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ADDITIVITY PROPERTIES OF MILNOR’S p-INVARIANTS
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ABSTRACT. We prove that Milnor’s fi-invariants are additive under the con-
nected sum operation for links, and establish some corollaries of this result.
The appendix describes a technique for finding presentations of nilpotent quo-
tients of groups, and a lemma helpful for locating gropes in the complement of
surfaces in four-space.
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1. INTRODUCTION.

J. Milnor introduced in [12], [13] for each link L = (1,...,1,) in S® a sequence
of “higher linking numbers” fr (), very useful for studying link homotopy and link
concordance. Here I is a multiindex with entries between 1 and n, and the usual
linking number of [; and {; corresponds to fr(7,j). It is an elementary homologi-
cal fact that linking numbers are additive under the connected sum operation, and
T. Cochran conjectured in [1] that additivity holds for all ji-invariants. The differ-
ence of this general case from linking numbers is in that one has to consider (non-
abelian) nilpotent quotients of link groups, also f-invariants are defined in general
only modulo a certain indeterminacy. For two oriented links L' = ({{,... ) and
L"=(7,...,l") in 53, separated by a 2-sphere, let L'#L" = (I,...,l,) denote a
link the i-th component of which is obtained by taking a connected sum (ambient
surgery along an arc) of the components I} and I! respecting their orientations,
i = 1,...,n, see figure 2. The sum L’ij” depends in general on the choice of
bands in 53, but in each case the choice will be clear from the context. Our main
result is the following theorem.

Theorem 1. Let L' = (I},... ) and L" = (I{,...,l!!) be two oriented links in
53, separated by a 2-sphere. Then for any choice of connecting bands and for any
multiindex I, the indeterminacy Apypn(I) is a multipleof g.c.d.(Ap/(I), Apn(I)),
and

/]L’ﬁL”(I) = /]L/(I) + /]LH(I) mod (g.c.d.(ALl(I), ALH(I))).
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This result shows, in particular, that a connected sum of a homotopically essential
link and a homotopically trivial link cannot be homotopically trivial, for any choice
of connecting bands. The result for the first non-vanishing pi-invariants and under
the restriction that connecting bands intersect the separating 2-sphere just once
has been established in [1], [14]. (By a first non-vanishing j-invariant of a link L
we mean fr(ép,...,4;) such that fr(J) = 0 for all multiindices J with less than
k entries.) In this generality it also follows from the result of V. Turaev [16] which
interprets fi-invariants in terms of Massey products on the zero-framed surgery of
53 along the link: the first non-trivial Massey products are defined, integer-valued,
and additive.

Section 2 provides background material about pi-invariants, gropes and the lower
central series of link groups, and section 3 contains the proof of Theorem 1. As an
easy consequence of the Grope Lemma [4] and Theorem 1 we establish in section 4
the “grope-concordance” invariance of fi-invariants and then we state Corollary 12
which relates fi-invariants of links connected in S x I by disjoint pairs of pants.

The Appendix describes two observations, due to M. Freedman and P. Teichner:
Lemma 13 is an application of Dwyer’s theorem, and is helpful for finding presenta-
tions of nilpotent quotients of groups, in terms of generators of the first and second
homology groups. Lemma 14 allows one to “move” arcs in in the complement of
surfaces in R* by finding singular gropes even in the absence of singular disks.
These results are used to formulate the corollaries in section 4.

This work was motivated by the “relative-slice” approach to the four-dimensional
topological surgery conjecture, introduced in [3], [4]. The goal is to develop tech-
niques of link homotopy theory, sufficient for determining whether a special family
of link pairs in S? is relatively slice. See [9], [10] for further study of link homotopy
and of the relative-slice problem.

2. PRELIMINARY FACTS ABOUT MILNOR’S [A-INVARIANTS, GROPES AND THE
LOWER CENTRAL SERIES.

The free group on generators gi,...,gr will be denoted by Fy, ., . Given
a group G, GY is the ¢-th lower central subgroup of ¢, defined inductively by
Gl'=G, G =[G,G],...,GI=[G,GI1.

