-
gropes; sphere-like gropes are sometimes also referrecctosesigropes.
Given a spaceX, the Dwyer’s subgroups, (X) of Ho(X;Z) is the set of
all homology classes represented by maps of closed gropes ofdlates
X.

Theorem 2.7 (Dwyer's Theorem [1]Letk be a positive integer and lgt
X — Y be a map inducing an isomorphism &R and an epimorphism
on Hy/¢,.. Thenf induces an isomorphism on /(m)*.

If two links are concordant, then by theorem 2.2 they are link-homotopic.
Grope Lemma (originally formulated in [4] in the case when one of the links
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is trivial) shows that the same conclusion holds if instead of disjoint annuli
connecting the links ir5® x [0, 1] one has disjoint immersed annulus-like
gropes of a sufficiently large class.

Theorem 2.8 (Grope Lemma: Theorem 2 in [11Twon-component links
in S3 are link homotopic if and only if they cobound disjointly immersed
annulus-like gropes of classin S3 x I.

Corollary 2.9 (Grope-concordance invariancegt L = (I4,...,l,) and
L'=(l},...,l,)betwolinksins® x {0} and.S3 x {1} respectively. Suppose
there are disjoint immersed annulus-like gropés ..., A, of classn in
S3 x [0,1] withdA; = 1; UlL,i = 1,...,n. Then for any multiindeX with
non-repeating entriespy, (1) = iz (I).

3. Main theorem: linear algebra and the relative-slice problem

In this section we state the main result, theorem 1, and outline its proof,
deferring verification of technical lemmas to sections 5 and 6.

Notation 3.1 Let £ andm be positive integers. Consider a chain of solid
tori

W—k7 Rf(k71)7 s 7W—27 R—17 W—17 W17 R17 W27 ceey Rm—la Wm

and links inthem[L; ¢ Wi, i = —k,...,mandH; C R;,j = —(k —
1),...,m—1,asinFig. 2. Sel. = U;L;, H = U;H;. The chain of solid

tori will be fixed throughout the proof of theorem 1, they are important only
for visualizing the structure of the links. Once these tori are fixed, one may
consider various link$;, H; in them; theorem 1 applies to an infinite family

of such link pairg L, H).

An essential feature of this definition is that there are two sublinks of
in the center of the chair:_; and L4, while to the left and to the right the
links L; and H; alternate. Note that the chain ends in both directions with
sublinks ofL.

Given a solid toru§” = S* x D?, following the convention of [4], we
denote its meridiaq1} x dD? by Ar, or simply by A when there is no
danger of confusion. Given a link in the interior ofT’, putf( = KUA.A
link K in T"is said to be\-homotopically essentiah-homotopically trivial
or A-almost homotopically triviaif K satisfies this property, see Sect. 2.1
for relevant definitions.

Theorem 1 Letk, m be positive integers, and IeL., H) be a chain of links,
as in definition 3.1. Assume that for eaick —k, ..., m,

(i) the link L; is A-homotopically essential,
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Fig. 2 A chain of solid tori and an example of links in them. The “helping” linKs are
drawn dashed. There are two sublinksoh the centerZ _; andL+, while to the left and

to the right of the center, the links; and H; alternate. The chain ends in both directions
with sublinks of L

(ii) the link L; is almost homotopically trivial in the solid torug’;, and

(iii) each link L; and H; separately is isotopic i to an unlink.
Then(L, H) is not relatively slice. Moreover, the componentd.ado not
even bound disjoint maps of disksAt Uy 0-framed2-handles.

RemarksCondition (i) is an essential assumption. It may be replaced by
the assumption that, for ea¢hl.; becomes\-homotopically essential after
adding some number of parallel copies to its components; then Theorem
1 still implies that(L, H) is not relatively slice. (Assume thal, H) is
relatively slice. Add the parallel copies and denote the new link fggain.

The pair(L, H) is still relatively slice since the new componentd.diound
parallel copies of the old slices.) Note that there is no such restriction on the
links H;.

Condition (ii) is a technical assumption which is slightly stronger than
L; be almost homotopically trivial ir63. This latter condition could be
assumed without loss of generality by omitting some of the components of
L; if necessary.

We include condition (iii) since it makes arguments technically easier,
and it is satisfied by the link pairs, arising in connection with the surgery
conjecture [4]. This condition corresponds to the fact that the links describe
1-handles in a Kirby handle diagram of a certaimanifold.

It has been emphasized that the chain of links in Theorem 1 ends with
sublinks of L in both directions. The conclusion certainly fails in general,
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if this is not the case. One can easily modify the following example to see
this.

Example 3.2The simplest example ¢f, H ) satisfying the assumptions of
theorem 1 is the case when each libkand H; consists just of the core
circle of the corresponding solid torlig; (respectivelyz;.) One may give in

this case an elementary proof, reducing the problem to linear algebra, using
linking numbers. The reader may want to keep this example in mind while
going through the proof of Theorem 1, since most technical difficulties in
the proof correspond to generalizing linking numberg{ovariants.

Example 3.3A more general family of examples is obtained from the previ-
ous one by (iterated) Bing doubling, asin Fig. 2. (See Sect. 7 for a discussion
about Bing doubles.) In Sect. 4 we present a geometric proof of theorem 1
in this special case.

Example 3.4Consider the trivial casé = m = 1, that is, the linkH is
empty, and. = L_1UL4. SinceL_; andL areA-homotopically essential,
Link Composition Lemma 2.5 implies thdt is homotopically essential,
hence by lemma 2.3 its components do not bound disjoint maps of disks
in B4, Thus theorem 1 may be thought of as a generalization of the Link
Composition Lemma.

