q-series invariants and lattice cohomology of plumbed 3-manifolds

Slava Krushkal
Joint work with R. Akhmechet and P. Johnson

QUACKS II, August 9, 2022

Outline:

- Quantum invariants and the \widehat{Z} invariant of 3-manifolds
- Lattice cohomology
- A new invariant unifying lattice cohomology and \widehat{Z}
- Details and properties
- Questions

Quantum invariants and the \widehat{Z} invariant of 3 -manifolds
Denote by $Z_{K}(M)$ the $\mathrm{SU}(2)$ Witten-Reshetikhin-Turaev invariant of a compact connected orientable 3-manifold M at $\zeta_{K}=e^{2 \pi i / K}$.

Consider the Poincaré homology sphere $\Sigma(2,3,5)$, and let $W\left(\zeta_{K}\right)$ denote its renormalized WRT invariant

$$
W\left(\zeta_{K}\right)=\zeta_{K}\left(\zeta_{K}-1\right) Z_{K}(\Sigma(2,3,5))
$$

R. Lawrence and D. Zagier, 1999: For $|q|<1$ consider

$$
A(q)=\sum_{n=1}^{\infty} \chi_{+}(n) q^{\left(n^{2}-1\right) / 120}=1+q+q^{3}+q^{7}-q^{8}-q^{14}-q^{20}-\ldots
$$

where $\chi_{+}: \mathbb{Z} \longrightarrow\{-1,0,1\}$ is given by:

$n(\bmod 60)$	1	11	19	29	31	41	49	59	(other)
$\chi_{+}(n)$	1	1	1	1	-1	-1	-1	-1	0

$A(q)$ is a holomorphic function in the unit disk.

$$
A(q)=\sum_{n=1}^{\infty} \chi_{+}(n) q^{\left(n^{2}-1\right) / 120}=1+q+q^{3}+q^{7}-q^{8}-q^{14}-q^{20}-\ldots
$$

Theorem (Lawrence-Zagier, 1999) Let ξ be a root of unity. Then the radial limit of $1-\frac{1}{2} A(q)$ as q tends to ξ equals $W(\xi)$, the renormalized WRT-invariant of the Poincaré homology sphere.

(Building on calculations of the WRT invariants by R. Lawrence and L. Rozansky)
$A(q)=\sum_{n=1}^{\infty} \chi_{+}(n) q^{\left(n^{2}-1\right) / 120}=1+q+q^{3}+q^{7}-q^{8}-q^{14}-q^{20}-\ldots$
Theorem (Lawrence-Zagier, 1999) Let ξ be a root of unity. Then the radial limit of $1-\frac{1}{2} A(q)$ as q tends to ξ equals $W(\xi)$, the renormalized WRT-invariant of the Poincaré homology sphere.

- More generally, Lawrence-Zagier proved the analogous result for three-fibred Seifert integer homology spheres.
- This result led to Zagier's notion of a quantum modular form.
- Gukov-Pei-Putrov-Vafa (2020): The \widehat{Z}-invariant for a more general class class of plumbed 3-manifolds (discussed next), based on the theory of BPS states.

Plumbed 3-manifolds

A negative definite plumbing Γ and its associated framed link $\mathcal{L}(\Gamma)$. The 3-manifold $Y(\Gamma)$ is the Brieskorn sphere $\Sigma(2,7,15)$:

(A) A plumbing tree Γ.

(B) The framed link $\mathcal{L}(\Gamma)$.

Weights (framings) $m: \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.
The plumbing tree is negative definite if the associated symmetric matrix $M=M(\Gamma)$ is negative definite:
$M_{i, j}= \begin{cases}m_{i} & \text { if } i=j, \\ 1 & \text { if } i \neq j, \text { and } v_{i} \text { and } v_{j} \text { are connected by an edge, } \\ 0 & \text { otherwise. }\end{cases}$

Two negative definite plumbing trees represent diffeomorphic 3 -manifolds if and only if they are related by a finite sequence of type (a) and (b) Neumann moves:

The \widehat{Z} invariant of 3 -manifolds

Gukov-Pei-Putrov-Vafa (2020): Given a negative definite plumbed 3 -manifold Y with a spin^{c} structure a, consider

$$
\begin{aligned}
\widehat{Z}_{Y, a}(q)= & q^{-\frac{3 s+\sum_{v} m_{v}}{4}} \cdot v \cdot p . \oint_{\left|z_{v}\right|=1} \prod_{v \in \mathcal{V}(\Gamma)} \frac{d z_{v}}{2 \pi i z_{v}}\left(z_{v}-\frac{1}{z_{v}}\right)^{2-\delta_{v}} \cdot \Theta_{a}^{-M}(z), \\
& \text { where } \Theta_{a}^{-M}(z):=\sum_{\ell \in a+2 M \mathbb{Z}^{s}} q^{-\frac{\ell^{t} M^{-1} \ell}{4}} \prod_{v \in \mathcal{V}(\Gamma)} z_{v}^{\ell v} .
\end{aligned}
$$

For example, for the integer homology sphere $Y=\Sigma(2,7,15)$ (and its unique spin $^{\mathrm{c}}$ structure)
$\widehat{Z}_{\mathfrak{s}_{0}}(q)=q^{13 / 2}-q^{23 / 2}-q^{39 / 2}+q^{57 / 2}-q^{179 / 2}+q^{217 / 2}+q^{265 / 2} \pm \cdots$

The \widehat{Z} invariant of 3-manifolds

- For three-fibred Seifert integer homology spheres (unique $\operatorname{spin}^{\mathrm{c}}$ structure), the \widehat{Z}-invariant recovers the q-series of Lawrence-Zagier.
- GPPV conjecture that a certain linear combination over spin ${ }^{\mathrm{c}}$-structures has radial limits equal to WRT invariants (generalizing the result of Lawrence-Zagier).
- Conjecturally \widehat{Z} admits a categorification:

$$
\widehat{Z}_{Y, a}(q)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{rk} \mathcal{H}_{\mathrm{BPS}}^{i, j}(Y, a)
$$

Conjecture (GPPV) Let Y be a closed 3-manifold with $b_{1}(Y)=0$. Set

$$
T:=\operatorname{Spin}^{c}(Y) / \mathbb{Z}_{2}
$$

There exist invariants

$$
\widehat{Z}_{a}(q) \in 2^{-c} q^{\Delta_{a}} \mathbb{Z}[[q]]
$$

with $\widehat{Z}_{a}(q)$ converging in the unit disk $\{|q|<1\}$, such that

$$
Z_{\mathrm{CS}}(Y ; k)=\left.(i \sqrt{2 k})^{-1} \sum_{a, b \in T} e^{2 \pi i k \cdot \operatorname{lk}(\mathrm{a}, \mathrm{a})}\left|W_{b}\right|^{-1} S_{a b} \widehat{Z}_{b}(q)\right|_{q \rightarrow e^{2 \pi i / k}}
$$

where

$$
S_{a b}=\frac{e^{2 \pi i \mathrm{lk}(\mathrm{a}, \mathrm{~b})}+e^{-2 \pi i \mathrm{lk}(\mathrm{a}, \mathrm{~b})}}{\left|W_{a}\right| \cdot \sqrt{\left|H_{1}(Y ; \mathbb{Z})\right|}},
$$

Lattice cohomology (Némethi, 2008)

- Given a negative definite plumbed 3-manifold with a spin ${ }^{c}$ structure \mathfrak{s},

$$
\mathbb{H}^{*}(\Gamma, \mathfrak{s})=\bigoplus_{i=0}^{\infty} \mathbb{H}^{i}(\Gamma, \mathfrak{s})
$$

is a $(2 \mathbb{Z})$-graded $\mathbb{Z}[U]$ module.

- It gives a combinatorial formulation of Heegaard Floer homology $H F^{+}$for a class plumbing trees, by work of Némethi, Ozsváth-Stipsicz-Szabó, Zemke.

