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ABSTRACT. The Blanchet link homology theory is an oriented model of Kho-
vanov homology, functorial over the integers with respect to link cobordisms.
We formulate a stable homotopy refinement of the Blanchet theory, based on a
comparison of the Blanchet and Khovanov chain complexes associated to link
diagrams. The construction of the stable homotopy type relies on the signed
Burnside category approach of Sarkar-Scaduto-Stoffregen.

1. INTRODUCTION

The Khovanov homology [Kho00] is an invariant of oriented links inR3. Given
such a link L, the associated invariant Kh(L) is a bigraded abelian group. A link
cobordism Σ in R3 × [0, 1] induces a map on Khovanov homology which is well-
defined up to a sign, see Jacobsson [Jac04]. The map is defined by decomposing Σ
into elementary cobordisms, corresponding to Morse surgeries and Reidemeister
moves on link diagrams; decompositions of isotopic link cobordisms are related
by the movie moves of Carter–Saito [CS93], and some of them indeed change the
sign of the induced map [Jac04, Lemma 5.2].

Several models have been formulated (Blanchet [Bla10], Caprau [Cap08], Clark-
Morrison-Walker [CMW09], Sano [San], Vogel [Vog20]) to fix the sign ambiguity
for cobordism maps in Khovanov homology, while producing isomorphic link
homology groups. The resulting full functoriality is important in particular for
the 4-dimensional aspect of the Khovanov theory [MWW19] and topological ap-
plications.

An entirely different refinement of Khovanov homology is due to Lipshitz and
Sarkar. In [LS14a] they associate a suspension spectrum X (L) to each link dia-
gram L, whose stable homotopy type is an invariant of links in R3 and whose
cohomology is the Khovanov homology of L. It is shown in [LS14b] that a link
cobordism Σ: L0 −→ L1 in R3 × [0, 1] represented as a sequence of Reidemeister
moves and elementary Morse cobordisms gives rise to a map of spectraX (L1) −→
X (L0), whose induced map on cohomology is the Khovanov map Kh(Σ): Kh(L0) −→
Kh(L1). The map of spectra associated to link cobordisms is conjectured [LS14b]
to be well-defined, up to an overall sign – like the map on Khovanov homology.

In this paper we combine the two theories by constructing a stable homotopy
refinement Xor(L) of the Blanchet theory [Bla10].

Theorem 1.1. Let L be an oriented link diagram. The stable homotopy type Xor(L) is
an invariant of the isotopy class of the link. Its cohomology is isomorphic to Blanchet’s
oriented model of Khovanov homology of L.

Analogously to the original construction [LS14a],Xor(L) is the suspension spec-
trum of a CW complex where the cell structure is determined by the generators
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and the differential of the Blanchet-Khovanov chain complex, together with some
additional combinatorial data of the link diagram.

Our first motivation to pursue this result is the goal of developing a fully func-
torial stable homotopy invariant for links inR3 and their cobordisms. To this end,
our construction fixes the sign ambiguity, like the Blanchet theory does for Kho-
vanov homology. Building on [LS14b], we show (Lemma 4.5) that a link cobor-
dism L0 −→ L1, presented as a sequence of elementary cobordisms, gives rise to a
map of spectra Xor(L1) −→ Xor(L0). The induced map on cohomology is the map
given by the Blanchet theory. Our methods do not address the conjecture that the
map induced by a link cobordism Σ is well-defined with respect to isotopies of Σ.

A strategy for proving Theorem 1.1 should be well-known to the (hitherto pos-
sibly empty) intersection of two communities of experts. It relies on two technical
tools:

• a choice of a natural (though not necessarily canonical) isomorphism be-
tween the Khovanov and Blanchet theories, e.g. as elaborated by Ehrig–
Stroppel–Tubbenhauer and Beliakova–Hogancamp–Putyra–Wehrli [EST16;
Bel+19], and
• the signed Burnside category framework of Sarkar–Scaduto–Stoffregen

from [SSS20], which accommodates such natural isomorphism,
to lift the reformulation of the Khovanov homotopy in terms of the Burnside cat-
egory from Lawson–Lipshitz–Sarkar [LLS20; LLS17] to Blanchet’s setting. The
exposition in this paper follows the strategy outlined above, starting from the
perspective of the Blanchet theory. In particular, we do not assume the reader to
be familiar with the technical tools mentioned above.

Our emphasis on giving explicit constructions using the combinatorics of gl2
webs and foams is related to our second motivation, namely the problem of ex-
tending the Lipshitz–Sarkar construction to slN (or, more accurately, glN ) homol-
ogy theories for N ≥ 2. The framed flow category construction of the Khovanov
homotopy type in [LS14a], as well as its reformulation in terms of the Burnside
category [LLS20; LLS17] utilize the existence of canonical generators of the Kho-
vanov chain complex associated to a link diagram. Moreover, the components of
the Khovanov differential have coefficients 0, 1 with respect to these generators.
As such, the differential may be combinatorially encoded using correspondences
in the context of the Burnside category.

The glN link homology theories are more intricate; in particular both the prob-
lem of identifying a basis and computing the differential are substantially more
involved. The Blanchet theory, which fits in the foam category formulation1 of
glN link homology theories atN = 2, is thus an interesting test case. Given an ori-
ented link diagram, we use an additional combinatorial piece of data associated
to the link diagram, a flow with values in {+1,−1}, to construct a canonical set
of gl2 foam generators (see Section 3). The differential has coefficients in the set
{0,±1}with respect to these generators. Importantly, Proposition 3.13 shows that
the edge differential and the cobordism maps are sign-coherent, in the sense that
for any two webs V,W related by a zip/unzip or saddle foam, the associated map

1See [RW20; ETW18], building on [MSV09; LQR15; QR16].
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has coefficients in either {0, 1} or {0,−1} with respect to the chosen bases. These
results are then used in Section 4 to formulate the stable homotopy type Xor(L)
and to define the maps of spectra induced by elementary link cobordisms. The
construction is given using the signed Burnside category framework of [SSS20].
In Section 4.5 we show that Xor(L) is homotopy equivalent to X (L) of [LS14a].

Our construction ofXor(L) can be seen as a step towards a construction of stable
homotopy refinements of the glN link homology theories using framed flow cat-
egory methods. However, there are several features that make the analysis sub-
stantially easier in the N = 2 theory considered here, and new ideas are needed
to address the N > 2 case. See the work of Jones–Lobb-Schütz [JLS19] in this di-
rection. It would also be interesting to compare the present work with Kitchloo’s
constructions in [Kit19].