We briefly review the definition of ji-invariants from [13]. Let L = ({1, ... ,1,;) be
a fixed oriented link in $3. All links considered in this paper are smooth. Given a
positive integer ¢, the quotient 71(S3 ~\ L)/(m1(5% \ L))? is generated by meridians
mi,...,m, tothe components of L. Let wq,...,w, be somewordsin m1,...,m,
which represent the untwisted longitudes in this group, then 71(S% ~ L)/(m1(S® <
L))? has the presentation

q
<my,... amn|[m1a wl]a cee [mna wn]a (le,...,mn) >
The Magnus expansion homomorphism M: Fp,, ., — Z{z1,...,&,} into the
ring of formal non-commutative power series in the indeterminates z1,...,z, is

defined by M(m;)=1+x;, M(m;')=1—a; +x7£... fori=1,... ,n. Let

k3

M{(w;) =14 Zpr(l, j)er



be the expansion of w;, where the summationis over all multiindices I = (41,... ,4)
with entries between 1 and n, and 2y = #;, -...-2;,, k > 0. This expansion de-
fines for each such multiindex I the integer pr(7,j). Let Ap(éy,...,4;) denote
the greatest common divisor of pz(ji,...,js) where j1, ..., js, 2<s<k—1isto
range over all sequences obtained by cancelling at least one of the indices 1, ...,
and permuting the remaining indices cyclicly.

Let iz (I) denote the residue class of pr(I) modulo Ar(I). For each multiindex
I of length |I]| < ¢ the residue class fr(I) is an isotopy invariant of the link I,
where fiz(I) is defined using the quotient (5%~ L)/(71(S® ~\ L))?.

Lemma 2. ([13]) Let L' be a link obtained by replacing each component of L by a
collection of untwisted parallel copies. Suppose that the i-th component of L' corre-
sponds to the h(i)-th component of L. Then fir:(i1,... 1) = gr(h(i1), ..., h(is)).

2.1. Link homotopy and Milnor groups. Two n-component links I, and L’ in
53 are said to be link-homotopic if they are connected by a 1-parameter family of
immersions such that different components stay disjoint at all times. L is said to be
homotopically trivialif it is link-homotopic to the unlink. L is almost homotopically
trivial if each proper sublink of L is homotopically trivial.

For a group 7 normally generated by g1,..., g5 its Milnor group (with respect
to g1,...,9r) M is defined to be the quotient of 7 by its subgroup < [g;, ¢%] :
1<i<k, h€m>. Mr is nilpotent of class < k+1, in particular it is a quotient
of 7/(m)F*! and is generated by the quotient images of g1,...,g%x. The Milnor
group M (L) of alink L is defined to be Mm(S3\ L) with respect to its meridians
m;.

Milnor showed in [12] that the Magnus expansion induces a well defined injective
homomorphism MM : M(Fp,, . m,) — R(z1,...,ry) into the ring R(x1,... , zx)
which is the quotient of Z{z1, ...z} by the ideal generated by monomials @;- - -2;,
with some index occuring at least twice. Let w, € M Fy,, . m,_, be a word repre-
senting /, in Mr1(S3~(l1U...Ul,_1)). Then ji-invariants of L with non-repeating
coefficients may also be defined by the equation

MM(w,) =14+ 3pp(I,n)er

where summation is over all multiindices I with non-repeating entries between 1
and n—1, and fir(I,n) is the residue class of pr(7,n) modulo the indeterminacy
Ar(I,n), defined above.

The Milnor group of L is the largest common quotient of the fundamental groups
of all links link-homotopic to L, hence one has the following result.

Theorem 3. (Invariance under link homotopy [12]) If L and L' are link homotopic
then their Milnor groups are isomorphic. In particular, for any multiindex I with
non-repeating entries ir(I) = pr/(I).

Isotopy of links is a special kind of concordance, and it is a result of Stallings
that Milnor’s invariants are preserved under this more general equivalence relation.

Theorem 4. (Concordance invariance [15]) If L and L' are concordant then all
their ji-invariants coincide. In fact, if L C S®x{0} and L' C S®x {1} are connected
in S® x I by disjoint immersed annuli then L and L' are link-homotopic ([6], [7],

[11]).



The next result gives an algebraic reformulation of the notion of a homotopically
trivial link.

Lemma 5. ([12]) For an n-component link L, the following conditions are equiv-
alent:

(i) L is homotopically trivial,

(ii) the components of L bound disjoint immersed disks in B*,

(iii)) M(L) 2 M(Fp,, . m,) with the isomorphism carrying a meridian

to l; to the generator m; of the free group,

(iv) all fi-invariants of I with non-repeating coefficients vanish.

