q-series invariants and lattice cohomology of plumbed 3-manifolds

Slava Krushkal Joint work with R. Akhmechet and P. Johnson

QUACKS II, August 9, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline:

- \bullet Quantum invariants and the \widehat{Z} invariant of 3-manifolds
- Lattice cohomology
- \bullet A new invariant unifying lattice cohomology and \widehat{Z}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Details and properties
- Questions

Quantum invariants and the \widehat{Z} invariant of 3-manifolds

Denote by $Z_K(M)$ the SU(2) Witten-Reshetikhin-Turaev invariant of a compact connected orientable 3-manifold M at $\zeta_K = e^{2\pi i/K}$.

Consider the Poincaré homology sphere $\Sigma(2,3,5)$, and let $W(\zeta_K)$ denote its renormalized WRT invariant

$$W(\zeta_K) = \zeta_K (\zeta_K - 1) Z_K(\Sigma(2, 3, 5)).$$

R. Lawrence and D. Zagier, 1999: For |q| < 1 consider

$$A(q) = \sum_{n=1}^{\infty} \chi_{+}(n)q^{(n^{2}-1)/120} = 1 + q + q^{3} + q^{7} - q^{8} - q^{14} - q^{20} - \dots$$

where $\chi_+\colon\thinspace\mathbb{Z}\longrightarrow\{-1,0,1\}$ is given by:

A(q) is a holomorphic function in the unit disk, $a \to a \to a \to a \to a$

$$A(q) = \sum_{n=1}^{\infty} \chi_{+}(n)q^{(n^{2}-1)/120} = 1 + q + q^{3} + q^{7} - q^{8} - q^{14} - q^{20} - \dots$$

Theorem (Lawrence-Zagier, 1999) Let ξ be a root of unity. Then the radial limit of $1 - \frac{1}{2}A(q)$ as q tends to ξ equals $W(\xi)$, the renormalized WRT-invariant of the Poincaré homology sphere.

(Building on calculations of the WRT invariants by R. Lawrence and L. Rozansky)

$$A(q) = \sum_{n=1}^{\infty} \chi_{+}(n)q^{(n^{2}-1)/120} = 1 + q + q^{3} + q^{7} - q^{8} - q^{14} - q^{20} - \dots$$

Theorem (Lawrence-Zagier, 1999) Let ξ be a root of unity. Then the radial limit of $1 - \frac{1}{2}A(q)$ as q tends to ξ equals $W(\xi)$, the renormalized WRT-invariant of the Poincaré homology sphere.

- More generally, Lawrence-Zagier proved the analogous result for three-fibred Seifert integer homology spheres.
- ▶ This result led to Zagier's notion of a *quantum modular form*.
- Gukov-Pei-Putrov-Vafa (2020): The Z-invariant for a more general class class of plumbed 3-manifolds (discussed next), based on the theory of BPS states.

Plumbed 3-manifolds

A negative definite plumbing Γ and its associated framed link $\mathcal{L}(\Gamma)$. The 3-manifold $Y(\Gamma)$ is the Brieskorn sphere $\Sigma(2,7,15)$:

Weights (framings) $m \colon \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.

The plumbing tree is negative definite if the associated symmetric matrix $M = M(\Gamma)$ is negative definite:

$$M_{i,j} = \begin{cases} m_i & \text{ if } i = j, \\ 1 & \text{ if } i \neq j, \text{ and } v_i \text{ and } v_j \text{ are connected by an edge,} \\ 0 & \text{ otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two negative definite plumbing trees represent diffeomorphic 3-manifolds if and only if they are related by a finite sequence of type (a) and (b) Neumann moves:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The \widehat{Z} invariant of 3-manifolds

Gukov-Pei-Putrov-Vafa (2020): Given a negative definite plumbed 3-manifold Y with a spin^c structure a, consider

$$\widehat{Z}_{Y,a}(q) = q^{-\frac{3s + \sum_{v} mv}{4}} \cdot v.p. \oint_{|z_v|=1} \prod_{v \in \mathcal{V}(\Gamma)} \frac{dz_v}{2\pi i z_v} \left(z_v - \frac{1}{z_v}\right)^{2-\delta_v} \cdot \Theta_a^{-M}(z),$$

where $\Theta_a^{-M}(z) := \sum_{\ell \in a+2M \mathbb{Z}^s} q^{-\frac{\ell^t M^{-1}\ell}{4}} \prod_{v \in \mathcal{V}(\Gamma)} z_v^{\ell_v}.$

For example, for the integer homology sphere $Y = \Sigma(2,7,15)$ (and its unique spin^c structure)

$$\widehat{Z}_{\mathfrak{s}_0}(q) = q^{13/2} - q^{23/2} - q^{39/2} + q^{57/2} - q^{179/2} + q^{217/2} + q^{265/2} \pm \cdots$$