Constructing a gl2 version of the tangle invariant of [LLS] is outside the scope
of this paper, but we expect that the methods considered here should be helpful
for formulating it as well. We also hope that our results will contribute to the
development of a stable homotopy refinement of the 4-manifold invariants from
[MWW19]; indeed this was a main motivation for our work.
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Sarkar for helpful discussions related to this work. The first named author also
would like to thank Rostislav Akhmechet and Michael Willis for many conversa-
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2. BLANCHET’S ORIENTED MODEL FOR KHOVANOV HOMOLOGY

Here we recall the construction of Blanchet’s oriented model of Khovanov ho-
mology using gl2 foams. We shall assume that the reader is familiar with Bar-
Natan’s description of Khovanov homology using dotted cobordisms from [Bar05].

Definition 2.1. The dotted cobordism category Cob is the additive completion of
the graded pre-additive category with

• objects given by closed unoriented 1-dimensional manifolds properly em-
bedded in R2 (and grading shifts thereof, encoded by powers of q),
• morphisms given by Z-linear combinations of dotted cobordisms, i.e. un-

oriented 2-dimensional manifolds properly embedded inR2×I (such sub-
manifolds are always orientable), whose components may be decorated
with dots, considered up to isotopy rel boundary and the local relations

(1) = 0 ,
•

= 1 , = • +
•

, •• = 0.

• composition is given by (the bilinear extension of) stacking cobordisms,



4 VYACHESLAV KRUSHKAL AND PAUL WEDRICH

• the grading requires a dotted cobordism C : qkM1 −→ qlM2 to satisfy

2#dots− χ(C) = l − k.

This cobordism category2 categorifies the Temperley–Lieb skein theory of linear
combinations of isotopy classes of unoriented planar curves, modulo the relation

© = (q + q−1) ∅,

which models the pivotal tensor category of Uq(sl2)-modules generated by the
natural 2-dimensional module.

Next we describe the category of Blanchet foams as an oriented extension of
Cob. Blanchet foams categorify the skein theory of gl2 webs, which models the
pivotal tensor category ofUq(gl2)-modules generated by the natural 2-dimensional
module and its exterior square, see [CKM14; QS19; TVW17].

Here we define a gl2 web to be a finite oriented, trivalent graph embedded in
R

2, with a flow on the edges taking values in the set {1, 2}. Practically, this means
a web is a graph drawn in the plane, with oriented edges labelled either 1 or 2
(and drawn solid or doubled respectively) and at vertices two 1-labelled edges
merge into a 2-labelled one, or a 2-labelled edge splits into two 1-labelled ones.
(Examples of (local) webs are shown in Lemma 3.1 and Lemma 3.2.)

We also need the notion of (embedded) gl2 foams, which form the morphisms
in Blanchet’s category. Foams for gl2 are “trivalent surfaces” which we describe
next, properly embedded inR2× I , equipped with a flow taking values in {1, 2}.
Foams are assembled from compact oriented 1- or 2-labelled surfaces, called facets,
which are glued along (part of) their boundary so that precisely two boundary
components of 1-labeled facets are identified with a single boundary component
of a 2-labeled facet with the opposite orientation. Points on such seams have a
neighbourhood modelled on the letter Y times an interval, and all other points
have disk neighbourhoods3. Facets with label 1 are furthermore allowed to carry
dots.

Given a gl2 foam F or web W , we denote by c(F ) the unoriented surface ob-
tained by deleting all 2-labelled facets in F , and similarly c(W ) denotes the result
of deleting all 2-labelled edges in W .

Definition 2.2. The gl2 foam category Foam is the additive completion of the
graded pre-additive category with:

• objects given by webs embedded in R2 (and grading shifts thereof),
• morphisms given by Z-linear combinations of gl2 foams properly embed-

ded in R2 × [0, 1], considered up to isotopy rel boundary and Blanchet’s
local relations [Bla10], which include (1) on 1-labelled facets as well as:

(2) = −1 , = − ,
•

•

α

β

= δα,1δβ,0 − δα,0δβ,1

2Or, rather, its extension to a certain type of 3-category termed “canopolis” by Bar-Natan
3Foams for glN for N ≥ 3 require other singularities, which can be avoided here.



gl2 FOAMS AND THE KHOVANOV HOMOTOPY TYPE 5

(3) = , =

•

−

•

Here we shade 1-labelled facets blue and 2-labelled facets yellow4. An
essential feature of Blanchet’s relations is that swapping all orientations
introduces a minus sign in both of the relations in (3).
• composition given by (the bilinear extension of) stacking foams,
• the grading requires a foam F : qkW1 −→ qlW2 to satisfy

2#dots− χ(c(F )) = k − l.

In particular, for any objectsW1,W2, the morphism spaces HomFoam(W1,W2)
are abelian groups. To capture morphisms of various degrees, we will also
consider the graded abelian groups:

HOMFoam(W1,W2) :=
⊕
k

HomFoam(q−kW1,W2)

We record one important consequence of these relations, namely the dot-sliding
relation

(4)
•

= −
•
.

The presentation of the relation (1) and (3) is imported from Lauda–Queffelec–
Rose [LQR15], where it is shown that Blanchet’s foam relations also arise in cer-
tain quotients of categorified quantum groups of type A. For a generalisation to
foams for glN , see Robert–Wagner [RW20].

Remark 2.3. The last relation in (1) (and thus also (4)) can be deformed to yield
a foam-based construction of Lee’s deformed Khovanov homology [Lee05] or an
equivariant link homology [Kho06]. For a careful study of such deformations, see
[EST16; KK20]. For the glN case see [RW16].

Remark 2.4. After specialising the ground ring from Z to F2, the map which
deletes 2-labelled facets and edges induces a full, essentially surjective functor

c : FoamF2 −→ CobF2 ,

as can be seen by comparing Blanchet’s foam relations with Bar-Natan’s cobor-
dism relations. In fact, c is also faithful. For refined versions of this statement see
Queffelec–Wedrich [QW18b] and Beliakova–Hogancamp–Putyra–Wehrli [Bel+19].

4In grayscale, blue appears darker than yellow.
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2.1. Blanchet’s oriented model. To crossings in oriented link diagrams, Blanchet
[Bla10] associates chain complexes of (local) webs and foams:

r z

or
:=

(
0 −→ q−1

::::::

−→ q−2 → 0

)
,

r z

or
:=

(
0→ q2 → q1

:::::

→ 0

)
with the

::::::::::::
underlined terms in homological degree zero and with differentials mod-

elled by the so-called zip and unzip foams, cf. [Bla10, Section 3.2]:

,

For a link diagram L (with an ordering of the crossings), the chain complex JLKor
is defined as the total complex of the hypercube of resolutions, obtained by resolv-
ing each crossing locally as shown above.