Briefly the idea of the proof of theorem 1 is as follows. We will show that
the components af do not even bound disjoint maps of disksBr Uy 0-
framed2-handles. Assume on the contrary tiiabounds disjoint maps of
disks. Since a small perturbation will leave these maps disjoint, one may
assume that the disks bounded by the componenisare smoothly im-
mersed. The disks may also be assumed to be transverse to the cocores of the
2-handles attached t8* along H. Disregarding thes2-handles L bounds
in B* disjoint planar surfaces, the other boundary components of which
are untwisted parallel copies of the component&/ofGiven a component
h of H, any planar surface may have many boundary components parallel
to h. In particular, each surface may have many boundary components in
every solid torusk?;. Lemma 3.6, stated below, changes the surfaces, pre-
serving their disjointness, so that the surface bounded by each component
of L has precisely one boundary component in each solid tBrug\fter
this step is applied the linking of surfaces in the four-ball is reflected, in
some sense, in linking of their boundaries9f, which can then be mea-
sured usingi-invariants. This step cannot, in general, be achieved without
introducing gropes. We allow insertion of gropes in the surfaces since in
terms of link homotopy disjoint gropes of a sufficiently large class are as
good as disjoint disks, compare Grope Lemma 2.8. Now we can formulate a
linear-algebraic obstruction. Theinvariants of links in the solid togW; }
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and{R;} are used to define a homomorphism between certain free abelian
groups. (One can show that tleinvariants in question are well-defined
integers.) The presumed planar surfaces, connecting these liBksfiorce
relations between thg-invariants, giving an overdetermined linear alge-
braic problem and leading to a contradiction. Link Composition Lemma
2.5, Grope Lemma 2.8 and additivity gfinvariants (Lemma 2.4) play a
crucial role in formulating this linear algebraic problem.

Notation 3.5 For each componeritof L, let P, denote the (immersed)
planar surface it bounds i8*. Also for each sublinks of L, denoteU;c x P,
by Pk . Fix an orientation for each surfade, and let the components of
L be oriented as their boundaries. liet= U;c1, 0P, denote the union of
boundaries of all surfaces.

The proof of the next result is given in Sect. 6; also see the remarks after
lemma 6.3.

Lemma 3.6 Let(L, H) be apair of links asin Theorem 1, andiebe a pos-
itive integer. Then the associated planar surfa¢€s};-;, can be modified,
possibly changing their boundary components other tharntroducing

self-intersections and inserting gropes of classo that

i) Foreach componeritof L and foreacty = —(k—1),...,m—1, B,
has exactly one boundary component in the solid tdtys

i)y BNPr=0ifl#0,

iii) (0~ L) isaribbon link contained in; R;.

Proof of Theorenl. Suppose, as above, that the components bbund
disjoint maps of disks i3* Uy 0-framed2-handles or, equivalently, that
they bound inB* disjoint immersed planar surfaces, the other boundary
components of which are untwisted parallel copies of the componefts of
Apply lemma 3.6 withn = |L|, the number of components &f so from
now on we will assume conditions i)-iii) in 3.6. Let denote the number

of components of_;. By assumptions of Theorem 1, is homotopically
essential and almost homotopically trivial, henceitisivariants with non-
repeating coefficients of length; + 1 are well-defined integers and by
lemma 2.3 at least one of them is non-zero. Order the components so that
ﬂii(l’ ...,ni, \) # 0. (By cyclic symmetry ofu-invariants [14] one may
assume without loss of generality that there is a non-trjgadvariant with

last indexA.) We will fix this order on the components of each lihkfor

the rest of the proof.

Notation 3.7 Let W (respectivelyR) denote the free abelian group with a
free generator for each solid torus; (respectivelyR;):

W=7Z<W_p,.... W_1,Wi,..., Wy >,
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R=17 <R—(k—1)7"' 7R717R17"' 7Rm71> .
These groups have ranke + m) and(k + m — 2) respectively.

The location of the link§ Z;} and{H;} in S, and the presumed planar
surfaces, connecting them Bt*, define homomorphisms

AW —R and B: R — W

as follows. Fix—k < i < mand—(k — 1) < 7 < m — 1. Recall that

by lemma 3.6 the (planar surface)-like grope bounded by each component
of L; has exactly one boundary component in the solid taysHence

L;; := O0Pr, N R; is ann;-component link, where; is the number of
components of;. The link L; ; and the grope#’;,, are ordered, according

to the order on’;. Let each linkL; ; be oriented as the boundary Bf .

Lemma 3.8 The Iinkfm is almost homotopically trivial for eachy, j) €

{=k,...,=1} x{1,...om =1} U{L,....m} x {—=(k—1),...,—1}.In
particular, for any such paifi, j), ﬁzi’j(l, ..+, Mi, AR;) is a well-defined
integer.

The proof of lemma 3.8 is given in Sect. 5. et andWW* denote the dual
abelian groups, and defin€: W — R*, B": R — W* by
A,(W’L)(RJ) = /jf (17 - e Ny AR;‘)

2,7

if (4,7) e {—k,...,—1} x{1,...,m =1} U{L,...,m}
x{=(k—1),...,—1},

A'(W;)(R;) = 0 otherwise;
B'(R;)(Wi) = bz, (1,...,ni, Aw,) if the tori R; andW; link,
B'(R;)(W;) = 0 otherwise.

In this definition the linksL; and L; ; are labelled by, . . ., n;, respecting
the fixed order. The homomorphisms W — R andB: R — W are
obtained fromA’ and B’ via the isomorphism&/* =~ W, R* = R defined
by the chosen bases. L&tdenote the composition

C=BoA:W — W.

HereB is a fixed homomorphism determined by the lif{s } in Theorem
1. The mapA is “variable”, and is given by the presumed slices foiThe
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goal is to find an obstruction for any. Note that the (non-trivial) entries of
the matricesA and B with respect to the fixed bases are given by

Aj,i = ﬂzw_(l, ey NG /\Rj), BZ'J‘ = ﬂii(l, ey Ny /\Wi)'
Herei ranges from-k to m andj ranges from-(k — 1) tom — 1.

RemarksThe ji-invariants in the definition o3 are well-defined integers
and are non-trivial, by the assumptions of Theorem 1. By Lemma 3.8, the
p-invariants definingd are also well-defined. It was necessary to fix an order
on the components of the links; and L; ; for further arguments since the
p-invariants of a given link depend, in general, on the order of indices. Note
that all constructions do not depend on the ligks; }.

The proof of the following result essentially reduces to Link Compaosition
Lemma 2.5 and grope-concordance invariance 2.9, and is given in Sect. 5.

Lemma 3.9 Let(L, H) be alink pair, satisfying the assumptions of theorem
1. Then the associated matiixis skew-symmetric.

