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1. Introduction

The surgery conjecture, a core ingredient in the geometric classification
theory of topological 4−manifolds, remains an open problem for a large
class of fundamental groups. The results to date in the subject: the disk
embedding conjecture, and its corollaries – surgery and s-cobordism theo-
rems for good groups1,5,6,11 – show similarities of classification of topological
4−manifolds with the theory in higher dimensions. On the other hand, it
has been conjectured2 that surgery fails for (non-abelian) free fundamental
groups.

The A − B slice problem3 is a reformulation of the surgery conjecture
for free groups which seems most promising in terms of the search for an
obstruction. In this approach one considers smooth codimension zero de-
compositions D4 = Ai ∪ Bi of the 4−ball, extending the standard genus
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one Heegaard decomposition of the 3-sphere. (A precise definition is given
in section 2, also see figure 1.) Then the problem is formulated in terms of
the existence of disjoint embeddings of the submanifolds Ai, Bi in D4 with
a prescribed homotopically essential link in S3 = ∂D4 as the boundary
condition. The central case corresponds to the link equal to the Borromean
rings. The problem may be phrased in terms of the existence of a suitably
formulated non-abelian Alexander duality in dimension 4. Recently this ap-
proach has been sharpened and now there is a precise, axiomatic description
of what properties an obstruction, which in this context is an invariant of
decompositions of D4, should satisfy.

The A − B slice formulation of surgery was introduced by Freedman3

and further extensively studied by Freedman-Lin.4 In particular, the latter
paper introduced a family of model decompositions which appear to approx-
imate, in a certain algebraic sense, an arbitrary decomposition D4 = A∪B.
This family of decompositions is defined in section 4. In this paper we use
link groups of 4−manifolds, recently introduced by the author,8 to formu-
late an obstruction for the family of model decompositions:

Theorem 1.1. Let L be the Borromean rings, or more generally any ho-

motopically essential link in S3. Then L is not A − B slice where each

decomposition D4 = Ai ∪Bi is a model decomposition.

The invariant using link groups formulated in the proof unifies and
generalizes the previously known partial obstructions4,9 in the A−B slice
program. The definitions of link groups and the underlying geometric notion
of Bing cells are given in section 3.

To place this result in the geometric context of link homotopy, it is con-
venient to introduce the notion of a robust 4−manifold. Recall that a link
L in S3 is homotopically trivial12 if its components bound disjoint maps of
disks in D4. L is called homotopically essential otherwise. (The Borromean
rings is a homotopically essential link with trivial linking numbers.) Let
(M,γ) be a pair (4−manifold, embedded curve in ∂M). The pair (M, γ)
is robust if whenever several copies (Mi, γi) are properly disjointly embed-
ded in (D4, S3), the link formed by the curves {γi} in S3 is homotopically
trivial. The following statement is a consequence of the proof of theorem
1.1:

Corollary 1.2. Let D4 = A∪B be a model decomposition. Then precisely

one of the two parts A, B is robust.

It is interesting to note that there exist decompositions where neither
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of the two sides is robust.10 The following question relates this notion to
the A−B slice problem: given a decomposition D4 = A ∪B, is one of the

given embeddings A ↪→ D4, B ↪→ D4 necessarily robust? (The definition
of a robust embedding e : (M,γ) ↪→ (D4, S3) is analogous to the definition
of a robust pair above, with the additional requirement that each of the
embeddings (Mi, γi) ⊂ (D4, S3) is equivalent to e.)

In a certain sense, one is looking in the A − B slice problem for an
invariant of 4−manifolds which is more flexible than homotopy (so it sat-
isfies a suitable version of Alexander duality), yet it should be more robust
than homology – this is made precise using Milnor’s theory of link homo-
topy. The subtlety of the problem is precisely in the interplay of these two
requirements. Following this imprecise analogy, we show that link groups
provide a step in construction of such a theory.

2. Surgery and the A − B slice problem.

The 4−dimensional topological surgery exact sequence (cf [FQ], Chapter
11), as well as the 5−dimensional topological s-cobordism theorem, are
known to hold for a class of good fundamental groups. In the simply-
connected case, this followed from Freedman’s disk embedding theorem1

allowing one to represent hyperbolic pairs in π2(M4) by embedded spheres.
Currently the class of good groups is known to include the groups of subex-
ponential growth6,11 and it is closed under extensions and direct limits.
There is a specific conjecture for the failure of surgery for free groups:2

Conjecture 2.1. There does not exist a topological 4−manifold M , ho-

motopy equivalent to ∨3S1 and with ∂M homeomorphic to S0(Wh(Bor)),
the zero-framed surgery on the Whitehead double of the Borromean rings.