As in Bar-Natan’s description of Khovanov homology, when considered as an
object of the bounded homotopy category of chain complexes of webs and foams,
denotedKb(Foam), the complex JLKor is an invariant of the link represented by L,
well-defined up to isomorphism. In particular, Reidemeister moves induce chain
homotopy equivalences between the associated complexes.

The passage from JLKor to a chain complex of graded abelian groups proceeds
in analogy with Khovanov’s original theory, using a TQFT for webs and foams that
can now be described as a representable functor.

The Blanchet–Khovanov chain complex of L is the chain complex of graded
abelian groups defined as

(5) CKhor(L) := HOM•Foam(∅, JLKor)

where HOM•Foam(∅, JLKor) denotes the chain complex of bihomogeneous maps be-
tween the Z × Z-graded objects ∅ and JLKor, with the differential induced by the
differential on the target (the source has trivial differential).

The oriented (or gl2) Khovanov homology of L is the bigraded abelian group

Khor(L) := H•(CKhor(L)).

It follows from the discussion above that Khor(L) is an invariant of the link
represented by L, well-defined up to isomorphism of bigraded abelian groups.
In fact, these isomorphisms can be chosen coherently, as shown by Blanchet’s
main result, which we paraphrase as follows.

Theorem 2.5. Let C be an oriented smooth link cobordism, properly embedded inR3×I ,
between oriented links represented by diagrams L and L′. Suppose that C is in generic
position, so that it can be represented by a finite sequence of Reidemeister and Morse
moves, transforming L into L′. There exists an assignment of Reidemeister isomorphisms
and Morse maps on the level of Khor, so that the composite map Khor(C) is invariant
under isotopy rel boundary on C. As a consequence, gl2 Khovanov homology constitutes
a functor:

Khor :

{
links embedded in R3

link cobordisms in R3 × I/isotopy

}
−→ grZ×ZAbgrp
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Other functorial versions of Khovanov homology have been constructed by
Caprau [Cap08], Clark–Morrison–Walker [CMW09], Sano [San], and Vogel [Vog20].
Blanchet’s approach to functorial link homologies via foams works over the in-
tegers and is distinguished in that it extends to glN , see Ehrig–Tubbenhauer–
Wedrich [ETW18], and to links in S3, see Morrison–Walker–Wedrich [MWW19].

3. BASES FOR WEB SPACES

The goal of this section is to introduce generators of the webs spaces, and to
analyze the coefficients of the Blanchet-Khovanov differential, as well as of the
elementary link cobordisms with respect to these generators. These results un-
derlie the formulation of the stable homotopy type in Section 4.

3.1. Construction of bases. The following local relations hold in the category
Foam and will be used throughout this section to simplify webs and foams.

Lemma 3.1. There are isomorphisms between webs in Foam which differ only in a disk
as shown (or as shown, but with all orientations reversed):

∼= q ∅ ⊕ q−1∅ , ∼= ∅(6)

∼= , ∼=(7)

Proof. As in [Bla10]. �

Lemma 3.2. For every n ≥ 1, there is an isomorphism in Foam that simplifies the
coherently oriented (clockwise or anti-clockwise) 2n-gon web Wn, e.g.:

n=1∼= ,
n=2∼= ,

n=3∼=

The isomorphism can be chosen to be a foam Fn, such that c(Fn) = c(Wn) × [0, 1] and
such that Fn contains a single 2-labeled disk in the region shown.

Proof. Use the local isomorphisms from (7) to undock the 2-labeled edges from the
boundary edges, leaving a central 2-labeled circle, which can then be removed via
(6). �

The isomorphisms in Lemma 3.2 simplify webs by removing coherently (anti-)
clockwise oriented regions by undocking 2-labeled edges on the left (right) side of
the remaining 1-labeled edges. The following lemma shows that this is possible
for every closed web, if we also allow exceptional cases of the following type:

W −→ W

Here we consider the outside region as a coherently clockwise oriented and
perform undocking towards the left. The resulting 2-labeled outside circle can be
removed by a cap foam after simplifying the remaining web nested inside it, as
described in the following lemma.
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Lemma 3.3. Every closed gl2 web W is isomorphic to a direct sum of grading shifts
of the empty web via an isomorphism which is composed of exclusively clockwise local
isomorphisms from Lemma 3.2 (including ‘outside’ versions) and the circle removal iso-
morphisms (6). As such, this isomorphism is unique. The statement with exclusively
anti-clockwise isomorphisms holds analogously.

Proof. The statement is trivial for webs W without trivalent vertices, so let us
assume that W has trivalent vertices. Moreover, we will assume that W is con-
nected, for otherwise we can treat the connected components independently, start-
ing with an innermost one with respect to the nesting condition. Differences in
ordering these simplifications give the same result due to far-commutativity.

Fix a base point p ∈ R2 \W in the outside region . We now start by labeling
each region in R2 \W with its ‘winding number’ around p. For this, pick a point
q in the region and a path γ : [0, 1] −→ R

2 with γ(0) = q and γ(1) = p. Then we
label the region containing q by the algebraic intersection number of γ with W .
(Here each signed intersection with the 2-labeled edges counts as ±2.) E.g. the
region enclosed by a clockwise circle will have winding number −1. The outside
region has winding number 0, by definition.

Now we have two cases to consider. If the minimal winding number of re-
gions is negative, then each minimal region has a coherently clockwise oriented
boundary and can be removed via Lemma 3.2.

Otherwise, the minimal winding number is zero, and the outside region attains
this minimum. This implies that the outermost cycle in the web (the boundary of
the region containing p) is coherently counter-clockwise oriented. In this case, we
use the ‘outside version’ of the undocking move to simplify the web.

This algorithm terminates since it strictly reduces the number of trivalent ver-
tices in every step. Since regions of minimal winding number cannot be adjacent,
the order of simplifying is again irrelevant due to far-commutativity. �

Lemma 3.3 allows us to build a basis for the vector space HOMFoam(∅,W ) for
any web W . One of the possible variations still allowed are rescalings of the
circle removal isomorphisms from (6) by signs. To simplify local computations
we choose a rescaling depending of the auxiliary data of a flow, that we now
introduce.