It follows from Lemma 5 that L is almost homotopically trivial if and only if
all its ji-invariants with non-repeating coefficients of length less than n vanish.
In particular, if L is almost homotopically trivial then its f-invariants with non-
repeating coefficients of length n are well-defined integers.

2.2. Gropes and the lower central series. A grope is a special pair (2-complex,
circle). A grope has a class k = 1,2,...,00. For k = 1 a grope is defined to be
the pair (circle, circle). For k£ = 2 a grope is precisely a compact oriented surface
Y with a single boundary component. For k finite a k-grope is defined inductively
as follow: Let {a;, B;,i=1,...,genus} be a standard symplectic basis of circles for
3. For any positive integers p;,¢; with p; + ¢; > k and p;, + ¢;, = k for at least
one index ¢y, a k-grope is formed by gluing p;-gropes to each «; and g;-gropes to

each ;.

F1GURE 1. Two gropes of class 4.

The proof of the following lemma, and additional properties of gropes may be
found in [5], [10].

Lemma 6. (Lemma 2.1 in [5]) For a space X, a loop v liesin 7 (X)* 1 <k < w,
if and only if v bounds a map of some k-grope. Moreover, the class of a grope
(G,7) is the maximal k such that y € m(G)*.

If the components of a link L bound disjoint immersed disks in B? then L is
homotopically trivial, see Lemma 5. Grope Lemma shows that the same conclusion
holds if instead of immersed disks one has immersed gropes of a sufficiently large
class.



Theorem 7. (Grope Lemma [4], see also [10]) Let L be an n-component link in
53 . Suppose the components of L bhound disjoint maps of gropes of class n in B*.
Then I is homotopically trivial.

Given a surface S, an S -like grope of class k 1s a 2-complex obtained by replacing
a 2-cell in S with a k-grope. For example, one has annulus-like k-gropes; sphere-
like gropes are sometimes also referred to as closed gropes. Given a space X, the
Duwyer’s subgroup ¢r(X) of Ho(X;7Z) is the set of all homology classes represented
by maps of closed gropes of class k into X.

Theorem 8. (Dwyer’s Theorem [2]; see also Lemma 2.3 in [5]) Let k& be a posi-
tive integer and let f: X — Y be a map inducing an isomorphism on Hi(.;7)
and mapping H+(X)/¢r(X) onto Ha(X)/¢x(Y). Then f induces an isomorphism
m(X)/ (1 (X)) = m(YV)/(m(Y).

A Grope is a special “untwisted” 4-dimensional thickening of a grope (G,7v); it
has a preferred solid torus (around the base circle v) in its boundary. This “un-
twisted” thickening is obtained by first embedding G in R3 and taking its thickening
there, and then crossing it with the interval [0,1]. The definition of a 0-framed
grope is independent of the chosen embedding of G in R3. Similarly, one de-
fines sphere- and annulus-like Gropes, the capital letter indicating a 4-dimensional
thickening of the corresponding 2-complex.

3. ADDITIVITY OF MILNOR’S [i-INVARIANTS.

This section contains the proof of Theorem 1. The idea is to connect L', L’
and L'#L" by disjoint pairs of pants in S® x I and to compare the link groups
with the fundamental group of the complement of surfaces in S x I. This idea of
comparison with the 4-dimensional complement has proved useful in link homotopy
theory — see the proof of concordance invariance 4 in [15], and the proof of lemma

5 in [5].
fx\m

~

" > ¥/

Sy e
- E D
i s

FIGURE 2. A connected sum of links.
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Before proving Theorem 1 we will give a geometric argument to establish the
following lemma, corresponding to the case of non-repeating indices and trivial
indeterminacies; it illustrates the proof of Theorem 1 in this easier case.



Lemma 9. Let L' = (!{,...,l)) and L" = (I{,...,ll!) be two almost homotopi-
cally trivial oriented links in S®, separated by a 2-sphere. Then for any choice of

connecting bands L'{L" = (l1,...,l,) Is also almost homotopically trivial, and

/]L’ﬁL”(]-, S ,n) = /]L’(]-, S ,n)—l—ﬂLH(l, S ,n).