The \widehat{Z} invariant of 3-manifolds

- ► For three-fibred Seifert integer homology spheres (unique spin^c structure), the Ẑ-invariant recovers the q-series of Lawrence-Zagier.
- GPPV conjecture that a certain linear combination over spin^c-structures has radial limits equal to WRT invariants (generalizing the result of Lawrence-Zagier).
- Conjecturally \widehat{Z} admits a categorification:

$$\widehat{Z}_{Y,a}(q) = \sum_{i,j} (-1)^i q^j \operatorname{rk} \mathcal{H}^{i,j}_{\mathrm{BPS}}(Y,a)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conjecture (GPPV) Let Y be a closed 3-manifold with $b_1(Y) = 0$. Set

$$T := \operatorname{Spin}^c(Y) / \mathbb{Z}_2.$$

There exist invariants

$$\widehat{Z}_a(q) \in 2^{-c} q^{\Delta_a} \mathbb{Z}[[q]],$$

with $\widehat{Z}_a(q)$ converging in the unit disk $\{|q| < 1\}$, such that

$$Z_{\rm CS}(Y;k) = (i\sqrt{2k})^{-1} \sum_{a,b\in T} e^{2\pi ik \cdot lk(a,a)} |W_b|^{-1} S_{ab} \widehat{Z}_b(q)|_{q \to e^{2\pi i/k}}$$

where

$$S_{ab} = \frac{e^{2\pi i \mathrm{lk}(\mathbf{a},\mathbf{b})} + e^{-2\pi i \mathrm{lk}(\mathbf{a},\mathbf{b})}}{|W_a|\cdot \sqrt{|H_1(Y;\mathbb{Z})|}},$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Lattice cohomology (Némethi, 2008)

 Given a negative definite plumbed 3-manifold with a spin^c structure s,

$$\mathbb{H}^*(\Gamma, \mathfrak{s}) = \bigoplus_{i=0}^{\infty} \mathbb{H}^i(\Gamma, \mathfrak{s})$$

is a $(2\,\mathbb{Z})\text{-}\mathsf{graded}\ \mathbb{Z}[U]$ module.

It gives a combinatorial formulation of Heegaard Floer homology HF⁺ for a class plumbing trees, by work of Némethi, Ozsváth-Stipsicz-Szabó, Zemke.

For example, if Γ is almost rational, then as graded $\mathbb{Z}[U]\text{-modules,}$

$$\mathbb{H}^{i}(\Gamma, [k]) [\text{grading shift}] \cong \begin{cases} HF^{+}(-Y(\Gamma), [k]) & \text{if } i = 0\\ 0 & \text{otherwise.} \end{cases}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lattice cohomology (Némethi, 2008)

 Given a negative definite plumbed 3-manifold with a spin^c structure s,

$$\mathbb{H}^*(\Gamma, \mathfrak{s}) = \bigoplus_{i=0}^{\infty} \mathbb{H}^i(\Gamma, \mathfrak{s})$$

is a $(2\,\mathbb{Z})\text{-}\mathsf{graded}\ \mathbb{Z}[U]$ module.

- It gives a combinatorial formulation of Heegaard Floer homology HF⁺ for a class plumbing trees, by work of Némethi, Ozsváth-Stipsicz-Szabó, Zemke.
- ► 𝔅⁰(Y, 𝔅) is encoded by the graded root, which was shown by Némethi to be an invariant of (Y,𝔅).

(日)((1))

The 0-th lattice cohomology $\mathbb{H}^0(Y, \mathfrak{s})$ is encoded by the graded root, an (infinite) tree which is an invariant of (Y, \mathfrak{s})

On the other hand, the \widehat{Z} -invariant is a q-series.

Our new invariant unifying lattice cohomology and \widehat{Z} takes the form of a

graded root weighted by 2-variable Laurent polynomials

A D N A 目 N A E N A E N A B N A C N

The weighted graded root associated to the Brieskorn homology sphere $\Sigma(2,7,15)$

Theorem 1. (Akhmechet-Johnson-K., 2021) The weighted graded root is an invariant of a 3-manifold equipped with a spin^c structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

(Lattice cohomology is recovered by the unlabeled tree.)

Theorem 2. (Akhmechet-Johnson-K.)

- The 2-variable series \$\har{Z}_{Y,\varsigma}(q,t)\$ is an invariant of the 3-manifold Y with a spin^c structure \$\varsigma\$, and its specialization at t = 1 equals \$\har{Z}_{Y,\varsigma}(q)\$.

Weights (framings) $m \colon \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.

 $M: \mathbb{Z}^s \longrightarrow \mathbb{Z}^s, s =$ number of vertices of the plumbing graph.

$$\operatorname{spin}^{\operatorname{c}}(Y) \cong \frac{m + 2\mathbb{Z}^s}{2M\mathbb{Z}^s}.$$

Consider a spin^c representative $k \in m + 2 \mathbb{Z}^s$.