Definition 3.4. A flow f with values {+1,−1} on a webW in Foam assigns to every
1-labeled edge of W an element of {+1,−1} and to every 2-labeled edge of W the
entire set {+1,−1}, such that every trivalent vertex in W has adjacent labels as in
the following:

+1 −1

{+1,−1}

, −1 +1

{+1,−1}

,

+1 −1

{+1,−1} ,

−1 +1

{+1,−1}

I.e. the flow condition is satisfied at every vertex. Similarly, a flow on a foam asso-
ciates to 1-labeled facets elements of {+1,−1} and to 2-labeled facets the entire set
{+1,−1}, such that the flow condition is satisfied at every seam. A flow on a foam
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induces a flow on its boundary webs. When considering a foam F : W −→ V be-
tween webs with flows fW and fV , then we say these flows are compatible with
F if there exists a flow f on F that restricts to fW and fV on the corresponding
boundary components.

We say a flow on a web W is admissible if every non-closed 2-labeled edge has
a neighborhood of the following two types:

(8) +1 −1

+1 −1

, −1 +1

−1 +1

In words, the flow has to stay parallel, and not cross, at 2-labeled edges.

Lemma 3.5. Let L be an oriented link diagram in R2, which we consider as a union of
arcs that connect crossings and disjoint closed components. Next we color the connected
components ofR2 \L with the checkerboard black and white coloring, starting with white
on the unique unbounded component. On every oriented arc and every closed component
of L, we now place the label +1 if there is a white component on the left, and the label
−1 otherwise. This labelling descends to an admissible flow on every web W in the
cube of resolutions of L, compatible with the foams representing the components of the
differential.

Moreover, this assignment of a canonical flow to each link diagram inR2 is compatible
with split disjoint union of link diagrams.

Proof. At the site of every crossing, the websW contain either a parallel resolution
or a 2-labelled edge. In the latter case, the labels are in the configurations of (8),
depending on whether there is a white or black region to the left of this crossing
in L. In the case of a parallel resolution, the situation is analogous. Thus, the
labels assemble to flows which are admissible at 2-labelled edges and compatible
with the zip and unzip foams realising the components of the differential in the
cube of resolutions.

The statement about compatibility of the flow construction with split disjoint
union follows from the fact that this operation embeds two white outside regions
into a white outside region. �

Remark 3.6. More generally, using the same arguments as in Lemma 3.5 one can
show that any foam between closed gl2 webs inR2×[0, 1] admits a canonical flow.

Definition 3.7. Let W be a gl2 web with an admissible flow f . We define a basis
B(W, f) of HOMFoam(∅,W ) containing (signed) foams appearing as entries of the
inverse of the isomorphism obtained in Lemma 3.3. These foams are determined
by the local simplifications in Lemma 3.2, where we only use clockwise regions,
and the isomorphisms realising (6). To determine the signs, note that the flow f
on W extends uniquely to a flow on every basis foam, which we again denote
by f . We now equip the basis foams with a minus sign if they contain an odd
number of dots on facets where f has value −1.
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Example 3.8. The bases for 1-labeled circles with flow +1 and −1 are:

B(©,+1) =
{

+1 ,
•
+1

}
, B(©,−1) =

{
−1 ,−

•
−1

}
We will write 1 and X for the undotted and dotted cup foam, respectively. Both
bases above can then be written as {1, εX}.

Example 3.9. For the theta web, there again exist two flows, whose associated
bases are:

B
(

+1 −1
)

=
{

+1 , •+1

}
, B

(
−1 +1

)
=
{

−1 ,− •−1
}

Let us call the theta web with the first flow the left theta web and the other one the
right theta web.

Example 3.10. The unzip foam from the left theta web to two circles has all its
coefficients in the set {0, 1} in the above bases. This is seen using the neck-cutting
relation (1) and the last relation in equation (2). For the right theta web, it has
coefficients {0,−1}.

The zip foam with target the theta web (with any flow) and source given by
two circles with compatible flows has coefficients {0, 1} in the above bases.

3.2. Action of foams on bases. Here we study the action of elementary foams on
the web bases B(W, f) constructed in the previous section. To this end, we will
need two auxiliary results.

Proposition 3.11. (Preparing generalized neck-cutting) Let F be a foam in R2 × [0, 1]
whose underlying 1-labeled surface c(F ) has a compression disk D. Then there exist
tubular neighbourhoods D ⊂ U ⊂ V ⊂ R2 × (0, 1) and a foam G in R2 × [0, 1] such
that

• G ∩ (R2 \ V ) = F ∩ (R2 \ V )
• c(G) = c(F )
• c(F ∩ V ) ∼= ∂D × [0, 1]
• G ∩ U ∼= ∂D × [0, 1]
• F = ±G as morphisms in Foam

To paraphrase this: any foam, whose underlying 1-labeled surface has a neck,
can be modified locally and up to sign into a new foam, which itself has a 1-
labeled neck.

Proof. This was shown in the proof of [QW18b, Lemma 3.6], so we only give a
sketch here. Assuming that D intersects F generically, we can find a slightly
larger open disk D′ and a tubular neighbourhood V ∼= D′ × (0, 1), such that F ∩
V ∼= W × (0, 1) for some gl2 web W with c(W ) = ∂D. Using the 2-labeled circle,
saddle, and undocking relations from 3.1, one can see that the foam W × (0, 1)
equals up to a sign a foam G′ that factors through a web W ′ with ∂W ′ = ∂W ,
c(W ′) = c(W ) and D ∩ W ′ = ∂D. Detailed descriptions of this process appear
in [QW18b, Lemmas 2.1 and 3.6] and [QW18a, Lemma 64]. The foam G is now
obtained by gluing G′ and F ∩ (R2 \ V ). �
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Proposition 3.12. If F and G are (possibly dotted) Blanchet foams with identical under-
lying (dotted) surfaces c(F ) = c(G) and ∂F = ∂G, then F = ±G.

Proof. This was proven in [Bel+19, Proposition 2.9]. Here we sketch an alternative
proof based on Proposition 3.11. First we may assume that W = ∂F = ∂G ⊂
R

2 × {1}, for otherwise we would bend the bottom boundary of F and G to the
top.