In fact, this is one of a collection of canonical surgery problems with
free fundamental groups, and solving them is equivalent to the unrestricted
surgery theorem. The A−B slice problem, introduced in ref. 3, is a refor-
mulation of the surgery conjecture, and it may be roughly summarized as
follows. Assuming on the contrary that the manifold M in the conjecture
above exists, consider the compactification of the universal cover M̃ , which
is homeomorphic to the 4−ball.3 The group of covering transformations
(the free group on three generators) acts on D4 with a prescribed action
on the boundary, and roughly speaking the A − B slice problem is a pro-
gram for finding an obstruction to the existence of such actions. Recall the
definition of an A−B slice link.3,4
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Definition 2.1. A decomposition of D4 is a pair of smooth compact codi-
mension 0 submanifolds with boundary A,B ⊂ D4, satisfying conditions
(1)− (3) below. (Figure 1 gives a 2−dimensional example of a decomposi-
tion.) Denote

∂+A = ∂A∩∂D4, ∂+B = ∂B∩∂D4, ∂A = ∂+A∪∂−A, ∂B = ∂+B∪∂−B.

(1) A ∪B = D4,
(2) A ∩B = ∂−A = ∂−B,

(3) S3 = ∂+A ∪ ∂+B is the standard genus 1 Heegaard decomposition of
S3.

α

α

A

β βB

Fig. 1. A 2−dimensional analogue of a decomposition (A, α), (B, β): D2 = A∪B, A is
shaded; (α, β) are linked 0−spheres in ∂D2.

Definition 2.2. Given an n−component link L = (l1, . . . , ln) ⊂ S3,
let D(L) = (l1, l′1, . . . , ln, l′n) denote the 2n−component link obtained
by adding an untwisted parallel copy L′ to L. The link L is A − B

slice if there exist decompositions (Ai, Bi), i = 1, . . . , n of D4 and self-
homeomorphisms αi, βi of D4, i = 1, . . . , n such that all sets in the collec-
tion α1A1, . . . , αnAn, β1B1, . . . , βnBn are disjoint and satisfy the boundary
data: αi(∂+Ai) is a tubular neighborhood of li and βi(∂+Bi) is a tubular
neighborhood of l′i, for each i.

The surgery conjecture holds for all groups if and only if the Borromean
Rings (and the rest of the links in the canonical family of links) are A−B

slice.3 Conjecture 2.1 above can therefore be reformulated as saying that
the Borromean Rings are not A−B slice.
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As an elementary example, note that if a link L is A−B slice where for
each i the decomposition D4 = Ai∪Bi consists of Ai = 2−handle D2×D2,
and Bi = the collar on ∂+Bi, then L is actually slice.

Of course the Borromean Rings is not a slice (or homotopically trivial)
link. However to show that a link is not A−B slice, one needs to eliminate
all choices for decompositions (Ai, Bi).

3. Link groups and Bing cells.

In this section we recall the definition of Bing cells and link groups of
4−manifolds, denoted λ(M4), introduced in Ref. 8, in order to formulate
the invariant Iλ used in the proof of theorem 1.1. The definition is inductive.

Definition 3.1. A model Bing cell of height 1 is a smooth 4-manifold
C with boundary and with a specified attaching curve γ ⊂ ∂C, defined
as follows. Consider a planar surface P with k + 1 boundary components
γ, α1, . . . , αk (k ≥ 0), and set P = P ×D2. Let L1, . . . , Lk be a collection of
links, Li ⊂ αi×D2, i = 1, . . . , k. Here for each i, Li is the (possibly iterated)
Bing double of the core αi. Then C is obtained from P by attaching zero-
framed 2-handles along the components of L1 ∪ . . . ∪ Lk.

The surface S (and its thickening S) will be referred to at the body of
C, and the 2-handles are the handles of C.

A model Bing cell C of height h is obtained from a model Bing cell of
height h − 1 by replacing its handles with Bing cells of height one. The
body of C consists of all (thickenings of) its surface stages, except for the
handles.

Figures 2, 3 give an example of a Bing cell of height 1: a schematic
picture and a precise description in terms of a Kirby diagram. Here P is a
pair of pants, and each link Li is the Bing double of the core of the solid
torus αi ×D2, i = 1, 2.

