Picture TQFTs, categorification, and localization

Slava Krushkal
(joint work with Ben Cooper)

March 17, 2012

Outline:

- Construction of "Picture TQFTs"

The Jones-Wenzl projectors
Evaluation at a root unity

- Categorification
of the Jones-Wenzl projectors
- Towards categorification of TQFTs and 3-manifold invariants:

Evaluation at a root of unity as a localization

The Temperley-Lieb algebra $T L_{n}$: generators 1 and $e_{i}, 0<i<n$, satisfying the relations:
$1 e_{i} e_{j}=e_{j} e_{i}$ if $|i-j| \geq 2$.
2 $e_{i} e_{i \pm 1} e_{i}=e_{i}$
$3 e_{i}^{2}=[2] e_{i}$
where

$$
[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{-(n-1)}+q^{-(n-3)}+\cdots+q^{n-3}+q^{n-1}
$$

Each generator e_{i} can be pictured as a diagram consisting of n chords between two collections of n points on two horizontal lines in the plane.
Example: $n=3$:

$$
1=\left|\left|, \quad e_{1}=\bigcap\right| \text { and } \quad e_{2}=\right| \bigcap .
$$

The multiplication is given by vertical composition of diagrams.

Definition

The Temperley-Lieb space TL (Σ) of a labelled surface Σ is the set of all $\mathbb{Z}\left[q, q^{-1}\right]$ linear combinations of isotopy classes of 1-manifolds ("multi-curves") $F \subset \Sigma$ subject to the local relation: removing a simple closed curve bounding a disk in Σ from a multi-curve is equivalent to multiplying the resulting element by the quantum integer $[2]=q+q^{-1}$.

Definition

The Temperley-Lieb space TL (Σ) of a labelled surface Σ is the set of all $\mathbb{Z}\left[q, q^{-1}\right]$ linear combinations of isotopy classes of 1-manifolds ("multi-curves") $F \subset \Sigma$ subject to the local relation: removing a simple closed curve bounding a disk in Σ from a multi-curve is equivalent to multiplying the resulting element by the quantum integer $[2]=q+q^{-1}$.
$\mathrm{TL}(\Sigma)$ is the 2-dimensional version of the Kauffman skein module of $\Sigma \times[0,1]$.
The Temperley-Lieb algebra $T L_{n}$ corresponds to $\Sigma=D^{2}$

Definition

Let Q be an element of the Temperley-Lieb algebra. The ideal $\langle Q\rangle$ generated by Q in $\mathrm{TL}(\Sigma)$ is the smallest submodule containing all elements obtained by gluing Q to B where $\Sigma=D^{2} \cup\left(\Sigma \backslash D^{2}\right)$, and B is any element of $\operatorname{TL}\left(\Sigma \backslash D^{2}\right)$.

Figure: An element of the ideal $\langle Q\rangle \subset \mathrm{TL}(\Sigma)$

The notion of an ideal $\langle Q\rangle$ allows one to consider an element Q of the Temperley-Lieb algebra as a local relation " $Q=0$ " among multi-curves on a surface Σ.

The notion of an ideal $\langle Q\rangle$ allows one to consider an element Q of the Temperley-Lieb algebra as a local relation " $Q=0$ " among multi-curves on a surface Σ.

Theorem (Goodman-Wenzl)
For q a primitive root of unity, $q=e^{2 \pi i / n}$, there exists a unique local relation (ideal $\langle Q\rangle$) such that the quotient of $T L(\Sigma) /\langle Q\rangle$ is non-trivial.

In this case $Q=$ Jones-Wenzl projector p_{n-1}, and $T L(\Sigma) /\left\langle p_{n-1}\right\rangle$ is the Turaev-Viro theory associated to Σ.

For q not a root of unity, $T L(\Sigma)$ has no non-trivial local relations.

Summary of the construction of the Turaev-Viro theory $T V_{n}(\Sigma)$:
1 Consider the $\mathbb{Z}\left[q, q^{-1}\right]$-module $T L(\Sigma)$,
2 Specialize $q=e^{2 \pi i / n}$
(Algebraically: quotient the coefficient ring by the cyclotomic polynomial $\left.\phi_{n}(q)\right)$
$3 T V_{n}(\Sigma)=T L(\Sigma) /\left\langle p_{n-1}\right\rangle$.

Summary of the construction of the Turaev-Viro theory $T V_{n}(\Sigma)$:
1 Consider the $\mathbb{Z}\left[q, q^{-1}\right]$-module $T L(\Sigma)$,
2 Specialize $q=e^{2 \pi i / n}$
(Algebraically: quotient the coefficient ring by the cyclotomic polynomial $\left.\phi_{n}(q)\right)$
$3 T V_{n}(\Sigma)=T L(\Sigma) /\left\langle p_{n-1}\right\rangle$.