Fix an admissible flow f onW and consider the basisB(W, f) ⊂ HOMFoam(∅,W ).
By construction, all elements of B(W, f) are given by decorating the 1-labeled
components of a distinguished foam FW by certain signed dots. We will also
consider a basis B(W, f)∗ of HOMFoam(W, ∅) which is dual to B(W, f) under the
composition pairing valued in ENDFoam(∅) = Z〈∅〉 ∼= Z. More specifically, we
take B(W, f)∗ to consist of foams obtained by appropriately decorating a dis-
tinguished foam FW with signed dots (FW can be obtained by reflecting FW in
R

2 × {1}.
Now we claim, there exists ε ∈ {±1} such that H ◦ F = ε(H ◦ G) for any

H ∈ B(W, f)∗. This would imply F = εG.
To prove the claim, we choose base points on 1-labeled facets of FW , such that

every non-closed connected component of c(F ) = c(G) contains exactly one such
base point up inclusion into c(FW ◦ F ) = c(FW ◦G). The foams H ◦ F and H ◦G
are signed, dotted versions of FW ◦ F and FW ◦G respectively, and to verify their
equality modulo foams relations up to a global sign, we may assume that all
dots coming from H and from non-closed components of c(F ) = c(G) have been
transported to the base points. This is possible, since the dots originating in F
and G are moved to the base points at the expense of a global sign ε′, irrespective
of H .

We have now reduced the problem to a comparison of foams

C ◦ dH ◦ F ′ and ε′C ◦ dH ◦G′

whereC consists entirely of 1-labeled caps, dH is a signed, dotted identity foam on
∂C, with signs and dots depending on H ∈ B(W, f)∗, F ′ and G′ are foams satisfy-
ing c(F ′) = c(G′) and containing dots only on closed components of c(F ′) = c(G′).
In particular, we have eliminated the sign dependence on H and are left with
proving F ′ = ±G′.

Since c(F ′) = c(G′) we have the same necks in F ′ and G′, which can be cut
using Proposition 3.11 and the neck-cutting relation from (1) at the expense of
a global sign. Similarly, every S2 component in the underlying surfaces of the
result can be removed by another application of 3.11 and the sphere relations
from (1). See [QW18b, Lemma 3.9] for a detailed description of this step. After
these simplifications, we may assume that F ′ = εF

∑
i diF

′′ and G′ = εG
∑

i diG
′′

where F ′′ and G′′ are undotted foams such that c(F ′′) = c(G′′) consists entirely of
cups (disks), di is a dotted identity foam on ∂C and εF , εG ∈ {±1}. Here we have
used in a crucial way that the neck-cutting relation from (1) is sign-coherent and
always involves foam facets with the same flow label. Finally, we observe that
F ′′ = ±G′′ by undocking and eliminating all 2-labeled facets in both foams via
the first two relations in (2) and the first relation in (3). �
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Next, we compute the action of zips, unzips, and saddle maps between stan-
dard bases. Note that a saddle cobordism between link diagrams L and L′ in-
duces saddle foams between websW andW ′ appearing in the respective cubes of
resolutions, which are compatible with the canonical flows defined in Lemma 3.5.

Proposition 3.13. Let W be a web with an admissible flow f , and let F : W −→ V
denote a zip or an unzip foam or a saddle to a web V , which we equip with the induced
flow, denoted g. Then the matrix of the linear map

F∗ : HOMFoam(∅,W ) −→ HOMFoam(∅, V ), F∗(G) = F ◦G
with respect to the bases B(W, f) and B(V, g) has entries in either {0, 1} or {0,−1}.

This says that the action of F∗ is sign-coherent with respect to the standard bases.

Proof. Recall that every basis element H ∈ B(W, f) is a signed, dotted version
of a distinguished foam FW ∈ HOMFoam(∅,W ) such that c(FW ) is a collection of
disks. Let us write H = dH ◦ FW , where dH is a signed, dotted identity foam on
W , with signs determined by the flow f . Then we have:

F ◦H = F ◦ dH ◦ FW = d′H ◦ F ◦ FW

for a signed, dotted identity foam on V with signs determined by the flow g.
Suppose that c(F ) is a saddle that merges two circles in c(W ) (recall that F

itself may be a zip, an unzip, or a saddle). Then we have c(F ◦ FW ) = c(F V )
and ∂(F ◦ FW ) = ∂F V , and thus by Proposition 3.12, F ◦ FW = ε · F V for some
ε ∈ {±1}. Furthermore, if d′H ◦ F ◦ FW = ε · d′H ◦ F V is non-zero, then it agrees
with an element of B(V, g) up to the global sign ε.

Now suppose that c(F ) is a saddle that splits two circles in c(W ). In this case,
we can find a compression disk D for c(F ◦ FW ) to which we apply Propo-
sition 3.11 and the neck-cutting relation from (1). The result will be a linear
combination ε′(d1 ◦ GV + d2 ◦ GV ) where ε′ ∈ {±1}, GV is an undotted foam
with c(GV ) = c(F V ), and d1 and d2 are both identity foams on V with a single
dot placed on certain facets with the same flow label ε′′ ∈ {±1}. By Proposi-
tion 3.12 we conclude that GV = ε′′′F V for some ε′′′ ∈ {±1}, and thus F ◦ FW =
ε′ε′′′(d1◦F V +d2◦F V ). Finally, for other basis elements we compute d′H ◦F ◦FW =
ε′ε′′′(d′H ◦ d1 ◦ F V + d′H ◦ d2 ◦ F V ). Whenever these summands are nonzero, they
agree with a basis element from B(V, g) up to the global sign ε′ε′′ε′′′. �

Finally, we consider the effect of the cup and cap cobordisms.

Lemma 3.14. Let W be a web with an admissible flow f , containing an innermost 1-
labelled circle C with flow label ε. Let F denote the cap foam that removes this component,
resulting in a web V := W \ C that we equip with the induced flow g. Further, let
F ! : V −→ W denote the corresponding cup foam in the opposite direction. Then the
matrix of the linear map

F∗ : HOMFoam(∅,W ) −→ HOMFoam(∅, V ), F∗(G) = F ◦G
with respect to the bases B(W, f) and B(V, g) has entries in {0, ε} and the matrix of the
linear map

F !
∗ : HOMFoam(∅, V ) −→ HOMFoam(∅,W ), F !

∗(G) = F ! ◦G
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with respect to the bases B(V, g) and B(W, f) has entries in {0, 1}.
Proof. Immediate from Example 3.8 and the relations (1). �

Remark 3.15. In this section we chose the additional local data of flows on webs
and foams to record and track the sign discrepancies between Bar-Natan cobor-
disms and Blanchet foams, which are essential for the functoriality of Khovanov
homology and link cobordisms. The use of flows is motivated by the Murakami–
Ohtsuki–Yamada state-sum for evaluation of closed webs [MOY98] and its ana-
log for foams that is due to Robert–Wagner [RW20]. Other, essentially equivalent
ways of encoding these sign discrepancies include skein-algebra like superposi-
tion operations with 2-labelled curves [QW18b] and shadings [Bel+19].

