Picture TQFTs, categorification, and localization

Slava Krushkal (joint work with Ben Cooper)

March 17, 2012

Outline:

• Construction of "Picture TQFTs"

The Jones-Wenzl projectors Evaluation at a root unity

• Categorification

of the Jones-Wenzl projectors

• Towards categorification of TQFTs and 3-manifold invariants: Evaluation at a root of unity as a localization

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The Temperley-Lieb algebra TL_n : generators 1 and e_i , 0 < i < n, satisfying the relations:

1
$$e_i e_j = e_j e_i$$
 if $|i - j| \ge 2$.
2 $e_i e_{i \pm 1} e_i = e_i$
3 $e_i^2 = [2]e_i$

where

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{-(n-1)} + q^{-(n-3)} + \dots + q^{n-3} + q^{n-1}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Each generator e_i can be pictured as a diagram consisting of n chords between two collections of n points on two horizontal lines in the plane. Example: n = 3:

$$1 = \left| \begin{array}{c} \\ \end{array} \right|, \quad e_1 = \left| \begin{array}{c} \\ \end{array} \right| \quad \text{and} \quad e_2 = \left| \begin{array}{c} \\ \end{array} \right| \quad \bigtriangledown$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The multiplication is given by vertical composition of diagrams.

The Temperley-Lieb space $\operatorname{TL}(\Sigma)$ of a labelled surface Σ is the set of all $\mathbb{Z}[q,q^{-1}]$ linear combinations of isotopy classes of 1-manifolds ("multi-curves") $F \subset \Sigma$ subject to the local relation: removing a simple closed curve bounding a disk in Σ from a multi-curve is equivalent to multiplying the resulting element by the quantum integer $[2] = q + q^{-1}$.

ション ふゆ メ リン オ リン しょうくしょう

The Temperley-Lieb space $\operatorname{TL}(\Sigma)$ of a labelled surface Σ is the set of all $\mathbb{Z}[q, q^{-1}]$ linear combinations of isotopy classes of 1-manifolds ("multi-curves") $F \subset \Sigma$ subject to the local relation: removing a simple closed curve bounding a disk in Σ from a multi-curve is equivalent to multiplying the resulting element by the quantum integer $[2] = q + q^{-1}$.

 $TL(\Sigma)$ is the 2-dimensional version of the Kauffman skein module of $\Sigma\times[0,1].$

ション ふゆ メ リン オ リン しょうくしょう

The Temperley-Lieb algebra TL_n corresponds to $\Sigma = D^2$

Let Q be an element of the Temperley-Lieb algebra. The *ideal* $\langle Q \rangle$ generated by Q in $\operatorname{TL}(\Sigma)$ is the smallest submodule containing all elements obtained by gluing Q to B where $\Sigma = D^2 \cup (\Sigma \smallsetminus D^2)$, and B is any element of $\operatorname{TL}(\Sigma \smallsetminus D^2)$.

Figure: An element of the ideal $\langle Q \rangle \subset \mathrm{TL}(\Sigma)$

(ロ) (型) (E) (E) (E) (O)

The notion of an ideal $\langle Q \rangle$ allows one to consider an element Q of the Temperley-Lieb algebra as a local relation "Q = 0" among multi-curves on a surface Σ .

The notion of an ideal $\langle Q \rangle$ allows one to consider an element Q of the Temperley-Lieb algebra as a local relation "Q = 0" among multi-curves on a surface Σ .

Theorem (Goodman-Wenzl)

For q a primitive root of unity, $q = e^{2\pi i/n}$, there exists a unique local relation (ideal $\langle Q \rangle$) such that the quotient of $TL(\Sigma)/\langle Q \rangle$ is non-trivial.

In this case Q = Jones-Wenzl projector p_{n-1} , and $TL(\Sigma)/\langle p_{n-1} \rangle$ is the Turaev-Viro theory associated to Σ .

For q not a root of unity, $TL(\Sigma)$ has no non-trivial local relations.

Summary of the construction of the Turaev-Viro theory $TV_n(\Sigma)$:

- 1 Consider the $\mathbb{Z}[q, q^{-1}]$ -module $TL(\Sigma)$,
- 2 Specialize $q = e^{2\pi i/n}$ (Algebraically: quotient the coefficient ring by the cyclotomic polynomial $\phi_n(q)$)

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

$$TV_n(\Sigma) = TL(\Sigma)/\langle p_{n-1} \rangle.$$

Summary of the construction of the Turaev-Viro theory $TV_n(\Sigma)$:

- 1 Consider the $\mathbb{Z}[q,q^{-1}]$ -module $TL(\Sigma)$,
- 2 Specialize $q = e^{2\pi i/n}$ (Algebraically: quotient the coefficient ring by the cyclotomic polynomial $\phi_n(q)$)

$$TV_n(\Sigma) = TL(\Sigma)/\langle p_{n-1} \rangle.$$

An alternative construction: Skip step 2 and define

$$\overline{TV}_n(\Sigma) = TL(\Sigma) / \langle p_{n-1} \rangle$$

The result is closely related to $TV_n(\Sigma)$ (the coefficient ring is divided by $\phi_n(q^2) = \phi_n(q)\phi_n(-q)$ rather than $\phi_n(q)$)