Remark 3.1. To avoid a technical discussion, the definition presented here
involves only the links L which are Bing doubles. To reflect this difference,
we reserve for these objects the term Bing cells rather than the more general
flexible cells discussed in Ref. 8. The definition in Ref. 8 involves more
general homotopically essential links, however just the Bing doubles suffice
for the applications in this paper.

Bing cells in a 4−manifold M are defined as maps of model Bing cells in
M , subject to certain crucial disjointness requirements. (In particular, this
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h1

C

h2
h3

h4

Fig. 2. Example of a model Bing cell of height 1: a schematic picture

γ

0

0 0

0

r r

Fig. 3. A Kirby diagram of the model Bing cell in figure 1

will be important for the discussion of model decompositions in section 4.)
Roughly speaking, objects attached to different components of any given
link Li in the definition are required to be disjoint in M . To formulate this
condition rigorously, recall the definition of the tree associated to a given
Bing cell.

3.1. The associated tree

Given a Bing cell C, define the tree TC inductively: suppose C has height 1.
Then assign to the body surface P (say with k + 1 boundary components)
of C the cone TP on k +1 points. Consider the vertex corresponding to the
attaching circle γ of C as the root of TP , and the other k vertices as the
leaves of TP . For each handle of C attach an edge to the corresponding leaf
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TC

Fig. 4. The tree TC associated to the Bing cell C in figures 2, 3.

of TP . The leaves of the resulting tree TC are in 1− 1 correspondence with
the handles of C.

Suppose C has height h > 1, then it is obtained from a Bing cell C ′ of
height h − 1 by replacing the handles of C ′ with Bing cells {Ci} of height
1. Assuming inductively that TC′ is defined, one gets TC by replacing the
edges of TC′ associated to the handles of C ′ with the trees corresponding
to {Ci}. Figure 4 shows the tree associated to the Bing cell in figure 2.

Divide the vertices of TC into two types: the vertices (“cone points”)
corresponding to body (planar) surfaces are unmarked; the rest of the ver-
tices are marked. Therefore the valence of an unmarked vertex equals the
number of boundary components of the corresponding planar surface. The
marked vertices are in 1 − 1 correspondence with the links L defining C,
and the valence of a marked vertex is the number of components of L plus
1. It is convenient to consider the 1−valent vertices of TC : its root and
leaves (corresponding to the handles of C) as unmarked. This terminology
is useful in defining the maps of Bing cells below. The height of a Bing cell
C may be read off from TC as the maximal number of marked vertices along
a geodesic joining a leaf of TC to its root, where the maximum is taken over
the leaves of TC .

Definition 3.2. A Bing cell is a model Bing cell with a finite number of
self-plumbings and plumbings among the handles and body surfaces of C,
subject to the following disjointness requirement:

• Consider two surfaces A,B (they could be handles or body stages) of
C. Let a, b be the corresponding vertices in TC . (For body surfaces this is
the corresponding unmarked cone point, for handles this is the associated
leaf.) Consider the geodesic joining a, b in TC , and look at its vertex c closest
to the root of TC – in other words, c is the first common ancestor of a, b. If
c is a marked vertex then A,B are required to be disjoint.
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In particular, self-plumbings of any handle and body surface are allowed.
In the example shown in figures 1, 2 above, the handle h1 is required to be
disjoint from h2, h3 is disjoint from h4; all other intersections are allowed.

A Bing cell in a 4-manifold M is an embedding of a Bing cell into M .
We say that its image is a realization of C in M , and abusing the notation
we denote its image in M also by C.

The main technical result of Ref. 8 shows how Bing cells fit in the context
of Milnor’s theory of link homotopy. This theorem is used in the analysis
of the invariant Iλ below.

Theorem 3.1. If the components of a link L ⊂ S3 = ∂D4 bound disjoint

Bing cells in D4 then L is homotopically trivial.

Recall12 that a link L in S3 is homotopically trivial if L is homotopic to
the unlink, so that different components stay disjoint during the homotopy.
The theorem above builds on a classical result that if the components of
L bound disjoint maps of disks in D4 then L is homotopically trivial. The
proof of theorem 3.1 is substantially more involved than the argument in
the classical case. This is due to the topology of Bing cells which forces
additional relations in the fundamental group of the complement. The main
new technical ingredients in the proof are the generalized Milnor group
and an obstruction which is well-defined in the presence of this additional
indeterminacy.8

The link groups λn(M) are defined as {based loops in a 4−manifold
M} modulo loops bounding Bing cells of height n. These groups fit in a
sequence of surjections

π1(M) −→ λ1(M) −→ λ2(M) −→ . . .