Proof. Considering L'fL" as a link in S3 x {0} and L', L” in S3 x {1}, one may
construct disjoint properly embedded pairs of pants P, ..., P, in S3 x [0,1] with
P, =L, UL Ull, i=1,...,n. Precisely, P; is formed by starting with [; at time
0, shrinking the band in the middle so that /; surgers into two components at time
1/2, and an isotopy of these two components to [/ and [/ between 1/2 and 1.

We will first show that L’§L” is almost homotopically trivial. Consider the link
(..., i, ..., ln) C S3x{0} (the i-th component is deleted) and the pairs of pants
Py P Py CS®x[0,1]. The link (&, ... 0\ ... 0 00 .0/ ...1") C
53 x {1} is homotopically trivial and bounds disjoint immersed disks in S® x [1,2].
Now ({1, ... i ,1,) bounds in S® x [0, 2] disjoint immersed disks, so by Lemma
5 it is homotopically trivial. Since this conclusion holds for each ¢ = 1,...,n,
L'$L" is almost homotopically trivial.

Let I, and I, 5 in 52 x {0} denote the result of surgery on [, which cuts the
connecting band; the corresponding surgery on P, gives two annuli Ay, A; C 53 x
[0, 1]\ (PU. . .UP,_q) with 04 = [, 1Ul,,, 0As =, 2UL]]. Let L, denote the link
(I, yln—1,1,1). We will construct in S® x [0, 2] a singular concordance between
L; € 83 x {0} and L' C 53 x {2}. It consists of P1,...,P,_1, A1 in 5% x [0,1],
the product L’ x [1,2] and a disjoint from it nullhomotopy of (If,...,{7_1) in
53 x [1,2]. By singular concordance invariance 4, jir,(1,...,n) = pr(1,...,n).
Analogously we get fir,(1,...,n) = ar~(1,...,n) for the link Lo = (l1,... ,lh_1,
ln2).

Recall that a longitude of /, (also denoted by [,) consists of an arc y from
the basepoint, followed by an untwisted parallel copy of [, and then by v~!'. For
completeness of the proof we include here, in the case of trivial indeterminacy, the
argument given in [13] to show that fi-invariants are well-defined with respect to the
choice of longitudes. Let m; denote a meridian to the component /;, : =1,... n.
Since L'§L” is almost homotopically trivial, the Magnus expansion

MU Ulaey) = M(Foy ) 2 Ry, nss)

of [, 1s of the form 1+ w,, where
wp=pryri(l,...,n)x1- - 2,_1+terms obtained by permutations from ;- - - z,_1.

The Magnus expansion of m;l, mi_1 is then of the form

(I1+2)(14+wy)(l—2 +...) =1+ w, + terms containing both w, and z;;

clearly the coefficient of x;...x,_1 in this expansion is the same as in w, .

This allows us to choose longitudes I, 1, I, » (keeping the same notations for the
longitudes as for the components), so that I, = I, 11,2 € m(S® x {0}~ (hU...U
ln—1)). Then MM(l,) = MM(l,1)-MM(l, »), and the coefficient firyr=(1,... n
of 1 wp_1 in MM(l,) isequal to fr,(1,...,n)+jr,(1,...,n)=fac/(1l,...,n
+7ir#(1,...,n). This concludes the proof of Lemma 9.

o= =



Proof of Theorem 1. Considering L'#L" as alinkin S®x{0} and L', L” in S®x {1},
one has disjoint properly embedded pairs of pants Py,..., P, in 53 x [0,1] with
P, = LUllull, i = 1,...,n. P is formed by starting with /; at time 0,
shrinking the band in the middle so that /; surgers into two components at time
1/2, and an isotopy of these two components to [/ and [ between 1/2 and 1.
Choosing the appropriate trivializations of the normal bundles of Py, ..., P, one
can find for each i a parallel copy P; of P;, such that OP; = l; UlL U/ with
lk(l;, ;) = k(4,1 = lk(I¥,1) = 0. After taking a sufficient number of parallel
copies of Pi,...,P,, we can assume by Lemma 2 that [ is a multiindex with
non-repeating entries. Let P denote the union P, U ... U FP,_;.

Let A(I) denote the greatest common divisor of Ar:(I) and Ars(I) and let
k = |I|, the number of entries in I. We may assume that n is the last index in I,
so that T = (J,n).