An alternative construction: Skip step 2 and define

$$
\overline{T V}_{n}(\Sigma)=T L(\Sigma) /\left\langle p_{n-1}\right\rangle
$$

The result is closely related to $T V_{n}(\Sigma)$ (the coefficient ring is divided by $\phi_{n}\left(q^{2}\right)=\phi_{n}(q) \phi_{n}(-q)$ rather than $\left.\phi_{n}(q)\right)$

The Jones-Wenzl projectors are elements of the Tempeley-Lieb algebra that are uniquely characterized by two properties:
$1 p_{n}-1$ belongs to the subalgebra generated by
$\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$
In other words, $p_{n}=1+\ldots$
$2 e_{i} p_{n}=p_{n} e_{i}=0$ for all $i=1, \ldots, n-1$ "killed by turnbacks"

Origins and applications of the Jones-Wenzl projectors:

- Representation theory of $U_{q}\left(\mathfrak{s l}_{2}\right)$
- A "nice basis" of the Kauffman skein module of annulus $\times[0,1]$
- Building blocks in the definition of quantum spin networks
- Used in constructions of the Reshetikhin-Turaev and Turaev-Viro $S U(2)$ quantum invariants of 3-manifolds
- The colored Jones polynomial

The Jones-Wenzl projectors

may be defined by the inductive formula:

Example. The second projector p_{2} :

$$
\xrightarrow[\Pi]{H}=| |-\frac{1}{q+q^{-1}} \bigcup
$$

Example: The second projector p_{2} :

Categorification:

Bar-Natan's formulation of the Khovanov categorification of the Temperlay-Lieb algebra:
Additive category Pre-Cob(n):
Objects: isotopy classes of formally q-graded Temperley-Lieb diagrams with $2 n$ boundary points.
Morphisms: the free \mathbb{Z}-module spanned by isotopy classes of orientable cobordisms bounded in \mathbb{R}^{3} between two planes containing diagrams.
Notation:

$$
\square=2 \square=2 \rightarrow \quad \text { and } \quad \boxed{\square}=\square
$$

Form a new category $\operatorname{Cob}(n)=\operatorname{Cob}_{. / l}^{3}(n)$ obtained as a quotient of the category $\operatorname{Pre-Cob}(n)$ by the relations

$$
\cdots=0
$$

$$
\because=1
$$

$$
\cdots=0
$$

$$
\because=\alpha
$$

$$
\sigma=\theta+\theta
$$

$\Sigma_{3}=8 \alpha$ is a parameter.

Recall: the Jones-Wenzl projectors are elements of the Tempeley-Lieb algebra that are uniquely characterized by
$1 p_{n}=1+\ldots$
$2 e_{i} p_{n}=p_{n} e_{i}=0$ for all $i=1, \ldots, n-1$ "killed by turnbacks"

Recall: the Jones-Wenzl projectors are elements of the Tempeley-Lieb algebra that are uniquely characterized by
$1 p_{n}=1+\ldots$
$2 e_{i} p_{n}=p_{n} e_{i}=0$ for all $i=1, \ldots, n-1$ "killed by turnbacks"
Categorification of the Jones-Wenzl projectors:
Theorem: (Cooper - K.) For each $n>0$, there exists a chain complex P_{n} (positively graded with degree zero differential) such that

1 The identity diagram appears only in homological degree zero and only once.

2 The chain complex P_{n} is contractible "under turnbacks": for any generator $e_{i} \in \mathrm{TL}_{n}, 0<i<n, P_{n} \otimes e_{i} \simeq 0, e_{i} \otimes P_{n} \simeq 0$

Example: the second projector:

$$
p_{2}=\left|\left|-\frac{1}{q+q^{-1}} \cup=| |+\sum_{i=1}^{\infty}(-1)^{i} q^{2 i-1} \cup\right.\right.
$$

Example: the second projector:

$$
p_{2}=\left|\left|-\frac{1}{q+q^{-1}} \cup=| |+\sum_{i=1}^{\infty}(-1)^{i} q^{2 i-1} \cup\right.\right.
$$

Categorified second projector P_{2} :

Contractibility under turnbacks:

$$
\xrightarrow{\stackrel{\cap}{\cap}+\stackrel{\cap}{\cap}} q^{5}
$$

Contractibility under turnbacks:

Applications of categorified projectors:

- Categorification of spin networks
- In particular, $6 j$-symbols
- The colored Jones polynomial
- The $S O(3)$ Kauffman polynomial
- The hromatic polynomial of planar graphs