With respect to the chosen bagésnay be written as a block matrix

OC//
= (5)

whereC’ is anm x k matrix,C" is a k x m matrix, and Lemma 3.9 states
thatC’ = —(C")*. Consider the entr¢’_ ; of the matrixC:

m—1
C_11= Z B_q1;- Az
i=—(k—1)

Thissumisequalt®_; ;- A_; 1, sinceB_;; = 0 unless; = —1. Recall
that

B_la—l = ﬂi_l (17 s (1) /\W_l) and
A_l,l = ﬁ21771(17 R P /\R71)-
By Link Composition Lemma 2.5,
Cap=B1-1-Aa1=pr_uL,_(1,...,nyy +n1).
Similarly,
Ci-1=fr_y ur, (L, gy + ).

Bylemma3.9(C"_;; = —Ci,—1. The proof of 3.9 only uses the fact that the
solid toriin definition 3.1 witmegativandices are linked in a chain, and also
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that the tori withpositiveindices are linked. It would also hold if the té#i_;
andW; in the center were not linked. We will now use this remaining piece
of information to find a contradiction. Consider the four central solid tori
R_1,W_q1,Wy, Ry, thelinksL_+, Ly and the (planar surfaces)-like gropes
Pr_,, Pr, they bound inB*. These gropes have boundary components in
each solidtoru®;, j = —(k—1), ..., m—1. Disregarding all other gropes,
we will now modify P, _, and Py, so that they satisfy

0] 8(PL_1 U PLl) CR4UW_1UW;URy,and
(II) OPL1 NR =0, OPL71 NR_1 =10,

and are still disjoint from each other. In other words, the pairs of the corre-
sponding components éf_; andL_, ;, and ofL; andL; _; will cobound
in B* disjointly immersed annulus-like gropes of class- | L|.

The boundary components of the gropes in question, lying in the solid
tori U;._1 1 R;, form a slice link by condition (iii) of Lemma 3.6. Attach a
collar B3 x I to B* near eachR; for j # —1,1 and let these links bound
disjoint disks in the attached collars. This takes care of condition (i).

To get condition (i) notice that by Lemma 3.6 (ii() P, UOP,_,)N Ry
is a ribbon link, so itis concordantin a coll§? x [0, 1] on B* to the unlink.

By theorem 2.2 this concordance may be changed into a link homotopy
A C S x [0,1]. Let the solid torug¥; move between timeand1 by an
isotopy in the complement od. W_; is a small torus linking//; at each
time. InS3 x {1}, the solid torug¥; lies in the complement of the unlink
(0P, U0PL_,)NR;.Fixacomponenitof L;. By the almost triviality of_;

in the solid torudd; (assumption (ii) of Theorem 1), there is a further link
homotopy inS® x [1, 2] supported if¥; so that all components df; except

I become small unlinked circles, ahds a long curve i/, c S3 x {2}.
Now the corresponding boundary componéiy N R; may be taken off
the rest of the link and capped off with a disk, after possibly introducing
self-intersections of,. Applying this argument to each componéwf L
between time$ and2, and then running the link-homotopybackwards in

S3 x [2, 3] gives the first part of (ii). Its second part is achieved analogously.

The result of this argument is that the links.1, L_; ; and Ly, L1 1
cobound inB* disjoint immersed annulus-like gropes of classAn argu-
ment, similar to the proof of grope-concordance invariance 2.9 shows that
under these conditions

Bryon_y (L, sy +n1) + finon (1, - n-y) +na)
+/7/L17_1UL_1(17 .. ,Tl(,l) —+ nl) =0.
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This fact is stated and proved rigorously as lemma 5.2 in Sect. 5. Bince
and L, are homotopically essential, and due to the choice of the labeling of
their components, Link Composition Lemma 2.5 implies

fr_qurn, (1, ..., n-1) + ny) # 0, SO

Cl,—l == ,U‘L,171UL1 (17 ‘e 7n(—1) + nl)

However, Lemma 3.9 implieS_; ; = —C} _1, and this contradiction con-
cludes the proof of Theorem 1.0

4. A geometric proof of Theorem 1 in the Bing double case

In this section we use a geometric construction described in the appendix
(lemma 7.1) to prove Theorem 1 in the special case when each jiigkan
iterated Bing double of the core circle of the corresponding solid tdrfys

see Fig. 2 and the Appendix. We state this result in the following lemma.

Lemma 4.1 Let(L, H) be a chain of links, as in definition 3.1, wheteis

an iterated Bing double of the core circle of the corresponding solid torus
W;, for eachi. Assume that the linK is isotopic inS? to the unlink. Then
the pair (L, H) is not relatively slice.

Proof.Let 7" denote a solid torus obtained frdi, by enlarging it to include
also the linksHy, Lo, ..., Hy 1, Ly, compare Figs. 2 and 3. Consider this
solidtorusag” =T x {1} C T x [0, 1]. Consider the links in it as a Kirby
handle diagram, whereH; } describel-handles, and L; } are the attaching
curves ofd-framed2-handles, Fig. 3. Led denote the-manifold with the
attaching regior?” x {0}, defined by this Kirby diagram:

M =T x [0,1] \ (standard slices fof/; U ... U Hy,—1)
Ur,u..uLmcTx {1} 0-framed 2-handles.

Define 7" and M’ analogously, using the linké 1, H_1,..., H_g_1),
L_y, Fig. 4.

Proposition 4.2 There exists a\-homotopically essential link (a sym-
metric iterated Bing double of the core) in the attaching regiorx {0}

of M, such that the components &fbound disjoint disks i/. Similarly,
there is a link K’ with the analogous properties in the attaching region
T' x {0} of M'.
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Fig. 3

Ml

Fig. 4

RemarkThe2-handles of\/, attached alond; 7' x {1}, do not provide
the required disks: their attaching regions cannot, in general, be pushed
down toT" x {0} since the slices fof{; are missing from the collar.

Proof of Proposition4.2. Recall that the linké,;, H; are contained in the
solid tori W;, R; ¢ T = T x {1} C M respectively; = 1,...,m,

j =1,...,m — 1. For eachi, let ¢; denote the core circle dfi’;. Note

that there is a planar surfaggin 7' x [0, 1], cobounded by the coreof

T x {0} and by the curves, . . ., ¢;,, Which is disjoint from the link§ [ }

and from the slices they bound, Fig. 5. Choose a largso that then-
iterated symmetric Bing double is a refinement of each iterated Bing double
Lq,..., L, (see the Appendix for definitions.) An application of Corollary
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Fig. 5

7.2 gives planar surfacdsy, . . ., Po», all boundary components of which in
T x {1} bound disjoint disks in the attach@ehandles. Their union gives
the disks required by lemma.0

Letf: T < S3andf’: T' — S3 be0-framed embeddings such th&tT),
f/(T") is a standard pair of Hopf-linked solid tori.