Let 1,1 and [, » denote the result of surgery on I, which cuts the connecting
band; the corresponding surgery on P, gives two annuli A;, 4, C S® x I~ P
with 04, =1, 1 Ull,, 0As =1, 2 ULlll. Consider links L := (h,...  l,_1,15,1) and
Ly = (li,... lnp_1,ln2) in S® x {0}. Similarly to the proof of Lemma 9, we will
show that

/]LI(I) = /]LI(I) mod A(I) and /]LQ(I) = /]LH(I) mod A(I)

We fix basepoints by € S® x {0}, by € S3 x {1}, and introduce the following short
notations for the fundamental groups:

my = 71'1(53 x {0}~ (LLU...Ulq), by), 7= 71'1(53 x [0,1] . P, by),

o= m(SP x {1 (QU. Ul Ul UL Ul ), by).

Let i,: mgp — m and i1: 7y — 7« be maps induced by inclusions; the definition of
i1 requires choosing a path joining by and b; in S$3 x I~ P, which will be fixed for
the rest of the proof. Fix some meridians m}, m} , based at by, to I}, I/ respectively
in S3 x {1} and a meridian m;, based at by, to I; in S® x {0}, i =1,...,n. Since
Hy(7) is generated by my,...,m,_1, the quotient /7" is also generated by these
meridians, see Lemma 13. For each 1 < ¢ < n let w} (respectively w!) be a word
in my,...,m,_1 representing i;(l!) (respectively i;(l¥)) in 7/(w)*; also let ul,
u} be words in my, ..., my_1 representing 1(m!), 7;(m}). By Alexander duality
the homology classes of the 2-tori — boundaries of the normal bundles in 5% x {1}
of Iy, ... Il ... l"_, — generate H(S® x [0,1]\ P;Z), and it follows from

Lemma 13 that
7T/(7T)k 2<my, . o |[ul wil [l w!i= 1,000 n— 1 (le,...,mn_l)k > .

Since m;, i1(m}) and i;(m}) are conjugate in 7, we can use the identity [a® b] =

[a, 6" D]° to get the presentation

7T/(7T)k =<my, ., mp o[y, (W), [my, (wé’)h’], i=1,...,n=1;(Fn,, . ,mn_l)k >

where g¢;, h; are some elements of F,,, ., ,. Foreach 1 < ¢ < n and each

multiindex J with entries between 1 and (n—1) let v/(.J,7) (respectively v”(J, 7))
denote the coefficient of zy in M (w}) (respectively M(w})), where M is the Mag-

nus expansion M: Fp,,  m — Z{xq, ... xp_1}.

n—1



Proposition 10. For each 1 < i < n and each multiindex J with entries between
1 and (n — 1) the coefficient v'(J,i) of x; in the Magnus expansion M (w}) is
well-defined modulo A(J,¢). Precisely, its residue class is well defined with respect
to

(i) conjugation of m;, j=1,...,n—1,

(ii) conjugation of a word w! representing li in w/7*,

(iii) multiplication of w; by conjugates of the relations [my, (w} )], [m;, (wé’)hj]

(iv) multiplication of w] by an element of (Fp,,, . ,mn_l)k-
Analogously the residue class of the coefficient v''(J,1) in M(w}) modulo A(J, 1)
is also well-defined.

Proof. This proposition is different from the theorem [13] that f-invariants are
well-defined modulo their indeterminacy in that we have more relations in the pre-
sentation for 7/(7)* and as a result the larger indeterminacy. We will now adapt
the proof of Theorem 5 in [13] to this setting.

In the ring Z{x1,... ,2,—1} let D; denote the ideal

D, ={Zcjas||J| >k, or o5 =0mod A(J, %) if |J]| < k}.
To prove that two words w; and w) give rise to the same residue classes of v/,
mod A(J, %) it suffices to show that M(w; — w}) € D;.
(1) D; is a two-sided ideal.

Proof. Let o5 x; € D; and let A - xg be an arbitrary monomial. Notice that
either |J| > k or o5 = 0 mod A(J,i) and A(J,4) = 0 mod A(H,J,i), hence
Aoy =0mod A(H,J,i). This implies A - o5 2y - 25 € D; and proves that D; is
a left ideal. Similarly it can be shown that D; is a right ideal.

This argument proves a more general fact

(1') Let 0525 € D;. If one or more new factors x; are inserted anywhere in o2z
then the resulting term is also in Dj;.

et v'(J,i)z; be any term in the expansion w;). If one or more new factors
2) Let v'(J,1 b t th M If fact

x; are inserted anywhere in v'(J, i)z then the resulting term is congruent to zero
modulo D;.