The Jones-Wenzl projectors are elements of the Tempeley-Lieb algebra that are uniquely characterized by two properties:

1
$$p_n-1$$
 belongs to the subalgebra generated by $\{e_1,e_2,\ldots,e_{n-1}\}$
In other words, $p_n=1+\ldots$

2
$$e_i p_n = p_n e_i = 0$$
 for all $i = 1, \dots, n-1$ "killed by turnbacks"

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Origins and applications of the Jones-Wenzl projectors:

- Representation theory of $U_q(\mathfrak{sl}_2)$
- Building blocks in the definition of quantum spin networks
- \bullet Used in constructions of the Reshetikhin-Turaev and Turaev-Viro SU(2) quantum invariants of 3-manifolds

ション ふゆ メ リン オ リン しょうくしょう

• The colored Jones polynomial

The Jones-Wenzl projectors

may be defined by the inductive formula:

ション ふゆ メ リン オ リン しょうくしょう

Example. The second projector p_2 :

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \leftarrow \end{array} \end{array} = \begin{array}{c} \left| \end{array} \right| - \frac{1}{q+q^{-1}} \end{array} \begin{array}{c} \end{array} \\ \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example: The second projector p_2 :

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} = \left| \begin{array}{c} \end{array} \right| - \frac{1}{q+q^{-1}} \end{array} \\ \end{array} \\ = \left| \begin{array}{c} \end{array} \right| + \sum_{i=1}^{\infty} (-1)^{i} q^{2i-1} \end{array} \\ \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Categorification:

Bar-Natan's formulation of the Khovanov categorification of the Temperlay-Lieb algebra:

Additive category Pre-Cob(n):

Objects: isotopy classes of formally $q\mbox{-}{\rm graded}$ Temperley-Lieb diagrams with 2n boundary points.

Morphisms: the free \mathbb{Z} -module spanned by isotopy classes of orientable cobordisms bounded in \mathbb{R}^3 between two planes containing diagrams.

Notation:

$$\boxed{3} = 2 \boxed{\cdot} = 2 \boxed{-} \text{ and } \boxed{} = \boxed{-}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Form a new category $Cob(n) = Cob_{./l}^3(n)$ obtained as a quotient of the category Pre-Cob(n) by the relations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\Sigma_3 = 8 \alpha$ is a parameter.

Recall: the Jones-Wenzl projectors are elements of the Tempeley-Lieb algebra that are uniquely characterized by

1
$$p_n = 1 + \dots$$

2 $e_i p_n = p_n e_i = 0$ for all $i = 1, \dots, n-1$ "killed by turnbacks"

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Recall: the Jones-Wenzl projectors are elements of the Tempeley-Lieb algebra that are uniquely characterized by

1
$$p_n = 1 + \dots$$

2 $e_i p_n = p_n e_i = 0$ for all $i = 1, \dots, n-1$ "killed by turnbacks"

Categorification of the Jones-Wenzl projectors:

Theorem: (Cooper - K.) For each n > 0, there exists a chain complex P_n (positively graded with degree zero differential) such that

- The identity diagram appears only in homological degree zero and only once.
- 2 The chain complex P_n is contractible "under turnbacks": for any generator $e_i \in TL_n$, 0 < i < n, $P_n \otimes e_i \simeq 0$, $e_i \otimes P_n \simeq 0$

Picture TQFTs, categorification, and localization — Categorification of the Jones-Wenzl projectors

Example: the second projector:

$$p_2 = \left| \left| -\frac{1}{q+q^{-1}} \right\rangle \right| = \left| \left| +\sum_{i=1}^{\infty} (-1)^i q^{2i-1} \right\rangle \right|$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Picture TQFTs, categorification, and localization — Categorification of the Jones-Wenzl projectors

Example: the second projector:

$$p_2 = \left| \left| \left| -\frac{1}{q+q^{-1}} \right| \right| = \left| \left| \right| + \sum_{i=1}^{\infty} (-1)^i q^{2i-1} \right| \right|$$

Categorified second projector P_2 :

$$\left| \begin{array}{c} H \\ \hline \end{array} \right| \xrightarrow{H} q \xrightarrow{\bigvee} \xrightarrow{\bigvee} - \xrightarrow{\bigvee} q^{3} \xrightarrow{\bigvee} \xrightarrow{\bigvee} + \xrightarrow{\bigvee} q^{5} \xrightarrow{\bigvee$$

. .