For example, if Γ is almost rational, then as graded $\mathbb{Z}[U]$-modules,
$\mathbb{H}^{i}(\Gamma,[k])[$ grading shift $] \cong \begin{cases}H F^{+}(-Y(\Gamma),[k]) & \text { if } i=0 \\ 0 & \text { otherwise } .\end{cases}$

Lattice cohomology (Némethi, 2008)

- Given a negative definite plumbed 3 -manifold with a spin^{c} structure \mathfrak{s},

$$
\mathbb{H}^{*}(\Gamma, \mathfrak{s})=\bigoplus_{i=0}^{\infty} \mathbb{H}^{i}(\Gamma, \mathfrak{s})
$$

is a $(2 \mathbb{Z})$-graded $\mathbb{Z}[U]$ module.

- It gives a combinatorial formulation of Heegaard Floer homology $H F^{+}$for a class plumbing trees, by work of Némethi, Ozsváth-Stipsicz-Szabó, Zemke.
- $\mathbb{H}^{0}(Y, \mathfrak{s})$ is encoded by the graded root, which was shown by Némethi to be an invariant of (Y, \mathfrak{s}).

The 0-th lattice cohomology $\mathbb{H}^{0}(Y, \mathfrak{s})$ is encoded by the graded root, an (infinite) tree which is an invariant of (Y, \mathfrak{s})

On the other hand, the \widehat{Z}-invariant is a q-series.
Our new invariant unifying lattice cohomology and \widehat{Z} takes the form of a
graded root weighted by 2-variable Laurent polynomials

The weighted graded root associated to the Brieskorn homology sphere $\Sigma(2,7,15)$

(A) A plumbing tree Γ.

(B) The framed link $\mathcal{L}(\Gamma)$.

Theorem 1. (Akhmechet-Johnson-K., 2021)
The weighted graded root is an invariant of a 3-manifold equipped with a $\operatorname{spin}^{\mathrm{c}}$ structure.
(Lattice cohomology is recovered by the unlabeled tree.)

Theorem 2. (Akhmechet-Johnson-K.)

- The sequence of Laurent polynomial weights stabilizes, yielding a 2-variable series $\widehat{Z}_{Y, 5}(q, t)$.
- The 2-variable series $\widehat{\widehat{Z}}_{Y, \mathfrak{s}}(q, t)$ is an invariant of the 3 -manifold Y with a spin ${ }^{c}$ structure \mathfrak{s}, and its specialization at $t=1$ equals $\widehat{Z}_{Y, \mathfrak{s}}(q)$.

(A) A plumbing tree Γ.

(B) The framed link $\mathcal{L}(\Gamma)$.

Weights (framings) $m: \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.
$M: \mathbb{Z}^{s} \longrightarrow \mathbb{Z}^{s}, s=$ number of vertices of the plumbing graph.

$$
\operatorname{spin}^{\mathrm{c}}(Y) \cong \frac{m+2 \mathbb{Z}^{s}}{2 M \mathbb{Z}^{s}}
$$

Consider a $\operatorname{spin}^{\mathrm{c}}$ representative $k \in m+2 \mathbb{Z}^{s}$.
Define a quadratic function $\chi_{k}: \mathbb{Z}^{s} \rightarrow \mathbb{Z}$

$$
\begin{gathered}
\chi_{k}(x)=-(k \cdot x+\langle x, x\rangle) / 2, \text { where } \\
\langle-,-\rangle: \mathbb{Z}^{s} \times \mathbb{Z}^{s} \rightarrow \mathbb{Z}
\end{gathered}
$$

is the bilinear form associated with $M,\langle x, y\rangle=x^{t} M y$.

$$
\chi_{k}: \mathbb{Z}^{s} \rightarrow \mathbb{Z}, \quad \chi_{k}(x)=-(k \cdot x+\langle x, x\rangle) / 2
$$

Consider the standard cubulation of \mathbb{R}^{s} (with vertices in \mathbb{Z}^{s}), and extend χ_{k} to a function on cells (cubes) \square of any dimension:

$$
\chi_{k}(\square):=\max \left\{\chi_{k}(v) \mid v \text { is a } 0 \text {-cell of } \square\right\}
$$

Let $S_{j} \subset \mathbb{R}^{s}$ denote the sublevel set $\chi_{k} \leq j$:
S_{j} is a (compact) subcomplex of the cubulation consisting of cells
\square such that $\chi_{k}(\square) \leq j$.
(Recall that the intersection form $\langle-,-\rangle$ is negative definite!)

