Problem set 5, assigned on 10/20/19

1. Convert the following numbers from binary (base 2) to decimal (base 10):
(a) 111
(b) 1101
(c) 10000000
2. Convert the following numbers from decimal to binary:
(a) 8
(b) 15
(c) 32
(d) 31
(e) 53 .
3. Add these binary numbers using the column addition algorithm:
(a) $1000+101$
(b) $11011+111111$
4. In class we discussed the game of Nim with heap sizes $3,4,5$, and a winning strategy for the first player using the notion of nim-sum. Which player has a winning strategy when heap sizes are $3,4,6$? How about $3,4,7$?
5. Recall the operations S (swap) and R (rotate) on rational tangles, discussed in class: in terms of the corresponding tangle number, S corresponds to adding 1, and R gives a negative reciprocal: it replaces x with $-\frac{1}{x}$.

The following instructions show how to untangle any rational tangle:

- If the tangle number is negative then to SWAP and add 1 to the tangle number to obtain a new number.
- If the tangle number is positive, then ROTATE and take the negative reciprocal of the tangle number.
- If the tangle number is zero, STOP. The ropes are untangled.

Using these two operations, can you untangle the rational tangle corresponding to the number 4 ?