Contractibility under turnbacks:

$$\bigcap \xrightarrow{\land} q \xrightarrow{\diamondsuit} q^3 \xrightarrow{\diamondsuit} q^3 \xrightarrow{\diamondsuit} q^5 \xrightarrow{\diamondsuit} q^5$$

•

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Contractibility under turnbacks:

$$\bigcap \xrightarrow{\land} q \stackrel{\diamondsuit}{\frown} \frac{\And}{\longrightarrow} q^3 \stackrel{\diamondsuit}{\frown} \frac{\overset{\diamondsuit}{\longrightarrow} + \overset{\diamondsuit}{\land}}{\longrightarrow} q^5 \stackrel{\circlearrowright}{\frown} q^5$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Applications of categorified projectors:

- Categorification of spin networks
- In particular, 6*j*-symbols
- The colored Jones polynomial
- The SO(3) Kauffman polynomial
- The hromatic polynomial of planar graphs

Picture TQFTs, categorification, and localization

Categorification of the Jones-Wenz projectors

Algebra.

Temperley - Lieb algebra: TL_n $p_n \in TL_n$ $p_n \cdot p_n = p_n$ p_n is unique

Category.

Khovanov - Bar-Natan Category $P_n \in \text{Kom}(n), K_0(P_n) = p_n$ $P_n \otimes P_n \simeq P_n$ P_n is unique up to homotopy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Categorification of the Jones-Wenzl projectors

Algebra.

Temperley - Lieb algebra: TL_n $p_n \in TL_n$ $p_n \cdot p_n = p_n$ p_n is unique

Category.

Khovanov - Bar-Natan Category $P_n \in \text{Kom}(n), K_0(P_n) = p_n$ $P_n \otimes P_n \simeq P_n$ P_n is unique up to homotopy

Alternative constructions: Lev Rozansky, Igor Frenkel - Catharina Stroppel - Joshua Sussan

More recent developments:

Ben Cooper - Matt Hogancamp: generalized projectors (for \mathfrak{sl}_2) David Rose: \mathfrak{sl}_3 Sabin Cautis: \mathfrak{sl}_n Matt Hogancamp: functoriality under cobordisms

Recall:

Summary of the construction of the Turaev-Viro theory $TV_n(\Sigma)$ (without evaluation at a root of unity):

$$\overline{TV}_n(\Sigma) = TL(\Sigma) / \langle p_{n-1} \rangle$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Recall:

Summary of the construction of the Turaev-Viro theory $TV_n(\Sigma)$ (without evaluation at a root of unity):

$$\overline{TV}_n(\Sigma) = TL(\Sigma) / \langle p_{n-1} \rangle$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Categorify this construction?

 $TL(\Sigma) \rightsquigarrow Kom(Cob(\Sigma)) \qquad p_{n-1} \rightsquigarrow P_{n-1}$

Categorical analogue of taking a quotient $TL(\Sigma)/\langle p_{n-1}\rangle$: Localization

Given P in $Ho(Kom(D^2)$, consider $\langle P \rangle \rangle$: the smallest full subcategory of $Ho(Kom(\Sigma))$ which contains all objects obtained by gluing P to B where $\Sigma = D^2 \cup (\Sigma \setminus D^2)$, B is any object of $Ho(Kom(\Sigma \setminus D^2))$, and which is closed under cones and grading shifts.

Figure: Anobject in $\langle P \rangle_{\Box}$, $\langle P \rangle_{\Box}$

In a category C, localized at an object P, the cone on any morphism $P \longrightarrow Q$ should be isomorphic to Q.

The classical Verdier localization is defined as the "quotient" of the category C by the smallest thick subcategory containing $\ll P \gg$.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

In a category C, localized at an object P, the cone on any morphism $P \longrightarrow Q$ should be isomorphic to Q.

The classical Verdier localization is defined as the "quotient" of the category C by the smallest thick subcategory containing $<\!< P >\!>$.

It turns out that the smallest thick subcategory containing $\langle P_n \rangle \rangle$ is the entire category $Ho(Kom(\Sigma))$. (The chain complex for the trace of the projector is chain-homotopic to its homology). Therefore the Verdier localization is trivial.

We define a weaker notion of localization. The resulting category is not triangulated, however we believe there is functoriality under cobordisms.

ション ふゆ メ リン オ リン しょうくしょう

In a category C, localized at an object P, the cone on any morphism $P \longrightarrow Q$ should be isomorphic to Q.

The classical Verdier localization is defined as the "quotient" of the category C by the smallest thick subcategory containing $<\!< P >\!>$.

It turns out that the smallest thick subcategory containing $\langle P_n \rangle \rangle$ is the entire category $Ho(Kom(\Sigma))$. (The chain complex for the trace of the projector is chain-homotopic to its homology). Therefore the Verdier localization is trivial.

We define a weaker notion of localization. The resulting category is not triangulated, however we believe there is functoriality under cobordisms.

Towards 3-manifold invariants: we categorify the "magic element" ω at low levels, and show that the localized construction is invariant under handle slides.