Proposition 4.3 Let(L, H) be a pair of links as in Lemma 4.1, and suppose
that (L, H) is relatively slice. Then there exist disjoint embeddings of the
handlebodied/, M’ into the four-ballD*, extending the embeddingisf”,
fixed above, of their attaching regions in$8 = 0D*.

Proof. Consider the links, H in f(T) U f/(T") ¢ S = 0B*, and let
D* denote thel-ball obtained fromB* by attaching a collas® x [0, 1],
identifying 3 x {1} with dB*, so thatoD* = S3 x {0}. SinceH is an
unlink, the2-handles attached ®* with 0—framings along7 in the relative
slicing of (L, H) may be disjointly embedded i x [0, 1] in a standard
way.

For M, a collar on the attaching region, union with thdandles, is
mapped diffeomorphically ontgf (T) x [0, 1] \ 2-handles attached tB*
along H; U ... U H,,_1). Consider the analogous embedding of the
handles ofM/’. An embedding of th@-handles ofAM/ and M’ is provided
by the relative-slice assumption ¢h, H). O

Consider theh-essential linksf (K) and f(K'), given by Proposition
4.2, in the Hopf-linked solid torif (T), f(T') c S3 = dD*. By Link
Composition Lemma 2.5 the link(K) U f/(K’) is homotopically essential.
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Fig. 6

However, Propositions 4.2 and 4.3 imply that the componen{& &f) U
f'(K") bound disjoint disks irD*, hence by lemma 2.3 it is homotopically
trivial. This contradiction concludes the proof of lemma 4.1

5. Technical lemmas

First we will prove two lemmas which establish additivity @finvariants
in the presence of planar surfaceddfibounded by links. These results are
used in the proof of theorem 1.

Lemmab.l Letl = (1f,...,1}), K = (lg+1,...,ln)andL” = (I}, ...,
1)) ben-almost homotopically trivial oriented links in three linked solid tori
T',TandT” asinFig. 6. Let.’§ " = (I, ..., l;) denote a connected sum
of L’ and L”, such that the connecting bands lie in the complemefit. of
Then(L'tL") U K is almost homotopically trivial, and

isrmuor (L ooon) = ppok (L. oon) + fgprok (1, .., n).

Proof. Let ¢ denote the core circle of the middle solid toflisand letc’,
¢’ be the meridians of” andT” respectively. The linK L'§L") U c is a
connected sum of’ U ¢ andL” U ¢, hence Lemma 2.4 implies

ﬂ(L’ﬁL”)Uc(la conskye) = ppoe (1, ..k, C/) + prrer (L, .0k, C”).

The link (L'4L") U K may be viewed as a composition(@§L") U c and
of K. Link Composition Lemma 2.5 and the equality above give

/:[/(LIﬁLH)UK(]_7 ey n) = ﬂ(LrﬂLu)Uc(l, ceey ]{7,0) . ﬂfe(l{? + ]., e, /\T) =

(ﬂL’Uc’(la ..ok, C/) + ﬂL”UC”(la e k,c")) : 'D’I?(k +1,...,n, /\T) =
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Fig. 7

o (L) + i (L, .y m).
O

Lemma 5.2 LetTy,. .., Ty be a chain of solid tori inS2, containing links
K={(1,....,lp)) L=(lps1,.- -, ), K' = (lh,..., 1), L' = (L, 41, -, 1})
respectively, as in Fig. 7. Assume there are immersed annulus-like gropes
A; of classr in Bt with9A; = [; Ull,i=1,...,rand4; N 4; = { for

1 # 7, and let the links be oriented as boundaries of the gropes. As&iime
and L are almost homotopically trivial in the solid torus and homotopically
trivial in .S3 and thatK and L’ are A-almost homotopically trivial. Then

,EKUL(L ... ,’I“) +ﬂK’UL(17 R ,7") —I—ﬂKluL/(l, . ,T) =0.

RemarksBy Link Composition Lemma 2.5 the link& U L, K’ U L and

K’ U L' are almost homotopically trivial, and theinvariants above are
well-defined integers. Note that the statement of lemma 5.2 is well-defined
with respect to the choice of orientations of the gropes. If orientation of one
of the gropes is reversed, each term in the equality above changes its sign.

Proof of Lemm&.2. LetM* denoteB* \ (A2 U ... U A,). For each, fix

a meridianm; to I; andm!, to /. Clearly, H,(M*;Z) is freely generated

by mq,...,m,. As in the proof of Theorem 1 in [11], one can show that
Ho(M*; 7))/ ¢, 1 is freely generated by the tori — circle normal bundles over
l1,...,l, and by the Clifford tori in the neighborhoods of self-intersection
points of theA;. Here¢, 1 denotes a term in the Dwyer’s filtration, defined
in Sect. 2.2. The relations given by the Clifford tori are among the defining
relations of the Milnor group on meridians to first stages of the gropes. By
Dwyer’s theorem 2.7,

Mry (MY 2< ma,...,mp|[ma,la], ..., [, 1], My >,

r
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whereF' denotes the free group generatedrby, . . ., m,.. Since the com-
ponentd; andl; are missing, it follows from assumptions on the links and
by Link Composition Lemma 2.5 that the lirk, . .., I, 1}, ..., 1.) is ho-
motopically trivial, so its Milnor group is the free Milnor group generated
by ma,...,my,mb,...,m.:

M(lU...ULULU... UL) = M(Foy oy, )-

In particular, the relationgn;, [;] are consequences of the relations in this
free Milnor group, saVl (w1 M*) & M (F,,, ... m,). Consider the commu-
tative diagram

M(U...ULULU.. .Ul —— M (M?)