Remark 3.16. The results of this section also hold for the deformed foam cate-
gories mentioned in Remark 2.3. When deforming the relation •2 = 0 in (1) to
•2 − h • +t = 0, the signed dots −• in basis elements should be replaced by the
linear combination ◦ := h− •, see [Bel+19].

4. THE STABLE HOMOTOPY TYPE

4.1. The signed Burnside category and the construction of Xor(L). A stable ho-
motopy refinement of Khovanov homology was originally introduced by Lip-
shitz and Sarkar in [LS14a]. Their construction was reformulated by Lawson,
Lipshitz and Sarkar [LLS20] using the Burnside category5. In this section we for-
mulate the stable homotopy type Xor(L) in Theorem 1.1. Our construction relies
on the signed Burnside category, introduced by Sarkar, Scaduto and Stoffregen in
[SSS20] in their work on the odd Khovanov homotopy type.

Recall from Section 2.1 the setup of the Blanchet theory: given an oriented link
diagram Lwith n crossings, there is a cube of resolutions JLKor and the chain com-
plex of graded abelian groups CKhor(L). More precisely, to each vertex v of the
cube {0, 1}n there is an associated planar web W (v), and each edge corresponds
to a zip/unzip foam.6 Lemma 3.5 gives a canonical flow fcan on every web W (v)
in the cube of resolutions of L, compatible with the foams representing the com-
ponents of the differential. A basis B(v) for the web space at each vertex v is
constructed in Definition 3.7. Finally, Proposition 3.13 determines the coefficients
of the edge differential with respect to the chosen bases.

Several variations of the stable homotopy type construction using different ver-
sions of the Burnside category have appeared in the literature; therefore we will
outline steps of the construction rather than giving a detailed exposition. We will
refer to statements in [LLS20; SSS20] and emphasize details of our setting that are
different from these references.

Consider the cube category 2n whose objects are elements of {0, 1}n and with a
unique morphism ϕa,b iff a ≥ b (here the partial ordering on the objects is induced
by the ordering of the coordinates). The construction is based on the lift For

5See also [HKK16]
6The n coordinates of the cube are in bijective correspondence with the crossings in the link

diagram. In each coordinate axis, the edge differential acts as described in the beginning of Section
2.1. Note that the homological degrees of the chain complex in Section 2.1 in the coordinates 0, 1

for a positive (respectively, negative) crossing are 0, 1 (respectively −1, 0).
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(9)
Bσ

2n Z−Mod
Fop
or

For

to the signed Burnside category Bσ (the definition is recalled below) of the cube of
resolutions, viewed as a diagram of abelian groups, Fop

or : 2n −→ Z−Mod. Here the
subscript stands for “oriented”, and the superscipt reflects the fact that the arrows
in 2n are dual to those in the usual cube of resolutions. The value of Fop

or on vertices
and edges of the cube is defined by the representable functor HOMFoam(∅,−) as in
equation (5). The construction of the Khovanov stable homotopy type in [LLS20]
relied on the Burnside category B, a weak 2-category whose objects are finite
sets, 1-morphisms are finite correspondences, and 2-morphisms are maps of cor-
respondences. We use the signed Burnside category Bσ, introduced in [SSS20],
where 1-morphisms are signed correspondences discussed in more detail below.
This extension is needed to accommodate the signs appearing in the differential
in the oriented model for Khovanov homology (see Proposition 3.13). The vertical
map in the diagram (9) is the forgetful functor sending a finite set to the abelian
group generated by it.

There is a forgetful functor Bσ −→ B, and the functor For constructed in this
paper is a lift of FKh : 2n −→ B of [LLS20]. (A different lift, Fo in [SSS20], corre-
sponds to the odd Khovanov homology.) As in prior constructions, the functor
For decomposes as

∐
j F

j
or along quantum gradings.

Given finite sets X, Y , a signed correspondence [SSS20, Section 3.2] is a tuple
(A, sA, tA, σA) where A is a finite set, the source and target maps sA : A −→ X, tA :
A −→ Y are maps of sets, and σA : A −→ {±1} is a “sign map”. Signed corre-
spondences are conveniently encoded as diagrams

(10)

{±1}

A

X Y

sA

σA

tA

The following lemma is a useful tool for constructing functors to the signed
Burnside category.

Lemma 4.1. ([LLS20, Lemma 4.4], [SSS20, Lemma 3.2]) The following data satisfying
conditions (1), (2) can be extended to a strictly unitary lax 2-functor F : 2n −→ Bσ,
which is unique up to natural isomorphism:

A finite set F (u) for each vertex u ∈ 2n, a signed correspondence F (ϕu,v) from F (u)
to F (v) for each pair of vertices u, v ∈ 2n with u ≥1 v, and a 2-morphism Fu,v,v′,w :
F (ϕv,w)◦F (ϕu,v) −→ F (ϕv′,w)◦F (ϕu,v′) for each 2-dimensional face of 2n with vertices
u, v, v′, w satisfying u ≥1 v, v

′ ≥1 w.
(1) F−1u,v,v′,w = Fu,v′,v,w
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v′ w

u v

w′ z

v′′ w′′

◦ ◦

◦ ◦

◦ ◦

Fv′,w,w′,z×id

id×Fu,v′,v′′,w′id×Fu,v,v′,w

Fv,w,w′′,z×id

id×Fu,v,v′′,w′′

Fv′′,w′′,w′,z×id

FIGURE 1

(2) For every 3-dimensional sub-cube of 2n, the hexagon of Figure 1 commutes.

The hexagon relation is a consistency check for compositions of 2-morphisms
along the faces of 3-dimensional sub-cubes of 2n, cf. [AKW21, Figure 24].

Using Lemma 4.1, the following data gives the oriented Khovanov Burnside
functor For : 2n −→ Bσ. F (u) is the finite set B(u), defined as the collection
of generators B(W (u), fcan) for the web space HOMFoam(∅,W (u)) at the vertex u,
constructed in Definition 3.7. For each edge u ≥1 v in 2n, and y ∈ For(v), consider
the value of the edge differential applied to y:

∑
x∈For(u)

εx,yx. By Proposition 3.13,
each coefficient εx,y is an element of {−1, 0, 1}. Define

For(ϕu,v) = {(y, x) ∈ For(v)× For(u)|εx,y = ±1},

where the source and target maps are the projections, and the sign on elements
of For(ϕu,v) is given by εx,y.