Proof. Let J = (j1,...,j:). The congruence

V/(jla"' ajtai)EomOd A(]la ajsajajs-l—la"' ajtai)

implies that
Vi(ji, .o dn ey, xpjreyr - xg, = 0mod D

(3) Let M(w}) = 1 +w;. Then wjz; = rjw; = 0 mod D; for any i, and the
analogous congruencies hold for w} .

Proof. Let v'(J,j)z; be any term of wj.
congruences v'(J, j) = 0 mod A(J, j, i), v'(J, j)zsz; = 0 mod D; and the analogous
congruences with J and j switched.

Now the statement follows from the



Proof of (1). Suppose that m; is replaced by m; = mhmjmgl, M(m;) =1+ z;,
M(m;) =1+ &;. Then m; = m,?lmjmh and
vj=(l—ap+ai+...)%;(1+2p) = Z;+ terms involving z,%; or Z;zp.

Each time the factor z; occurs in the Magnus expansion of w} it is to be replaced
by this expression. An application of (2) concludes the proof of (i).

Proof of (ii). Suppose that w] is replaced by m; wgm]»_l, M(w}) =14 w}. Then it
follows from (1) and (2) that

M((w)™) =14+ (1+zj)wi(l—z;+2i£...) =

14 wi+ terms involving z;w! or wir; =w; mod D;.
The statement about w}’ 1s proved analogously.

Proof of (iii). Assume first that g; = h; = 1. Extend the Magnus expansion
homomorphism to the group ring ZFy,, . m,_,, then

M(m]'w} - w}mj) =(1+x;)(1 —|—w§») -1 —|—w§»)(1 +z;)= J:jw} —w}xj,

M ([mj,wi]) = M(1+ (mjw) — wimg)m; " (w;) ™)

together with (3) imply that M ([m;,w}]) = 1 mod D;.
For arbitrary g;, h; let M(w}) =1+ w}, M((w;)?)=1+w;. Since

[ A— / —
i =wjr; = 0mod D,

Tjw
M (mj(wj)® — (wj)¥m;) = (1+a;)(1+@5) — (L+@))(1 + ;) = 2j0) — @,
it follows by remark (1’) and the proof of (ii) that

M(m; (w})gi — (w})gjmj) =1 mod D;

for any 7. This implies that
M (I ()T) = M(L+ (my ()% — ()% m; )7 (w])=9) = 1 mod D;.
The statement about w}’ 1s proved analogously.

Part (iv) is a well-known fact [8]. This concludes the proof of Proposition 10. O

To finish the proof of Theorem 1 consider the commutative diagram:

m/(m)F Fonr mt_ omt o omh M, ZAx, el
ill ¢1l wll

m/(m)f —— Py s M, VAL

iDT %T %T

o/ (mo)F 21— Py s Mo, Z{en, ... #non}

where the maps ip and i; are induced by inclusions,

p, po and p; are the obvious epimorphisms,



¢o = id, ¢1(m}) = (m;)%, ¢1(mf) = (m;)* for some af,a) € Fpn, . m,_

P an and

vo = id, () = (L+op)(1+a)(1+a7) =1, va(ay) = 1+ )(1+z)(1+ai) -1
where af = M(a}), aj = M((aj)™"), of = M(a}), af = M((af)™}).
Let An,l € le,...,

lo1, p1(A,) = I,. We may assume that A}, is a word in just mj,...,m

M(¢o(An 1)) = Mo(An) = Zpr, (J,n) 2y,

and A} € Fot o m! _ omY,.. m7_, besuch that po(An1) =

My e
!
n—1- Then

Mnp—1

Mi(A) =Zup/(J,n)z; and

M(¢1(X,)) =Zv'(J,n)zy.