Mll Mgl
R(xa,...,xp, x5, ... 7)) L>R(x2,...,$7«)

wherei is the map induced by inclusion(m;) = m;, i(m};) = m{* for
someg; € Mmi(M*); ¢(x;) = i, ¢(f) = (14 ) (1 +2) (1 + %) — 1,
whereMs(g;) = i, Mg(gi‘l) = 4;. The homomorphisma/; and M, are
the Magnus expansions. Notice thias a well-defined homomorphism of
Milnor groups, sincei(m;) andi(m)) commute with their conjugates in
My (M*),

Let u; andug be the coefficients afaxs - - - x, in the expansions/s(;)
and M,(l}) respectively. The componenfs and [}, are conjugate in
M (M*) since they cobound a grope of clas® M*, henceu; = —ps.
Herel} denotes with the opposite orientation. The coefficigntis equal

to the sum of coefficients of all terms of the fomﬁ)xg) .. xf) in M (ly),
where the notation indicates that each multiple is eitheor 2/, and the
analogous statement holds for.

Since (15, . .., 1) is homotopically trivial in the solid toru€ys, 1 =
ixur(l,...,7). To computeus notice that by the almost triviality o’
in the solid toruslz a non-trivial term of the form above has to contain
xy - - - x,. Similarly by the almost triviality ofZ in the solid torusT? it has
to contain eithet,1 - - - x, or z;,; - -- ;.. The only two possibilities are
ab - 'l';l‘erl -z andal, - ~m;a:;+1 cexl,sops = ggon(l,...,r) +
ixun(l, ..., r). This concludes the proof of Lemma 5.20

The remaining part of this section contains the proofs of Lemmas 3.8
and 3.9.

Proof of Lemm&B.8. Fix—k < i < —1 andl < j < m, the casdi, j) €
{1,...,m} x{—(k—1),...,—1} is treated analogously. Suppabg; is
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not almost homotopically trivial. By Lemma 3.6 (iiil; ; is homotopically
trivial in S3, hence it contains ag,-essential proper sublink. Lét be the
family of all A-essential sublinks of the links; 1, ..., L; ,,—1 and letn be
the minimal number of components among the linkg'irBy assumption,
n < n;, wheren; = |L;|. Consider a link}/ in F' which has: components,
and which is rightmost among all such links. In other words\lifC H,
andM'’ C H, is another link inF" with p’ > p, then|M’| > n. Denote the
components of;, corresponding td/, by k1, . .., k.

Let R,, 1 < p < m — 1, be the solid torus containingy/, soM is a
sublink of L; ;,. The solid torus¥,, links R, on the right, and by Link
Composition Lemma 2.5 the link/ U L, ; is homotopically essential and,
by the minimality property o/, M U L,, . is almost homotopically trivial.
Also by the choice of\/, the link M’ := (0P, U...U 9P, ) N Rpy1 iS
A-homotopically trivial (in the casp = m — 1, this is a vacuous link).

Now consider the linkk; U. . .Uk, )UL, and the (planar surfaces)-like
gropes it bounds. Consider the solid t&i W;, R;+1 andR,,, W11, Rp+1.

As in the part of the proof of Theorem 1 contained in Sect. 3 (independent of
this lemma) the gropes in question may be modified so that their boundary
components are contained in these six solid tori, and s@ﬂayapgl NRpy1 =
0,0Pr,,, N Ry, =0.Thelink(ky,...,k,) in W;is a proper sublink of ;,

so by assumption (ii) in Theorem 1 it is homotopically trivial in the solid
torusW;. This means that the link under consideratioijn W; U R; 41 is
homotopically trivial. Attach a collar t@* and let this link bound disjoint
immersed disks in it.

The link left in the boundary of the four-ball i\ U L, U M) C
R,UW,1UR, 1. Inthe case = m — 1 this already gives a contradiction
with the Grope Lemma 2.8 U L, is a homotopically essential link
bounding inB* disjoint gropes of a large class. The contradiction finishes
the proof of lemma 3.8 in this case.

Suppose < m — 1. The link M’ is A-homotopically trivial, however
it might be not homotopically trivial in the solid torug,; . We will use
lemma 5.1 to find a contradiction with the Grope Lemma. Connect the
corresponding components bf and )M’ by arcs in the annulus-like gropes
they bound inB*. By Lemma 6.4 these arcs may be pulled upSd~ W,,1)
without introducing intersections between the gropes bounded by different
components of/, but they might now intersedt;, , , . These intersections
are resolved by first pushing them down to the first stages of the gropes
(see 2.5 in [5]) and then performing finger movesiy) , that create new
boundary components fdt;, , —small circles linking the arcs ifi3. Each
intersection point between tleth and thd-th stages of two gropes creates
2kl small circles.
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The following argument shows how to modify the gropes in order to
eliminate these new boundary components, without changing the rest of the
link. Fix one of these new circles, and recall that and some componeht
of L,+1 coubound a punctured (planar surface)-like grope, and are allowed
to intersect. The linKL, 1 ~ 1) is homotopically trivial in the solid torus
W41. Let A be alink-homotopy in a collas® x [0, 1] on B4 which restricts
to null-homotopy of(L,+1 ~ 1) in W,,41. The link M U M is ribbon, so
the whole linkK := (M U (Ly4+1 ~ 1) U M'U small circles) is concordant,
hence by Theorem 2.2 link-homotopic & x [1,2] to the unlink. (The
component moves between timésand2 by an isotopy in the complement
of K).In S3 x [2, 3], c can be just taken off the rest of the lidkuU !, possibly
introducing intersections betweerand/, and capped off with a disk. Now
run the homotopy4 backwards (except fai) in S x [3, 4]. This procedure
is repeated to eliminate all small circles.

Now take the band sum g/ and M’ along the arcs we have isf ~
Wp+1 and apply Lemma 5.1 to conclude that the lifW§A/") U L, is
homotopically essential. By Grope Lemma 2.8 this contradicts the existence
of gropes of large class it bounds Bt. This means that the IinEZ-,j isin
fact almost homotopically trivial and concludes the proof of Lemma 3.8.

O

Proof of Lemm&3.9. Fix—k < i < —1 and1 < j < m, and consider
the solid toriR;_;, W; and R;. Let L; ;_1§L; ; = (l1,...,l,,) denote a
connected sum of; ;_; and L; ; such that the connecting bands lie in
the complement of the solid torud’;. Label the components adf; by

n; +1,...,n; + nj. (The labelings of both links should obey the order
defined in the proof of Theorem 1.) The following proposition provides a
geometric interpretation of the map

Proposition 5.3
Cij = r,u(L,,i0;) (L -+ i +15)
for—k<i<—-land2<j<m-1;
Ci1 = ﬂLmuLl(l, ceoy M+ na),
Cim = BL; UL (1,000 4 ).
The analogous equalities also hold foxK ¢ < mand—(k—1) < j < —1.