4.2. Ladybug configurations and the completion of the construction. The Kho-
vanov homotopy type of [LS14a; LLS20] carries more information than the Kho-
vanov chain complex, and the additional ingredient in the construction is the
analysis of ladybug configurations [LS14a, Section 5.4]. In the setting of the Kho-
vanov homotopy type there is a unique choice of the 2-morphisms Fu,v,v′,w for
square faces in Lemma 4.1, except for the ladybug configuration case.

As indicated in Figure 2, such a configuration consists of a simple closed curve
and two surgery arcs with endpoints linked on the circle, so that either surgery is
a split into two circles, and the result of both surgeries is again a single compo-
nent. In the Khovanov chain complex this corresponds to the generator 1 being
sent by both edge maps (comultiplications) to 1 ⊗ X + X ⊗ 1; then the multipli-
cation map takes the result to 2X . Defining the 2-morphism Fu,v,v′,w in this case
amounts to establishing a bijection between the summands 1 ⊗ X,X ⊗ 1 in the
two 2-component resolutions; this has to be done consistently so that the hexagon
relation in Figure 1 holds for each 3-dimensional cube. This is equivalent to spec-
ifying a bijection between the components of these two resolutions; one such cor-
respondence – the “right pair” in the terminology of [LS14a] – is shown in Figure
2. (The labels a, b chosen for illustration here differ from those in [LS14a] to avoid
confusion with the labels 1, 2 that are used in the gl2 web context.) The analy-
sis of 3-dimensional cube configurations in [LS14a, Section 5.5], reformulated in
the language of the Burnside category, is used to prove the hexagon relation in
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[LLS20] when a consistent (right or left) choice is made for all ladybug configura-
tions.

a

b

a

b

FIGURE 2. Ladybug configuration

In the Blanchet setting there is still a unique choice of 2-morphisms Fu,v,v′,w,
except for the web version of ladybug configurations. Such a configuration is
a web W with two zip/unzip moves so that the combinatorics of c(W ) (the 1-
labeled curves of W , in the terminology of Section 2) matches that in Figure 2.
(Note that arbitrary 2-labeled edges may be part of the configuration, and are not
pictured.)

Proposition 3.13 gives the sign coherence of maps in a ladybug configuration.
The value of the composition of the two corresponding edge maps in the cube of
resolutions on the undotted generator x is±2 times the dotted generator z. (Here
dotted and undotted generators are understood in the context of Definition 3.7.)
The associated composition of signed correspondences has two elements in the
set s−1A (x)∩ t−1A (z) of the same sign, using the notation from (10). As in the setting
of the Khovanov homotopy type, a consistent choice (say, right pair) is made, en-
suring that the hexagon in Lemma 4.1 commutes. More specifically, the analysis
in [LLS17, Proposition 6.1] shows that the composition of the six 2-morphisms
corresponding to traversing the six faces of a 3-dimensional cube induces the
identity map on the 2-element correspondence in the Burnside category. In our
setting the correspondences have signs, which are determined by the signs of the
Blanchet differential. However the combinatorics of the ladybug configurations is
based on the 1-labeled curves; moreover the square faces in the Blanchet complex
commute, with no sign corrections. Thus the composition of the six 2-morphisms
is again the identity, verifying the hexagon relation.

A general construction of a stable homotopy type starting from a Burnside
functor is given in [LLS20], and in the signed Burnside category case in [SSS20].
Our functor For to the signed Burnside category, underlying the construction of
Xor(L), is given by Lemma 4.1. We summarize the rest of the steps in the gen-
eral construction of the stable homotopy type and give references for a detailed
discussion and proofs.

Given a Burnside functor F and a sufficiently large integer k, the construction
gives a based CW complex ‖F‖k, with the property that ‖F‖k+1 is the reduced
suspension of ‖F‖k [SSS20, Corollary 4.14]. In steps, the combinatorial data of
the given Burnside functor is used to define box maps [LLS20, Section 5.1], [SSS20,
Section 4.1]. Concretely, given a signed Burnside correspondence (10) encoding
the value of the Blanchet differential on the canonical generators at a given ver-
tex of the cube, one has the associated map

∨
x∈X S

k →
∨
y∈Y S

k. Analogues of
such maps, corresponding to compositions of morphisms in the cube category,
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are used to form a spatial refinement F̃k [LLS20, Sections 4.2, 5.2], [SSS20, Sections
4.2, 4.3], a certain homotopy coherent diagram of spaces. Then ‖F‖k is defined
as the homotopy colimit of the spatial refinement; a cell structure on ‖F‖k is dis-
cussed in [LLS20, Section 6] with cells in bijection with

∐
u∈2n F (u). Finally, up to

a grading shift Xor(L) is defined to be the suspension spectrum of ‖F‖k, desus-
pended k times: Xor(L) := Σ−k (Σ∞‖F‖k).

Remark 4.2. The coefficients of the edge maps with respect to the chosen genera-
tors are elements of {0,±1}; in this respect our context is similar to that of [SSS20],
necessitating the use of signed Burnside categories. However, unlike the setting
of the odd Khovanov homology in [SSS20], the 2-dimensional faces of the cube of
resolutions in our context commute (with no sign correction required).

Note also that similarly to the odd Khovanov homology context, the differ-
entials in the Blanchet theory have signs but no cancellations (where a generator
is sent by an edge map to a linear combination of generators which then cancel
when acted on by another edge map). The presence of cancellations leads to a
substantially more involved structure of the moduli spaces in the framed flow
category, cf. [AKW20, Section 4].

Remark 4.3. It is pointed out in [LLS20, Remark 4.22] that incorporating the Bar-
Natan and Lee deformations in the construction of the Khovanov homotopy type
presents a problem. The results of Section 3 hold for the deformed foam cat-
egories, see Remark 3.16, however working in this setting does not appear to
help in constructing a stable homotopy refinement of the deformed theories. The
problem with the Lee deformation for gl2 foams is identical to that in [LLS20, Fig-
ure 4.1]. For the Bar-Natan deformation, the complication is due to the presence
of cancellations (discussed in the preceding remark). There is a bit of flexibility
in choosing the location of dots in the generators of the Blanchet theory; mov-
ing them across 2-labeled sheets results in a sign change, as shown in equation
(4). Nevertheless, it seems unlikely that there is a consistent choice of generators
eliminating cancellations.

4.3. Reidemeister moves. In this section, we prove the homotopy invariance
of Xor(L) under Reidemeister moves. The key facts we need to know about
Blanchet’s version of Khovanov homology, to lift its Reidemeister invariance prop-
erties to the level of the stable homotopy type Xor, are collected in the following
proposition.