Since I, and !/, cobound the annulus 4; C S® x I \ P, ig(l,,1) and i1(1],) are
conjugate in 7 and by Proposition 10, pxr,(J,n) = v/(J,n) mod A(J,n). Since the
meridians m; and i1 (m}) are conjugate in #, i = 1,...,n — 1, Proposition 10 (i)
implies that pr/(J,n) = v'(J,n) mod A(J,n), and we conclude that

Ar,(J,n) = pr(J,n) mod A(J, n); analagously fr,(J,n) = fir»(J,n) mod A(J, n).
Choosing the longitudes [, ; and [, in 53 x {0} appropriately, we may assume
I, = ln,l : ln,Z € my. If /\n,la An,2 € le,...,m are such that pO(An,l) = ln,la

Po(An,2) = ln 2, then po(An1 - An2) = Ly
The coefficient of x; in the expansion My(A, 1 - An2) is equal to

n—1

pryro(J,n) =Zpp, (Ji,n) - pr,(Jo,n) = Zpp(J1,n) - proe(Ja,n) =

= pp(J,n) + pro(J,n) mod A(J, n)

where the summations are over all multiindices Jy, Jo with (Jq,.J2) = J.
An inductive argument now shows that the indeterminacy Apyrn(J,n) is a
multiple of A(J,n). This concludes the proof of Theorem 1. O

4. COROLLARIES.

As a generalization of concordance invariance 4 and of Grope Lemma 7, we state

Corollary 11. (Grope-concordance invariance) Let L = (ly,...,l,) and L' = ({1,
., 1) be two links in S x {0} and S3 x {1} respectively.
(i) Suppose there are disjoint immersed annulus-like gropes Ay, ..., A, of class n

in 5% x [0,1] with 0A; = ; Uli, i = 1,... ,n. Then for any multiindex I with
non-repeating entries pr(I) = ap/(I).

(ii) Suppose there are disjoint embedded annulus-like Gropes Ay, ..., A, of class
k in S® x [0,1] with 8A4; =, Ul,, i = 1,...,n. Then for any multiindex I with
1<k, D) = (D).

Proof of (i). L and L' may be thought of as two links separated by a 2-sphere in
53, and connected by disjoint gropes A;,..., A, in B*. Foreach 1 <i < n let o;



be an arc in the first stage of A; connecting its two boundary components, ; and /.
By Alexander duality Hy(B*~\ (A4;U...UA,);Z) is generated by meridians to the
first stages of the gropes Ay,..., A, , and the proof of Lemma 14 extends without
changes to this setting. By Lemma, 14, for each ¢ there exists an arc 4; in S® such
that «; U 5; bounds an immersed grope (G of class n in the complement of other
A;’s. Now a singular surgery of A; along G; for each ¢ exhibits a connected sum
L§L' as the boundary of disjoint immersed gropes of class n in B*. By Theorem
1 and Grope Lemma 7, 0 = firsr(I) = ar(I) + pr(I). The difference of signs
with the statement of Corollary 11 is due to the change of orientations between the
original setting and considering both links in the same S3.

By Lemma 2, part (ii) follows from (i) after taking a sufficient number of parallel

copies of Ay,... A,. [l

Remark. For a different proof of Corollary 11 see Theorem 2 and Corollary 4.2 in
[10].

Corollary 12. Let L = (I1,...,l;) be a link in 5% x {0}, and L' = (I,... 1),

L" = (17,...,12) be two links separated by a 2-sphere in S x {1}. Assume there
are disjoint embedded pairs of pants Py, ..., P, in 5% x[0,1] with 0P, = L UILUl/,
t =1,...,n. Given some orientations of the pairs of pants, let the links be oriented

as their boundaries. Then for any multiindex I the indeterminacy Ap(I) is a
multiple of g.c.d.(Ap:/(I),Ap»(I)), and

(1) = 1) + i (1) mod (g.c.d.(Ap(D), Apo(D))).
Note that the statement is well-defined with respect to the choice of orientations

of the pairs of pants: if one of them is reversed, each term in the formula changes
its sign.

Proof. Choosing the appropriate trivializations of the normal bundlesof Py, ..., P,,
one can find for each i a parallel copy P; of P;, 0P, = [; Ull Ul! with lk(l;,1;) =
(L, 1) = Ik(l¥,1") = 0. After taking a sufficient number of parallel copies of
Py, ..., P,, we can assume by Lemma 2 that [ is a multiindex with non-repeating
entries. Using Lemma 14 the pairs of pants may be surgered into disjoint immersed
annulus-like gropes of arbitrarily large class, cobounded by L C 5% x {0} and
L'$L" C S3 x {1} for some bands connecting L’ and L” in S3 x {1}, and 12 is
reduced to Theorem 1 by grope-concordance invariance, Corollary 11 (i). O

Remarks. It immediately follows from the proof of Theorem 1 that, in fact, Theorem
1 is equivalent to Corollary 12.