Algebra.
Temperley - Lieb algebra: TL_{n} $p_{n} \in \mathrm{TL}_{n}$
$p_{n} \cdot p_{n}=p_{n}$
p_{n} is unique

Category.
Khovanov - Bar-Natan Category
$P_{n} \in \operatorname{Kom}(n), K_{0}\left(P_{n}\right)=p_{n}$
$P_{n} \otimes P_{n} \simeq P_{n}$
P_{n} is unique up to homotopy

Algebra.
Temperley - Lieb algebra: TL_{n}
$p_{n} \in \mathrm{TL}_{n}$
$p_{n} \cdot p_{n}=p_{n}$
p_{n} is unique

Category.
Khovanov - Bar-Natan Category
$P_{n} \in \operatorname{Kom}(n), K_{0}\left(P_{n}\right)=p_{n}$
$P_{n} \otimes P_{n} \simeq P_{n}$
P_{n} is unique up to homotopy

Alternative constructions:
Lev Rozansky, Igor Frenkel - Catharina Stroppel - Joshua Sussan
More recent developments:
Ben Cooper - Matt Hogancamp: generalized projectors (for $\mathfrak{s l}_{2}$)
David Rose: $\mathfrak{s l}_{3}$
Sabin Cautis: $\mathfrak{s l}_{n}$
Matt Hogancamp: functoriality under cobordisms

Recall:

Summary of the construction of the Turaev-Viro theory $T V_{n}(\Sigma)$ (without evaluation at a root of unity):

$$
\overline{T V}_{n}(\Sigma)=T L(\Sigma) /\left\langle p_{n-1}\right\rangle
$$

Recall:

Summary of the construction of the Turaev-Viro theory $T V_{n}(\Sigma)$ (without evaluation at a root of unity):

$$
\overline{T V}_{n}(\Sigma)=T L(\Sigma) /\left\langle p_{n-1}\right\rangle
$$

Categorify this construction?

$$
T L(\Sigma) \rightsquigarrow \operatorname{Kom}(\operatorname{Cob}(\Sigma)) \quad p_{n-1} \rightsquigarrow P_{n-1}
$$

Categorical analogue of taking a quotient $T L(\Sigma) /\left\langle p_{n-1}\right\rangle$:
Localization

Definition

Given P in $\operatorname{Ho}\left(\operatorname{Kom}\left(D^{2}\right)\right.$, consider $\ll P \gg$: the smallest full subcategory of $\operatorname{Ho}(\operatorname{Kom}(\Sigma))$ which contains all objects obtained by gluing P to B where $\Sigma=D^{2} \cup\left(\Sigma \backslash D^{2}\right), B$ is any object of $\operatorname{Ho}\left(\operatorname{Kom}\left(\Sigma \backslash D^{2}\right)\right)$, and which is closed under cones and grading shifts.

Figure: Anobject in $\ll P>$

In a category \mathcal{C}, localized at an object P, the cone on any morphism $P \longrightarrow Q$ should be isomorphic to Q.

The classical Verdier localization is defined as the "quotient" of the category \mathcal{C} by the smallest thick subcategory containing $\ll P \gg$.

In a category \mathcal{C}, localized at an object P, the cone on any morphism $P \longrightarrow Q$ should be isomorphic to Q.

The classical Verdier localization is defined as the "quotient" of the category \mathcal{C} by the smallest thick subcategory containing $\ll P \gg$.

It turns out that the smallest thick subcategory containing $\ll P_{n} \gg$ is the entire category $\operatorname{Ho}(\operatorname{Kom}(\Sigma))$. (The chain complex for the trace of the projector is chain-homotopic to its homology). Therefore the Verdier localization is trivial.

We define a weaker notion of localization. The resulting category is not triangulated, however we believe there is functoriality under cobordisms.

In a category \mathcal{C}, localized at an object P, the cone on any morphism $P \longrightarrow Q$ should be isomorphic to Q.

The classical Verdier localization is defined as the "quotient" of the category \mathcal{C} by the smallest thick subcategory containing $\ll P \gg$.

It turns out that the smallest thick subcategory containing $\ll P_{n} \gg$ is the entire category $\operatorname{Ho}(\operatorname{Kom}(\Sigma))$. (The chain complex for the trace of the projector is chain-homotopic to its homology). Therefore the Verdier localization is trivial.

We define a weaker notion of localization. The resulting category is not triangulated, however we believe there is functoriality under cobordisms.

Towards 3-manifold invariants: we categorify the "magic element" ω at low levels, and show that the localized construction is invariant under handle slides.