Definition of the graded root $\left(R_{k}, \chi_{k}\right)$, following Némethi:
Consider the connected components of each sublevel set:

$$
S_{j}=C_{j, 1} \sqcup \cdots \sqcup C_{j, n_{j}}
$$

The vertices of the graded root R_{k} consist of connected components among all the S_{j}.

The grading χ_{k} is given by $\chi_{k}\left(C_{j, \ell}\right)=j$.

Edges of R_{k} correspond to inclusions of connected components: there is an edge connecting $C_{j, \ell}$ and $C_{j+1, \ell^{\prime}}$ if $C_{j, \ell} \subseteq C_{j+1, \ell^{\prime}}$.

Némethi, 2008:
The graded root is an invariant of ($Y,[k]$), and encodes the structure of $\mathbb{H}^{0}(Y,[k])$.

Next: the new invariant, weighted graded root

A rough idea:
Given a function

$$
F_{\Gamma, k}: \mathbb{Z}^{s} \rightarrow \mathcal{R}
$$

valued in some ring \mathcal{R}, each vertex v in the graded root $\left(R_{k}, \chi_{k}\right)$ can be given a weight by taking the sum of $F_{\Gamma, k}$ over lattice points in the connected component C representing v :

$$
F_{\Gamma, k}(C):=\sum_{x \in C \cap \mathbb{Z}^{s}} F_{\Gamma, k}(x) .
$$

Subtlety: find a function $F_{\Gamma, k}$ so the weights of the graded root are invariant under Neumann's moves on the plumbing trees.

Fix a commutative ring \mathcal{R}. A family of functions $F=\left\{F_{n}: \mathbb{Z} \rightarrow \mathcal{R}\right\}_{n \geq 0}$ is admissible if

1. $F_{2}(0)=1$ and $F_{2}(r)=0$ for all $r \neq 0$.
2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$
F_{n}(r+1)-F_{n}(r-1)=F_{n-1}(r) .
$$

Note that not only F_{2}, but also F_{0} and F_{1} are uniquely determined by conditions 1 and 2 :

$$
F_{1}(r)=\left\{\begin{array}{ll}
1 & \text { if } r=-1, \\
-1 & \text { if } r=1, \\
0 & \text { otherwise } .
\end{array} \quad F_{0}(r)= \begin{cases}1 & \text { if } r= \pm 2 \\
-2 & \text { if } r=0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Fix a commutative ring \mathcal{R}. A family of functions
$F=\left\{F_{n}: \mathbb{Z} \rightarrow \mathcal{R}\right\}_{n \geq 0}$ is admissible if

1. $F_{2}(0)=1$ and $F_{2}(r)=0$ for all $r \neq 0$.
2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$
F_{n}(r+1)-F_{n}(r-1)=F_{n-1}(r) .
$$

A key example ($n \geq 3$):
$\widehat{F}_{n}(r)= \begin{cases}\frac{1}{2} \operatorname{sgn}(r)^{n}\binom{\frac{n+|r|}{2}-2}{n-3} & \text { if }|r| \geq n-2 \text { and } r \equiv n \bmod 2 \\ 0 & \text { otherwise. }\end{cases}$

Fix a commutative ring \mathcal{R}. A family of functions $F=\left\{F_{n}: \mathbb{Z} \rightarrow \mathcal{R}\right\}_{n \geq 0}$ is admissible if

1. $F_{2}(0)=1$ and $F_{2}(r)=0$ for all $r \neq 0$.
2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$
F_{n}(r+1)-F_{n}(r-1)=F_{n-1}(r) .
$$

A characterization of admissible families $\operatorname{Adm}(\mathcal{R})$:
There is a bijection $\operatorname{Adm}(\mathcal{R}) \cong(\mathcal{R} \times \mathcal{R})^{\mathbb{N}}$
(the set of all sequences with entries in $\mathcal{R} \times \mathcal{R}$.)
$F \mapsto\left(F_{n+2}(0), F_{n+2}(1)\right)_{n \geq 1}$ is a bijection.