Proof.Forj # 1, m,

m—1
Cij= Y. Bip-Ap;j=Bii-Aij+ Biiy1- A,
p=—(k—1)
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sinceB; , = 0 unlesgp = i — 1, ¢. Recall that the (non-trivial) entries of the
matricesA, B are given by

Bm, = ﬂzi(l, . . ,ni,/\Wi), Apji = ﬂzi,k(l’ ... ,’I’LZ',/\Rk).
Hence

Cij=pg, (L. oni,A) - g (1, mg,A)

Ji—1

—lei(l, N R /j‘E_,-,i(l’ co g, A).
By Composition Lemma 2.5 (i) and Lemma 5.1 this is equal to

HLUL; ;4 (1,...,ni +ny) + PL;iUL;j, i1 (L,...,ni +ny)
= ﬂLiU(Lj,iuLj,i)(]" N le).D

The proof of Lemma 3.9 is divided into two steps. We will first prove that
C;; = —Cj,for (i,5) # (—=1,1),(1,—1). Consider two groups of three
solid tori each:R;_1, W;, R; and R;_, W}, R;, the linksL;, L; and the
(planar surfaces)-like gropéy,,, P, they bound inB“. As in the proof of
Theorem 1 in Sect. 3, one may assume that, N (R;—1 U R;) = () and
0P, N (Rj—1 UR;) = (. One may also assume thaP;, andoPy, are
disjoint from all other solid tori except the six ones under consideration.

Connect the corresponding component.0f_; and ofL; ; by arcs in
the gropes they bound. They can be pulled up to ar&3 alV;, but possibly
intersections betweeR;, and P’;,; are introduced. These intersections can
be resolved by finger moves which produce new boundary components for
Py, —small circles linking the connecting arcs9A. Just as in the proof of
lemma 3.8, these circles can be disregarded. Apply the same arguments to
the triple of toriR; _1, W;, R;.

Now there are twdn; + n;)-component links in6®: L; U (L;;—14L;;)
andL;U(L; j—14L; ;), separated byzsphere and disjoint singular annulus-
like gropes inB* connecting them. An application of Proposition 5.3 and
the grope-concordance invariance (Corollary 2.9) conclude the proof of step
1.

It remains to be shown th&t_; ; = —C4 1. This is a formal linear-
algebraic argument that uses the result of step 1 and the fact' tfzators
through the near-diagonal matr. It follows from the definition that4,

B andC are block matrices

0 A B 0 0 —C”
=(iv) o= () o= (o)

We have proved in step 1 th@t andC” are related as follows:

v c vt Dt
Cl:(DU))’ C”:<C/lwt>'



386 V.S. Krushkal

Herec = Ci 1 andc” = C_, ; are integersy is a row of length(k — 1),
w is a column of heightm — 1) andD is an(m — 1) x (k — 1)-matrix. We
need to show that = ¢”. The blocksB’, B” of B are of the form

bk 0 0 0 0
b_ (k1) b_(b-1) 0 0 0
B/ — .
0 0 bosbs 0 |’
0 0 0 bob o
0 0 0 0 b,
by 0 0 0 0
b by 0 0 0
o 0 bs by 0 0
000  by1bmni
000

whereb; = pi7 (1,...,n,Aw;) # 0, @ = —k,...,m. Let By, B, denote
the rows with the entries

By = (b_1/b_g,—b_1/b_3, ..., (=1)*b_1 /b_}),
By = (by /by, —b1 /b3, ..., (—=1)™b1 /b).

Note that
d=By-w, v=By-D, !=DB;-v', w'=B;-D.
Hence

d=By-w=DBy-(By-D")'=DBy-D- B!,
d'=By-v'=B)-(By-D)'=B,-D"- B!,

soc = (¢")! = ¢”. This concludes the proof of Lemma 3.90

6. A pull-up procedure for surfaces in the four-ball

The purpose of this section is to describe a “pull-up” procedure for arcs in
surfaces, properly immersed (84, S3). In some sense linking of surfaces

in B* is reflected in linking of their boundaries &% after the procedure is
applied. Consider two examples as an elementary illustration of this idea.
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Fig. 8 Example 6.1

Example 6.1Let L = (1, l2,[3) be the Borromeanrings and l6t= (h) be
a small circle linking, Fig. 8 (i). As before H is drawn dashed. may be
unlinked by intersecting, andis two times, with the opposite signs. These
intersections may be resolved by lettihggo twice (algebraically trivially)
over the2-handle attached th. Forgetting the-handle, this exhibitg and
I3 as boundaries of disks, amglbounds inB* a disjoint from them pair of
pantsP, the other two boundary components of which are parallel copies
of h, Fig. 8 (ii). Just looking abP in S3, it is unclear whether these two
boundaries of are “essential”, or whether they can be cancelled to replace
the pair of pantg” by a disk bounded bip.

Connect this algebraically cancelling pair of component8 Bfby an
arca in P, and pull this arc by an ambient isotopy §6 = 9B*. The arc
a links in B* the diskD bounded byz, and to preserve disjointness Bf
andD, o will pull to S? a little patch ofD. PuncturingD will introduce a
new boundary component @, linking « in S3. Taking connected sum of
two components of P alonga gives Fig. 8 (iii), whereP and D are annuli.
Now the link seen in the tubular neighborhogdof 4 is clearly essential
(considered with the meridian &¥.)

Example 6.2Consider the unlinll = (i1, 12), and letd = (h) be a merid-
ian to /1, as in the previous example, Fig. 9 (i). Consider disjoint disks
bounded by, andls, pushed fromS? into B*. Move the diskP, bounded

by I, by an ambient isotopy aB* U;, 2-handle, so that it goes geometri-
cally twice over the2-handle. Figure 9 (ii) shows the link i = 9B*
(disregarding th@-handle.) Note that the link in the neighborhoodhois
identical to that in the previous example. Applyingitdhe same procedure
as above, however, tak@s’ off /1, Fig. 9 (iii).

To state the general result, [gt, H) be arelatively slice pair of links, so
the components af bound disjoint disks i34 UH,0— framings 2—handles.
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Fig. 9 Example 6.2

For each componerit of H, let N;, denote its tubular neighborhood — the
attaching region of the correspondif¢handle. One may assume that all
solid tori N, are disjoint from each other and froim Disregarding the
2-handles,L bounds inB* disjoint planar surfaces, the other boundary
components of which are untwisted parallel copies of the compone#ts of
For each componeritof L, let P, denote the surface it bounds B, and
let 0 = U 1,0 P, denote the boundary of all surfaces.