Define a quadratic function $\chi_k : \mathbb{Z}^s \to \mathbb{Z}$

$$\chi_k(x) = -(k \cdot x + \langle x, x \rangle)/2, \text{ where}$$

 $\langle -, - \rangle : \mathbb{Z}^s \times \mathbb{Z}^s \to \mathbb{Z}$

is the bilinear form associated with M, $\langle x, y \rangle = x^t My$.

$$\chi_k: \mathbb{Z}^s \to \mathbb{Z}, \quad \chi_k(x) = -(k \cdot x + \langle x, x \rangle)/2$$

Consider the standard cubulation of \mathbb{R}^s (with vertices in \mathbb{Z}^s), and extend χ_k to a function on cells (cubes) \Box of any dimension:

$$\chi_k(\Box) := \max\{\chi_k(v) \mid v \text{ is a 0-cell of } \Box\}$$

Let $S_j \subset \mathbb{R}^s$ denote the *sublevel set* $\chi_k \leq j$:

 S_j is a (compact) subcomplex of the cubulation consisting of cells \Box such that $\chi_k(\Box) \leq j$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Recall that the intersection form $\langle -, - \rangle$ is negative definite!)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Definition of the graded root (R_k, χ_k) , following Némethi:

Consider the connected components of each sublevel set:

$$S_j = C_{j,1} \sqcup \cdots \sqcup C_{j,n_j}$$

The vertices of the graded root R_k consist of connected components among all the S_j .

The grading χ_k is given by $\chi_k(C_{j,\ell}) = j$.

Edges of R_k correspond to inclusions of connected components: there is an edge connecting $C_{j,\ell}$ and $C_{j+1,\ell'}$ if $C_{j,\ell} \subseteq C_{j+1,\ell'}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Némethi, 2008: The graded root is an invariant of (Y, [k]), and encodes the structure of $\mathbb{H}^0(Y, [k])$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Next: the new invariant, weighted graded root

A rough idea:

Given a function

$$F_{\Gamma,k}:\mathbb{Z}^s\to\mathcal{R}$$

valued in some ring \mathcal{R} , each vertex v in the graded root (R_k, χ_k) can be given a *weight* by taking the sum of $F_{\Gamma,k}$ over lattice points in the connected component C representing v:

$$F_{\Gamma,k}(C) := \sum_{x \in C \cap \mathbb{Z}^s} F_{\Gamma,k}(x).$$

Subtlety: find a function $F_{\Gamma,k}$ so the weights of the graded root are invariant under Neumann's moves on the plumbing trees.

1.
$$F_2(0) = 1$$
 and $F_2(r) = 0$ for all $r \neq 0$.

2. For all
$$n \geq 1$$
 and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

Note that not only F_2 , but also F_0 and F_1 are uniquely determined by conditions 1 and 2:

$$F_1(r) = \begin{cases} 1 & \text{if } r = -1, \\ -1 & \text{if } r = 1, \\ 0 & \text{otherwise.} \end{cases} \quad F_0(r) = \begin{cases} 1 & \text{if } r = \pm 2, \\ -2 & \text{if } r = 0, \\ 0 & \text{otherwise.} \end{cases}$$

1.
$$F_2(0) = 1$$
 and $F_2(r) = 0$ for all $r \neq 0$.

2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

A key example $(n \ge 3)$:

$$\widehat{F}_n(r) = \begin{cases} \frac{1}{2} \operatorname{sgn}(r)^n \begin{pmatrix} \frac{n+|r|}{2} - 2\\ n-3 \end{pmatrix} & \text{ if } |r| \ge n-2 \text{ and } r \equiv n \mod 2\\ 0 & \text{ otherwise.} \end{cases}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

1.
$$F_2(0) = 1$$
 and $F_2(r) = 0$ for all $r \neq 0$.

2. For all $n \ge 1$ and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

A characterization of admissible families $Adm(\mathcal{R})$:

There is a bijection $\operatorname{Adm}(\mathcal{R}) \cong (\mathcal{R} \times \mathcal{R})^{\mathbb{N}}$

(the set of all sequences with entries in $\mathcal{R} \times \mathcal{R}$.)

$$F \mapsto (F_{n+2}(0), F_{n+2}(1))_{n \ge 1}$$
 is a bijection.

1.
$$F_2(0) = 1$$
 and $F_2(r) = 0$ for all $r \neq 0$.

2. For all
$$n \geq 1$$
 and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

For an admissible family $F = \{F_n\}_{n \ge 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

where δ is the degree vector of the plumbing graph, and $(-)_i$ denotes the *i*-th component.

1.
$$F_2(0) = 1$$
 and $F_2(r) = 0$ for all $r \neq 0$.