The groups λn(M) are topological but not in general homotopy invari-
ants of M . In particular, they are not correlated with the first homology
H1(M), or more generally with the quotients of π1(M) by the terms of its
lower central or derived series. Define λ(M) to be the direct limit of λn(M).
Given a pair (M, γ) where M is a 4−manifold and γ is a specified curve in
∂M , consider the invariant Iλ(M,γ) ∈ {0, 1}:

Iλ(M, γ) = 1 if γ = 1 ∈ λ(M),

set Iλ(M, γ) = 0 otherwise. When the choice of the attaching circle γ of M

is clear, we will abbreviate the notation to Iλ(M).

Remark 3.2. For the interested reader we point out the “geometric du-
ality” between Bing cells and gropes. Recall the definition:5 A grope is
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a special pair (2-complex, circle). A grope has a class k = 1, 2, . . . ,∞.
For k = 2 a grope is a compact oriented surface Σ with a single bound-
ary component. For k > 2 a k-grope is defined inductively as follow: Let
{αi, βi, i = 1, . . . , genus} be a standard symplectic basis of circles for Σ. For
any positive integers pi, qi with pi +qi ≥ k and pi0 +qi0 = k for at least one
index i0, a k-grope is formed by gluing pi-gropes to each αi and qi-gropes
to each βi. A grope has a standard, “untwisted” 4−dimensional thickening,
obtained by embedding it into R3, times I.

Consider a more general collection of 2-complexes, where at each stage
one is allowed to attach several parallel copies of surfaces. Then one checks
using Kirby calculus that model Bing cells are precisely complements in
D4 of standard embeddings of such generalized gropes. This observation is
helpful in the analysis of the A − B slice problem, where gropes play an
important role, see section 4.

4. An obstruction for model decompositions.

In this section we show that the invariant Iλ defined above provides an
obstruction for the family of model decompositions. We start the proof
of theorem 1.1 by constructing the relevant decompositions of D4. The
simplest decomposition D4 = A∪B where A is the 2−handle D2×D2 and
B is just the collar on its attaching curve, was discussed in the introduction.
Now consider the genus one surface S with a single boundary component α,
and set A1 = S ×D2. Moreover, one has to specify its embedding into D4

to determine the complementary side, B. Consider the standard embedding
(take an embedding of the surface in S3, push it into the 4−ball and take a
regular neighborhood.) Note that given any decomposition, by Alexander
duality the attaching curve of exactly one of the two sides vanishes in
it homologically, at least rationally. Therefore the decomposition D4 =
A1 ∪ B1 may be viewed as the first level of an “algebraic approximation”
to an arbitrary decomposition. The general model decomposition of height
1 is analogous to the decomposition D4 = A1 ∪B1, except that the surface
S may have a higher genus.

Proposition 4.1. Let A1 = S × D2, where S is the genus one surface

with a single boundary component α. Consider the standard embedding

(A1, α × {0}) ⊂ (D4, S3). Then the complement B1 is obtained from the

collar on its attaching curve, S1×D2×I, by attaching a pair of zero-framed

2−handles to the Bing double of the core of the solid torus S1 ×D2 × {1},
figures 5, 6.
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A1

α1
α2

α β

H1
H2

B1

Fig. 5. A model decomposition D4 = A1 ∪B1 of height 1: a schematic (spine) picture
(figure 5) and a precise description in terms of Kirby diagrams, figure 6.

A1 B1

0

α 0
0

β

Fig. 6.

The proof is a standard exercise in Kirby calculus, see for example Ref.
4. A precise description of these 4−manifolds is given in terms of Kirby dia-
grams in figure 6. Rather than considering handle diagrams in the 3−sphere,
it is convenient to draw them in the solid torus, so the 4−manifolds are ob-
tained from S1 ×D2 × I by attaching the 1− and 2−handles as shown in
the diagrams. To make sense of the “zero framing” of curves which are not
null-homologous in the solid torus, recall that the solid torus is embedded
into S3 = ∂D4 as the attaching region of a 4−manifold, and the 2−handle
framings are defined using this embedding.