Fix a commutative ring \mathcal{R}. A family of functions $F=\left\{F_{n}: \mathbb{Z} \rightarrow \mathcal{R}\right\}_{n \geq 0}$ is admissible if

1. $F_{2}(0)=1$ and $F_{2}(r)=0$ for all $r \neq 0$.
2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$
F_{n}(r+1)-F_{n}(r-1)=F_{n-1}(r) .
$$

For an admissible family $F=\left\{F_{n}\right\}_{n \geq 0}$, define $F_{\Gamma, k}: \mathbb{Z}^{s} \rightarrow \mathcal{R}$ by

$$
F_{\Gamma, k}(x)=\prod_{i=1}^{s} F_{\delta_{i}}\left((2 M x+k-m-\delta)_{i}\right)
$$

where δ is the degree vector of the plumbing graph, and $(-)_{i}$ denotes the i-th component.

Fix a commutative ring \mathcal{R}. A family of functions $F=\left\{F_{n}: \mathbb{Z} \rightarrow \mathcal{R}\right\}_{n \geq 0}$ is admissible if

1. $F_{2}(0)=1$ and $F_{2}(r)=0$ for all $r \neq 0$.
2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$
F_{n}(r+1)-F_{n}(r-1)=F_{n-1}(r) .
$$

For an admissible family $F=\left\{F_{n}\right\}_{n \geq 0}$, define $F_{\Gamma, k}: \mathbb{Z}^{s} \rightarrow \mathcal{R}$ by

$$
F_{\Gamma, k}(x)=\prod_{i=1}^{s} F_{\delta_{i}}\left((2 M x+k-m-\delta)_{i}\right),
$$

Lemma: The graded root with vertex weights

$$
F_{\Gamma, k}(C):=\sum_{x \in L(C)} F_{\Gamma, k}(x)
$$

is an invariant of $(Y,[k])$.

Finally, a formulation of the new invariant:
For an admissible family $F=\left\{F_{n}\right\}_{n \geq 0}$, define $F_{\Gamma, k}: \mathbb{Z}^{s} \rightarrow \mathcal{R}$ by

$$
F_{\Gamma, k}(x)=\prod_{i=1}^{s} F_{\delta_{i}}\left((2 M x+k-m-\delta)_{i}\right)
$$

To each $x \in \mathbb{Z}^{s}$ assign a Laurent polynomial weight

$$
F_{\Gamma, k}(x) q^{\varepsilon_{k}(x)} t^{\langle x, u\rangle}
$$

where $\varepsilon_{k}(x)=\Delta_{k}+2 \chi_{k}(x)+\langle x, u\rangle$.
Here Δ_{k} is an overall normalization used to eliminate dependence on the choice of $\operatorname{spin}^{\mathrm{c}}$ representative and is similar in form to the d-invariant from Heegaard Floer homology.

Finally, a formulation of the new invariant:
For an admissible family $F=\left\{F_{n}\right\}_{n \geq 0}$, define $F_{\Gamma, k}: \mathbb{Z}^{s} \rightarrow \mathcal{R}$ by

$$
F_{\Gamma, k}(x)=\prod_{i=1}^{s} F_{\delta_{i}}\left((2 M x+k-m-\delta)_{i}\right)
$$

Theorem: The graded root with vertex weights

$$
P_{F, k}(C)=\sum_{x \in L(C)} F_{\Gamma, k}(x) q^{\varepsilon_{k}(x)} t^{\langle x, u\rangle}
$$

is an invariant of $(Y,[k])$.

Theorem: The graded root with vertex weights

$$
P_{F, k}(C)=\sum_{x \in L(C)} F_{\Gamma, k}(x) q^{\varepsilon_{k}(x)} t^{\langle x, u\rangle}
$$

is an invariant of $(Y,[k])$.

The above weights can be interpreted geometrically as follows.
For $n \in \mathbb{Z}$, the coefficient of t^{n} in $P_{k}(C)$ is given by summing $F_{\Gamma, k}(x) q^{\Delta_{k}+2 \chi_{k}(x)+n}$ over all $x \in \mathbb{Z}^{s}$ which lie on the intersection of C with the hyperplane $\left\{y \in \mathbb{R}^{s} \mid\langle y, u\rangle=n\right\}$.