Lemma 6.3 Let (L, H) be a pair of links withH an unlink, and let: be

a positive integer. Assume that the componenis lodund disjoint disks in

B* Uy 0-framed2-handles. Then the associated planar surfatg <y,

can be madified, possibly changing their boundary components other than
L, introducing self-intersections and inserting gropes of classo that

i) for eachl € L and for eachh € H, P, has exactly one boundary
component invy,

iy NP =0ifl £,

iif) (0~ L) is aribbon link contained itUy,c i Nj,.

RemarksProperty (i) is the main result of the lemma, while (iii) says that it
can be achieved without making the link$f much worse — to start with,

(0 N~ L) C Uper Ny, was an unlink. The conclusion that the link is ribbon
implies, in particular, that all itg-invariants vanish. In the applications of
lemma 6.3 will be the number of components &f We allow insertion of
gropes of clasa in the surfaces because in terms of link homotopy, disjoint
gropes of a sufficiently large class are as good as disjoint disks, compare
Grope Lemma 2.8.

Lemmas 3.6 and 6.3 slightly differ in that the solid torls in the
statement of 3.6 is replaced by the tubular neighborhdgdere (so that
lemma 6.3 could potentially be applicable to more general link pairs than
those considered in Theorem 1.) However, the proofs of these lemmas are
identical.
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We give two proofs of lemma 6.3. The first proof is more elementary,
and is reduced to an algebraic lemma about nilpotent groups. The second
proof is geometric and is more explicit. We present two arguments, since
both may be useful in the study of the general relative-slice problem. For
the first proof we need the following lemma.

Lemma 6.4 (Lemma 14 in [10])Let X = X, U. ..U X} be a collection of
properly immersed disjoint compact connected surfacék'iwith 0.5; # 0
foreachi = 1,...,k. Let(a,da) be anarcin(B* <\ X, 5%\ 9%), and let
n be a positive integer. Then there exists an@rc S3 . 0X with 98 = da
such thaty U 8 bounds an immersed grogeof classn in B* . X.

RemarksOne can easily construct an example of surfaCeand an arex
such thatv U 3 does not bound iB* ~. X an immersedliskfor any choice
of 4. Lemma 6.4 also holds if the surfacEsare replaced by a collection of
properly immersed disjoirdropes

Proof of Lemm&.3. For each componehf H and for each planar surface
P with 9P N N}, = 0, introduce a thin finger leading frof to N}, C S3,
disjoint from all other surfaces, so that a new boundary componept of
— a small circle inN;, — is introduced. Now if some planar surfa@ehas
more than one boundary componentNR, say,0Q N Ny = ¢ U ... U gs,

s > 1, connecteach;,i = 1,...,s — 1 by an arca; in Q with ¢s. Since
each surface has a boundary componem¥jnLemma 6.4 provides an arc
B; C Ny, suchthaty; U 3; bounds animmersed gropg in the complement
of other surfaces. Singular surgeriesgalongG;,i = 1,...,s—1limprove
Q to satisfy condition (i) above without violating (ii) and (iii). Applying this
procedure to each torus; and surface), we get a collection of (planar
surfaces)-like grope$P,} of classn bounded by the components &f
satisfying conditions (i)-(iii). O

Alternative proof of Lemm@.3. Fix a componerit of H. For each surfacg
with 9P N N}, = () introduce a thin finger leading ¥, C 52, disjoint from
all other surfaces, so that a new boundary componeft-efa small circle
in N, —is introduced. The proof consists @f + 1) steps which gradually
improve the planar surfaces.

Stepl. Suppose a surfacké has more than one boundary component in
Ny,. Denoted A N Ny, by 1}, ..., 1i (the superscript indicates the number of
the step). Connect the componelits = 1, ...,k —1with [} by embedded
arcsa; C Aandg; C (Ny \ 0). Let A; denote an immersed disk bounded
by a;U3; in B, Suppose® # Ais a surface intersecting;. Perform finger
moves onP along arcs im; connecting the intersection poinfisn A; with
0;. This makesP disjoint from 4; butintroduces new boundary components
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a; C A

0] (ii)

Fig. 10

of P — small circles linking3; in S3. Figure 10 (i) illustrates this move in
the lower dimensio B3, S?).

Apply this procedure to every surfa¢e # A intersecting4;, making
all finger moves disjoint from each other. Now perform singular surgery on
A along 4;, so that the two boundary componet;ltsandl}c are connected
by a band along;, Fig. 10 (ii). The disk4d; was made disjoint from all
planar surfaces except, so the only singularities possibly created by the
surgery are self-intersections df An application of this construction to
eachl < i < k — 1 implies property (i) forA and N, but possibly creates
in N, many new boundary components of other surfaces. Apply this to
each planar surfacé that has more than one boundary componenYin
not taking into consideration the small circles created by the previdis
during this step. Notice that these small circles are better than the original
componentsg!’s in the sense that they bound gropes of ctaggenus one
surfaces) irs® disjoint from each other and from all other curves (punctured
circle bundles ovet}.) This is the progress achieved by step 1.

If step 1 did not introduce any small linking circles to the bands, this
would be the end of the process (for the compomgnéach surface would
have exactly one boundary componeni\p.

Stepk, 2 < i < n. Suppose after stefk — 1) a surfaceB has more
than one boundary component/\y,. DenotedB N N, by I*=1 1k ... 1k
wherel¥, ... ik are small circles antf~—! is the “long curve” created by
stepk — 1. Connect?, ...,k to!*~! by arcs inB and inN,, and proceed
as in Step 1. Many new little circlel§+1’s are introduced, however they

bound inS? disjoint gropes of clask. Their stageq throughk are parallel
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Fig. 11 l? bounds a grope of clags

copies of the gropes of clask — 1), bounded byf’s. Figure 11 shows the
situation after step 2.