This example illustrates the general principle that (in all examples con-
sidered in this paper) the 1−handles of each side are in one-to-one corre-
spondence with the 2−handles of the complement. This is true since the
embeddings in D4 considered here are all standard, and in particular each
2−handle is unknotted in D4. The statement follows from the fact that
1−handles may be viewed as standard 2−handles removed from a collar, a
standard technique in Kirby calculus (see Chapter 1 in Ref. 7.) Moreover, in
each of our examples the attaching curve α on the A−side bounds a surface
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in A, so it has a zero framed 2−handle attached to the core of the solid
torus. On the 3−manifold level, the zero surgery on this core transforms the
solid torus corresponding to A into the solid torus corresponding to B. The
Kirby diagram for B is obtained by taking the diagram for A, performing
the surgery as above, and replacing all zeroes with dots, and conversely all
dots with zeroes. (Note that the 2−handles in all our examples are zero-
framed.)

Note that a distinguished pair of curves α1, α2, forming a symplectic
basis in the surface S, is determined as the meridians (linking circles) to
the cores of the 2−handles H1, H2 of B1 in D4. In other words, α1, α2 are
fibers of the circle normal bundles over the cores of H1, H2 in D4.

A2 B2

Fig. 7. A model decomposition D4 = A2 ∪B2 of height 2.

An important observation4 is that this construction may be iterated:
consider the 2−handle H1 in place of the original 4−ball. The pair of curves
(α1, the attaching circle β1 of H1) form the Hopf link in the boundary of
H1. As discussed in the beginning of this section, it is natural to consider
two possibilities: either α1 or β1 bounds a surface in H1. For simplicity of
exposition, we again assume at this point that this is a surface of genus
one. The first possibility (α1 bounds) is shown in figure 7: note that in this
decomposition one side, A2, is a grope of height 3 (discussed in remark 3.2)
and its complement B2 is an example of a Bing cell.

Consider the second possibility: β1 bounds a surface in H1. As dis-
cussed above, its complement in H1 is given by two zero-framed 2−handles
attached to the Bing double of α1. Assembling this data, consider the new
decomposition D4 = A′2∪B′

2, figures 8, 9. As above, the diagrams are drawn
in solid tori (complements in S3 of unknotted circles drawn dashed in the
figures.) The decompositions D4 = A2 ∪B2, D4 = A′2 ∪B′

2 are examples of
model decompositions of height 2. To get a general decomposition of this
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type, one also considers the alternative as above for the pair of curves α2,
β2 in the 4−ball H2. For simplicity of illustration, in the examples shown in
figures 7 - 9 the curve β2 bounds a surface of genus zero. One gets models
of an arbitrary height by an iterated application of the construction above,
and in general one considers (orientable) surfaces of an arbitrary genus at
each stage. See figure 10 for examples of model decompositions of height 3.

A′2

α

α

0

0 0

Fig. 8.

B′2

β

β

0 0

Fig. 9. Another example of a model decomposition D4 = A′2 ∪B′2 of height 2.

It follows from theorem 3.1 that the following lemma implies our main
result, theorem 1.1:

Lemma 4.2. Let D4 = A ∪B be a model decomposition. Then

Iλ(A, α) + Iλ(B, β) = 1.

Indeed, suppose a link L = (l1, . . . , ln) is A−B slice where each decom-
position D4 = Ai ∪ Bi, i = 1, . . . , n is a model decomposition. According
to lemma 4.2, the invariant Iλ of precisely one part of the decomposition
equals 1. For each i, denote Ci = Ai if Iλ(Ai) = 1 and Ci = Bi otherwise.
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A3 B3

A′3 B′3

Fig. 10. Examples of model decompositions D4 = A3 ∪B3, D4 = A′3 ∪B′3 of height 3.

Let γi denote the attaching curve of Ci. It follows from the definition of Iλ

that γi bounds a Bing cell in Ci. Since the collections {αi}, {βi} form the
link L and its parallel copy, the collection of curves (γ1, . . . , γn) is isotopic
to L. This contradicts theorem 3.1 since L is homotopically essential. This
concludes the proof of theorem 1.1, assuming lemma 4.2.