The conclusion of Corollary 12 is easily seen to hold if Py, ..., P, are (pair of
pants)-like gropes of class k, for multiindices I with |7| < k. The proof of Lemma
14 is unchanged if surfaces 31, ..., X, in its formulation are replaced by k-gropes.
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APPENDIX. TWO USEFUL LEMMAS: FINDING PRESENTATIONS OF
NILPOTENT QUOTIENTS, AND PULLING UP ARCS IN B?.
(AFTER M. H. FREEDMAN AND P. TEICHNER)

To state the first lemma, fix a group 7 and suppose that H;(w;7Z) is generated
by ¢1,...,9n, Ha(7;7Z) is generated by r1,...,ry, and let ¢ > 2 be an integer.
Then the result of lemma 13 is that, roughly, ¢1,...,9, and ry,...,r, provide
the set of generators and relations respectively in a presentation of x/7¢. To make
this precise, consider the quotient homomorhism «: #/7¢ — #/[7,#] and let
g; € /77 denote some preimage of g; under o, i = 1,... n. It is a standard fact
in nilpotent group theory [17] that §¢1,...,d, generate m/7x%: let N denote 7/7?
and let H be the subgroup generated by §i1,...,§n. Since a(H) = «/[n, 7], we
have N = H-[N, N], and this condition implies H = N . (The proof is by induction
on the nilpotency class of N, using the fact that if # = g mod N?, y = h mod N?
then [z,y] = [g, h] mod NIT1.)

Let W — K(m,1) be a map from the wedge of n circles W, inducing an
epimorphism §: 71 (W) — 7 /7¢ and mapping the i-th free generator of (V)
to g;. Let f;: X¥; — K (7, 1) be a map of a surface X;, representing the generator
r; of Ho(K(m, 1)) 2 Ho(mw), j=1,...,m. We assume here that each space has a
fixed basepoint, and all maps preserve them. The standard basis of H1(X;) pulls
back via § to some elements in 7 (W); let #; € 7 (W) be a lift via § of the
attaching map of the 2-cell of ¥;. (In particular, if ¥; is a 2-sphere then the
corresponding word 7; is trivial.)



Lemma 13. Suppose Hy(7;7Z) is generated by g¢1,...,¢n, and Ho(mw;7Z) is gener-

ated by r1,...,ry. Then in the notations as above,
7T/7Tq = <§1,... ,gn | 721,... ,fm,(Fg}l,...,g?n)q>
where Fj, . 5. denotes the free group on generators gi,...,qn.

Proof. Let X be the 2-complex obtained from W by attaching m two-cells along
the words #1,...7y,. The composition W — K(m,1) — K(wx/#x?,1) extends to
X, inducing an isomorphism H1(X) = Hy(7w) = Hy(n/7?) and an epimorhism on
Hy/¢,. Now an application of Dwyer’s theorem 8 concludes the proof of Lemma

13. O

Lemma 14. Let ¥ =X, U...UX,, be a collection of properly immersed disjoint
compact connected surfaces in B* with 0%; # () foreach i = 1,... n. Let (o, dav)
be an arc in (B*\ X,5% \ 9%), and let k be a positive integer. Then there exists
an arc 3 C S3 ~\ 0¥ with 98 = da such that o U 3 bounds an immersed grope G
of class k in B*\ T.

FIGURE 3

Proof. Let v C S® \ 0% be any arc with 9y = da. Foreach 1 < i < n fix a
meridian m; to a component of 9%;. Hi(B*\ $;Z) is generated by my,...,m,,
hence by lemma 13, 71 (B*\X)/(7(B*\ X))* is also generated by these meridians.
Similarly 71 (S \ 0%)/(71 (5% \ %)) is generated by meridians to all components
of 9%.. Hence the homomorphism

i m(S? N 0%)/(71(S3 N OX))F — m (B N )/ (7 (B \ X))
induced by inclusion is surjective, and there exists a loop § C S \ X such that

i(6) = i(a - y). (Here - denotes the composition of paths). Then i(a -7y -671) €
(m1(B* <\ X))*, and the arc §:= v -6~} satisfies the conclusion of Lemma 14. O
Remark. Lemma 14 shows that immersed gropes are much easier to find than

immersed disks: it is not difficult to construct an example of surfaces ¥ and an arc
a such that o U 3 does not bound an immersed disk for any choice of S.