Step(n + 1). The small circles introduced during stefpound disjoint
from each other and from all curvesS$ti gropes of class. Push these gropes
into B* and consider them as parts of “planar surfaces”. Now each (planar
surface)-like grope has exactly one boundary componeiy,inCondition
(iii) holds since to start wit{o ~. L) was an unlink, and the singularities
introduced at each step are ribborid

7. Appendix. Bing doubling a pair of pants (after Michael Freedman)

This section describes a geometric construction, lemma 7.1, which isusedin
Sect. 4to give an alternative proof of theorem 1 in the special case when each
link L; is a Bing double. We also present a related construction, lemma 7.3,
which may be applied directly to thé B-slice problem (see [4]) to show that
homotopically essential links are ndt B-slice for certain decompositions
(A,B). Given a link L = (ly,...,l,) which is assumed to beA, B)-

slice, the idea is to find for eadha A-essential link in the attaching region

of one of the handlebodies;, B; the components of which bound disjoint
immersed disks in the handlebodyllfs homotopically essential, this gives

a contradiction with the Link Composition Lemma.
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Fig. 12 Bing double

An untwisted Bing doubl& (L) of alink L is obtained by replacing each
component o, within its neighborhood by two components of the form
An untwistediteratedBing double ofL is defined inductively, starting with
L and at each step Bing doubling some of the components of the link given
by the previous step. A special case — an untwistgdmetrick-iterated
Bing double ofL is B¥(L). Note thatl is trivially an iterated Bing double
of itself.

Lemma 7.1 (Bing doubling a pair of pantd)et P be a pair of pants (disk
with three punctures) withP = a U3 U~ and setM = P x D?. Letoa/ and

o' denote the components of the untwisted Bing double of the core circle
ax{0}inax D?;define analogously’, 3” ¢ 3x D?andy’,v" C vx D?.

(i) Then there exist disjoint embedded pairs of paRtsP” C M with

OP' =d'Upg Uy andoP” =" upg" u~".

(i) Let N denote)/self-plumbings, a thickening @f/self-intersections.
Then there exist disjoint immersed pairs of paRtsP” ¢ N with 9P’ =

o UB Uy andoP’ =" Up’ u~y".

Proof. M will be thought of as a subset 8 x [0, 1] with a x D? C S x {0}
andg x D2, x D? c S3 x {1} and such that the obvious Morse function
on S3 x I has just one critical point o?. The pairs of pant$”’, P” in
case (i) are described in the time slicgs x {t}, 0 <t < 1,in Fig. 13.
The Morse function has two critical points dhx D?, they correspond to
the first arrow and the last arrow in the figure. (More precisely, the critical
points lie ond(P x D?).) The middle arrow, between timag2 and3/4,
corresponds to the critical points of index one on the surf&esnd P”,
one critical point for each surface.

To prove (i) notice that after an isotopy, the singular points of the quotient
map m: P — P/self-intersections may be assumed to lie in a collar
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Fig. 13 Bing doubling a pair of pants

ax[0,¢] C P, below all critical points of the Morse function. Now consider
the two curves of the Bing double on Fig. 12. One of them can be shrunk
by an ambient isotopy of the solid torus to be very short, at the expense of
making the other curve long. In other words, the image of one curve under
the projections! x D? — S! lies in a small neighborhood of a point,
while the image of the other curve covers most of the circle. Thus it may be
assumed that only one of the pairs of paRtsP” described in (i) intersects

the singular set of the quotient map — N. This concludes the proof of
Lemma7.1. O

Corollary 7.2 Let P be a planar surface with the boundary components
o, By ..y 0n and setN P x D?/self-plumbings. Fix an integer > 1

and Ietﬂ}, e ,5 ) denote the components of the untwisted symmtric
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Fig. 14 A schematic picture, and a Kirby handle diagram fd¢

iterated Bing double of; in 3; x D?,i = 1,...,n; define analogously
ol,...,a®") c a x D2. Then there exist disjoint immersed (embedded if
N = P x D?) planar surfacesP?, ..., P") ¢ NwithdP/ = o U 3/ U
LLUBlj=1,..., 2k

Proof. AssumeN = P x D?, the general case with self-plumbings follows
as in the proof of Lemma 7.1. The proof is by induction on the number of
boundary components éf. The case: = 2 is proved by induction oh. If

k = 1, thisis Lemma 7.1, and the cake> 1 follows by an application of
Lemma 7.1 to the pairs of pants fgr — 1)-iterated Bing doubles, provided
by the induction hypothesis dn Assume the statement holds fok n.
Given P with 9P = aU 31 U ... U B,, choose a circle in the interior of

P cutting P into a pair of pantd?, with 9P, = v U 81 U B2 and a planar
surfaceP, with 0P, = aU~y U 3 U... U (,. By Lemma 7.1 applied to
P, and the induction hypothesis applied®p the statement also holds for
t=mn. O

We will now describe a related construction which may be applied to
the A-B-slice problem to show that homotopically essential links are not
A-B-slice for certain decompositiorist, B).

Lemma 7.3 Let(S, v) be aonce-puncturedtorud, = S x D?, and leta: C
ON be an embedded curve representing a standard generaféy QV; Z).
Denote byo/, o the components of the untwisted Bing doubleraf a
tubular neighborhoodv x D? C ON and setM = N Ua o 2—handles.
The precise description @f is given in terms of the Kirby handle diagram,
Fig. 14.
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Then the componentg and«” of the untwisted Bing double efin
v x D? bound inM disjoint immersed disk®’, D"

Proof. Figure 15 describes disjoint immersed pairs of paftsP” ¢ N

with 9P = o’ U B U+, 0P" = o’ UB"U~". Heref' is a parallel copy of

o’ andp3” is a parallel copy of’. Now D', D" are obtained fron#’, P” by

attaching the cores of the correspondgandles and their parallel copies

to o/, o”, 3, 3”. Note that each dislO’, D" goes over bott2-handles.
0

RemarkMore generally, inthe notations oflemma 160, . . ., o, denote
the components of an untwisted iterated Bing double of o x D2, and
let M denoteN Uy, ..., 2—handles. Then there exists an integep 1
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suchthatthe components, . . ., v, 0f the untwisted symmetrigiterated
Bing double ofy bound in}M disjoint immersed disk®), . . ., D (g

Proof. Let k be an integer large enough so that the symmetiierated
Bing double ofa is a refinement of the given Bing double. (Notice that its
components bound disjoint embedded disks in the attazhbédndles.) Let

P’, P" be the pairs of pants as in the proof of lemma 7.3. Now an iterated
application of Lemma 7.1 t&’, P” concludes the proof of this remark
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