2. For all
$$n \geq 1$$
 and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

For an admissible family $F = \{F_n\}_{n \ge 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

Lemma: The graded root with vertex weights

$$F_{\Gamma,k}(C) := \sum_{x \in L(C)} F_{\Gamma,k}(x)$$

is an invariant of (Y, [k]).

(ロ)、(型)、(E)、(E)、(E)、(O)への

Finally, a formulation of the new invariant:

For an admissible family $F = \{F_n\}_{n \ge 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

To each $x \in \mathbb{Z}^s$ assign a Laurent polynomial weight

 $F_{\Gamma,k}(x)q^{\varepsilon_k(x)}t^{\langle x,u\rangle}$

where $\varepsilon_k(x) = \Delta_k + 2\chi_k(x) + \langle x, u \rangle$.

Here Δ_k is an overall normalization used to eliminate dependence on the choice of spin^c representative and is similar in form to the *d*-invariant from Heegaard Floer homology. Finally, a formulation of the new invariant:

For an admissible family $F = \{F_n\}_{n \ge 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

Theorem: The graded root with vertex weights

$$P_{F,k}(C) = \sum_{x \in L(C)} F_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\langle x, u \rangle},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

is an invariant of (Y, [k]).

Theorem: The graded root with vertex weights

$$P_{F,k}(C) = \sum_{x \in L(C)} F_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\langle x, u \rangle},$$

is an invariant of (Y, [k]).

The above weights can be interpreted geometrically as follows.

For $n \in \mathbb{Z}$, the coefficient of t^n in $P_k(C)$ is given by summing $F_{\Gamma,k}(x)q^{\Delta_k+2\chi_k(x)+n}$ over all $x \in \mathbb{Z}^s$ which lie on the intersection of C with the hyperplane $\{y \in \mathbb{R}^s \mid \langle y, u \rangle = n\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem: The graded root with vertex weights

$$P_{F,k}(C) = \sum_{x \in L(C)} F_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\langle x, u \rangle},$$

is an invariant of (Y, [k]).

The proof shows invariance under the Neumann moves:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 2. (Akhmechet-Johnson-K.)

- The 2-variable series \$\har{Z}_{Y,\varsigma}(q,t)\$ is an invariant of the 3-manifold Y with a spin^c structure \$\varsigma\$, and its specialization at t = 1 equals \$\har{Z}_{Y,\varsigma}(q)\$.

A new feature: behavior under conjugation of spin^c structures:

Theorem 3. (Akhmechet-Johnson-K.)

$$\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t) = \widehat{\widehat{Z}}_{Y,\overline{\mathfrak{s}}}(q,t^{-1}).$$

In contrast, both lattice cohomology and the \widehat{Z} q-series are known to be invariant under conjugation of the spin^c structure.

In fact, in some examples conjugate $spin^c$ structures may be distinguished by their weighted graded roots.

A new feature: behavior under conjugation of spin^c structures:

Theorem 3. (Akhmechet-Johnson-K.)

$$\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t) = \widehat{\widehat{Z}}_{Y,\overline{\mathfrak{s}}}(q,t^{-1}).$$

In contrast, both lattice cohomology and the \widehat{Z} q-series are known to be invariant under conjugation of the spin^c structure.

P. Johnson: program for computing the weighted graded root

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Summary

- A new connection between quantum topology and Floer theory: the weighted graded root unifies lattice cohomology and the *Z* invariant.
- A 2-variable series $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$ specializing to $\widehat{Z}_{Y,\mathfrak{s}}(q)$.
- ▶ A new feature: distinguishes conjugate spin^c structure.
- Our construction is more general than Ẑ: a weighted graded root is built for any choice of *admissible functions* F = {F_n : Z → R}_{n≥0} where R is a commutative ring.

(日)((1))

Open problems

Categorification of quantum 3-manifolds invariants?

$$\widehat{Z}_{Y,a}(q) = \sum_{i,j} (-1)^i q^j \operatorname{rk} \mathcal{H}^{i,j}_{\mathrm{BPS}}(Y,a)$$

When
$$Y=S^3$$
 ,
$$\widehat{Z}_0(q)=q^{-1/2}(-2+2q)$$

The Poincaré series is conjectured to be

$$-2q^{-1/2} \left(1+tq+(t+t^2)q^2+(t+2t^2+t^3)q^3+(t+2t^2+2t^3+t^4)q^4+\dots\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Open problems

Categorification of quantum 3-manifolds invariants?

$$\widehat{Z}_{Y,a}(q) = \sum_{i,j} (-1)^i q^j \operatorname{rk} \mathcal{H}^{i,j}_{\mathrm{BPS}}(Y,a)$$

• Modular properties of
$$\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$$
?

Extension to a 2-variable series F_K of Gukov-Manolescu for knot complements and knot lattice homology?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