Proof of lemma 4.2. It suffices to prove that given a model decomposition
D4 = A∪B, either α = 1 ∈ λ(A) or β = 1 ∈ λ(B). Then theorem 3.1 implies
that precisely one of these two possibilities holds. The proof of the statement
above is inductive. Given a model decomposition of height 1 (figure 5),
observe that one of the two parts of the decomposition - the handlebody B1

in the example in figure 5 - is a model Bing cell of height 1. (In this case the
planar surface C in definition 3.1 is the annulus.) Therefore β = 1 ∈ λ(B1).
In the case that A1 is a surface of genus g > 1, the handlebody description
of B1 consists of first taking g parallel copies of the core curve of the solid
torus, Bing doubling them and then attaching zero-framed 2−handles to
the resulting link. One observes that the attaching curve β still bounds a
model Bing cell of height 1 in this handlebody, indeed there are g choices
of Bing cells bounded by β.

Suppose lemma is proved for model decompositions of height ≤ n, and
let D4 = A ∪ B be a model decomposition of height n + 1. The attaching
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curve of either A or B is trivial in its first homology group. To be specific,
assume α = 0 ∈ H1(A;Z). First assume the surface Σ bounded by α has
genus 1. Then A is obtained by attaching models A′, A′′ of height ≤ n to a
symplectic basis of curves α1, α2 of Σ, figure 11. Similarly, using the notation
of figure 5, B is obtained from the model B1 of height 1 by replacing its
2−handles H1,H2 by two models B′, B′′ of height ≤ n. Here D4 = A′ ∪
B′, D4 = A′′∪B′′ are two decompositions for which lemma holds according
to the inductive assumption. Therefore Iλ(A′)+Iλ(B′) = Iλ(A′′)+Iλ(B′′) =
1. Consider two cases:

Case 1: Iλ(B′) = Iλ(B′′) = 1
Case 2: At least one of Iλ(A′), Iλ(A′′) equals 1.

A α1

α2

α

A′
A′′

Σ

β

B′
B′′

B

Fig. 11. Proof of lemma 4.2: the inductive step.

We claim that in the first case Iλ(B) = 1 and in the second case Iλ(A) =
1. Consider case 1. By assumption, the attaching curve β′ of B′ bounds a
Bing cell C ′ in B′, and similarly the attaching curve β′′ bounds a Bing
cell C ′′ in B′′. Consider the handlebody C obtained from S1 × D2 × I

by attaching C ′, C ′′ to the Bing double of the core of the solid torus. The
associated tree TC is illustrated on the left in figure 12. (Note that the trees
TC′ , TC′′ join in a marked vertex.) Since B′ and B′′ are disjoint, there are
no C ′ − C ′′ intersections. (Note that such intersections are not allowed in
the definition 3.2 of a Bing cell.) Therefore the attaching curve β bounds a
Bing cell in B, and Iλ(B, β) = 1.

Consider the second case. Without loss of generality assume Iλ(A′) = 1,
so α1 bounds a Bing cell C ′ in A′. Surger the first stage surface Σ along α1,
the result is a pair of pants whose boundary consists of α and two copies
of α1. Consider two copies of C ′ (denote them by C ′ and C

′
) and perturb

them so there are only finitely many intersections between surfaces in C ′

and surfaces in C
′
. Consider the handlebody C assembled from the (pair
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TC

TC′ TC′′

TC

TC′ T
C
′

Fig. 12.

of pants)×D2 with C ′, C
′

attached to it. The tree TC associated to C is
shown on the right in figure 12; observe that the trees TC′ , TC

′ join in an
unmarked vertex. Note that all C ′−C

′
intersections are of the type allowed

in definition 3.2, therefore α bounds a Bing cell in A, and Iλ(A,α) = 1.
In the case when the surface Σ has genus g > 1 the proof is analogous to

the genus one case discussed above. Specifically, A is obtained by attaching
models A′i, A′′i , i = 1, . . . , g to a symplectic basis of curves in Σ. The
complements are denoted B′

i, B
′′
i . One observes that if there exists 1 ≤ i ≤ g

such that Iλ(B′
i) = Iλ(B′′

i ) = 1, then Iλ(B) = 1. On the other hand, if for
each i either Iλ(A′i) or Iλ(A′′i ) equals 1, then Iλ(A) = 1. This concludes the
proof of lemma 4.2 and of theorem 1.1. ¤

Remark 4.1. In the example of the decomposition D4 = A′2∪B′
2 in figures

8, 9 the proof above shows that Iλ(A′2, α) = 1. One may find an explicit
construction of a Bing cell bounded by α in A′2 in the proof of [9, Lemma
7.3].
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