Theorem: The graded root with vertex weights

$$
P_{F, k}(C)=\sum_{x \in L(C)} F_{\Gamma, k}(x) q^{\varepsilon_{k}(x)} t^{\langle x, u\rangle}
$$

is an invariant of $(Y,[k])$.

The proof shows invariance under the Neumann moves:

Theorem 2. (Akhmechet-Johnson-K.)

- The sequence of Laurent polynomial weights stabilizes, yielding a 2-variable series $\widehat{Z}_{Y, 5}(q, t)$.
- The 2-variable series $\widehat{\widehat{Z}}_{Y, \mathfrak{s}}(q, t)$ is an invariant of the 3 -manifold Y with a spin ${ }^{c}$ structure \mathfrak{s}, and its specialization at $t=1$ equals $\widehat{Z}_{Y, \mathfrak{s}}(q)$.

A new feature: behavior under conjugation of $\operatorname{spin}^{\mathrm{c}}$ structures:

Theorem 3. (Akhmechet-Johnson-K.)

$$
\widehat{\hat{Z}}_{Y, \mathfrak{s}}(q, t)=\widehat{\widehat{Z}}_{Y, \overline{\mathfrak{s}}}\left(q, t^{-1}\right)
$$

In contrast, both lattice cohomology and the $\widehat{Z} q$-series are known to be invariant under conjugation of the spin ${ }^{\mathrm{c}}$ structure.

In fact, in some examples conjugate spin ${ }^{\text {c }}$ structures may be distinguished by their weighted graded roots.

A new feature: behavior under conjugation of $\operatorname{spin}^{\mathrm{c}}$ structures:

Theorem 3. (Akhmechet-Johnson-K.)

$$
\widehat{\hat{Z}}_{Y, \mathfrak{s}}(q, t)=\widehat{\widehat{Z}}_{Y, \overline{\mathfrak{s}}}\left(q, t^{-1}\right)
$$

In contrast, both lattice cohomology and the $\widehat{Z} q$-series are known to be invariant under conjugation of the spin ${ }^{\mathrm{c}}$ structure.

P. Johnson: program for computing the weighted graded root

Summary

- A new connection between quantum topology and Floer theory: the weighted graded root unifies lattice cohomology and the \widehat{Z} invariant.
- A 2 -variable series $\widehat{\widehat{Z}}_{Y, \mathfrak{s}}(q, t)$ specializing to $\widehat{Z}_{Y, \mathfrak{s}}(q)$.
- A new feature: distinguishes conjugate spin ${ }^{\mathrm{c}}$ structure.
- Our construction is more general than \widehat{Z} : a weighted graded root is built for any choice of admissible functions $F=\left\{F_{n}: \mathbb{Z} \rightarrow \mathcal{R}\right\}_{n \geq 0}$ where \mathcal{R} is a commutative ring.

Open problems

- Categorification of quantum 3-manifolds invariants?

$$
\widehat{Z}_{Y, a}(q)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{rk} \mathcal{H}_{\mathrm{BPS}}^{i, j}(Y, a)
$$

When $Y=S^{3}$,

$$
\widehat{Z}_{0}(q)=q^{-1 / 2}(-2+2 q)
$$

The Poincaré series is conjectured to be

$$
-2 q^{-1 / 2}\left(1+t q+\left(t+t^{2}\right) q^{2}+\left(t+2 t^{2}+t^{3}\right) q^{3}+\left(t+2 t^{2}+2 t^{3}+t^{4}\right) q^{4}+\ldots\right)
$$

Open problems

- Categorification of quantum 3-manifolds invariants?

$$
\widehat{Z}_{Y, a}(q)=\sum_{i, j}(-1)^{i} q^{j} \text { rk } \mathcal{H}_{\mathrm{BPS}}^{i, j}(Y, a)
$$

- Modular properties of $\widehat{\widehat{Z}}_{Y, \mathfrak{s}}(q, t)$?
- Extension to a 2-variable series F_{K} of Gukov-Manolescu for knot complements and knot lattice homology?
- Other homology spheres? $b_{1}>0$?