↔ , ↔ , ↔

FIGURE 3. Reidemeister moves

Proposition 4.4. Let X denote one of the Reidemeister moves from Figure 3, between
two oriented link diagrams D1 and D2, where D1 has more crossings than D2. Let
rX : CKhor(D1) −→ CKhor(D2) denote the associated chain map. Then rX is a de-
formation retract which factors as

rX = φ ◦ rk ◦ · · · ◦ r1,
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where k ∈ N and

• each ri for 1 ≤ i ≤ k is a deformation retract induced by “Gaussian elimination”
of an acyclic sub- or quotient complex that is spanned by a pair of standard basis
elements of CKhor(D1) if i = 1, respectively by the images of such a pair under
ri−1 ◦ · · · ◦ r1 if i > 1.
• there exists a bijection σ between the images of standard basis elements b of

CKhor(D1), which are not cancelled in this process, and the standard basis el-
ements of CKhor(D2), such that the foams b and σ(b) (Definition 3.7) are isotopic
upon forgetting 2-labelled facets and overall minus signs.
• φ is an isomorphism of chain complexes, sending the image of standard basis

elements b in rk ◦ · · · ◦ r1(CKhor(D1)) to ±σ(b) in CKhor(D2).

Proof. This follows from the discussion of Reidemeister moves in [LS14a] (build-
ing on [Bar05]) combined with the fact that Blanchet foams reduce to Bar-Natan
cobordisms under the specialisation of coefficients to F2, and the desired Gauss-
ian eliminations can be carried out over Zwhenever they are possible over F2.

More specifically, to construct r1, we are looking for a pair of generators that
form an acyclic sub- or quotient complex. The differentials in the chain complexes
CKhor send standard basis elements to linear combinations of standard basis ele-
ments with coefficients from the set {−1, 0, 1}. In particular, a component of the
differential is invertible if and only if its specialisation to F2 coefficients is invert-
ible. Under this specialisation, foams agree with Bar-Natan cobordisms, and thus
the discussion from [LS14a] guarantees the existence of a suitable pair of gener-
ators, and thus the existence of r1. (This pair of generators is local, it exists and
has a uniform description whenever the Reidemeister move of type X is applied
within a link diagram.)

Now we observe that Gaussian elimination just cancels this pair of generators.
Because the pair formed an acyclic sub- or quotient complex, the first intermedi-
ate complex C1, i.e. the co-domain of r1, consists of all remaining generators with
unchanged differentials between them. In particular, C1 inherits (not all) stan-
dard basis elements and a differential with coefficients from the set {−1, 0, 1}.
Now we iterate this procedure.

The final result rk ◦ · · · ◦ r1(CKhor(D1)) is reached, when the total rank of the
chain groups equals that of CKhor(D2). In that case, comparison with Bar-Natan
cobordisms via F2 coefficients establishes the existence of the bijection σ. The
isomorphism φ is then determined by (a single relevant component of) the local
model for the Reidemeister chain map rX as defined by Blanchet. �

The proof that Reidemeister moves induce homotopy equivalences of Xor(L) is
analogous to the proof of [LLS17, Theorem 1] and [SSS20, Section 5.3]. The de-
formation retraction rX in Proposition 4.4 gives a natural transformation η : 21 ×
2n −→ Bσ with the sign map of F (φ1,0 × Idv) determined by the isomorphism φ
in Proposition 4.4. As in the references above, the natural transformation η is a
stable equivalence of functors, giving rise to a homotopy equivalence of spectra
associated to link diagrams related by Reidemeister moves.
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4.4. Maps induced by cobordisms. The remaining work concerns establishing
naturality of the stable homotopy type Xor with respect to link cobordisms. As
mentioned in the introduction, [LS14b] defined maps on the Khovanov homo-
topy type induced by a link cobordism represented as a sequence of Reidemeis-
ter moves and Morse moves. The well-definedness of this induced map has not
yet been verified, but it is conjectured to hold. The construction of the cobordism
maps in [LS14b, Section 3.3] is given in the context of framed flow categories;
its analogue in the (signed) Burnside category framework is discussed in [SSS20,
Section 5.5]. The result in our setting reads as follows.

Lemma 4.5. An oriented link cobordism C from L to L′, presented as a sequence of Rei-
demeister and Morse moves, induces a map of spectra Xor(L

′) −→ Xor(L). The induced
map on cohomology is the map Khor(C) : Khor(L) −→ Khor(L

′) in Theorem 2.5.

Proof. Following the approach of [SSS20], we associate to elementary cobordisms
natural transformations of oriented Burnside functors. This is a lift to the signed
Burnside category of the map of functors FKh of [LLS20].

First consider a saddle cobordism between two n-crossing link diagrams, L −→
L′. For the Khovanov homotopy type [LS14b] the natural transformation 21 ×
2n −→ B is given by the functor FKh associated to the link diagram L′′ with
an extra crossing, corresponding to the saddle. In the Blanchet theory the edge
differentials are zip/unzip foams (see Section 2.1) rather than saddles.

Consider the (n + 1)-dimensional cubical diagram of webs and foams, corre-
sponding to the cone on the saddle map. Two n-dimensional sub-cubes are given
by the link diagrams L,L′, and the additional edge direction corresponds to the
saddle cobordism. While this is not a cube associated to a link diagram, it has
properties analogous to one. Indeed, it follows from Proposition 3.13 that this
cube does not have cancellations, cf. Remark 4.2. Moreover, the definition of
ladybug configurations in Section 4.2 is based on 1-labelled curves of a web, so
saddles and zip/unzip foams are treated equally in ladybug analysis. Therefore
the functor 21× 2n −→ Bσ associated to a saddle cobordism may be defined as in
Sections 4.1, 4.2.

The natural transformation assigned to a cup (birth) is defined by correspon-
dences which label the new trivial circle with the undotted cup generator; the
sign of this correspondence is +1. For the cap (death) the correspondences in-
volve the trivial circle C labeled by the dotted cup generator. In this case the sign
of the correspondence is ε, determined by the flow on C, see Lemma 3.14. �

4.5. Relation to the original construction of the Khovanov homotopy type. In
this section we show that Xor(L) is homotopy equivalent to X (L) of [LS14a]. We
start by summarizing the relevant fact relating the two homology theories.

Lemma 4.6. Let L be an oriented link diagram. There is a chain map

Φ: CKhor(L) −→ CKh(L)

inducing an isomorphism on homology. On each chain group Φ is a diagonal matrix
with diagonal entries ±1 with respect to the basis in Definition 3.7 for CKhor(L) and the
canonical Khovanov basis for CKh(L).
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The proof follows from [Bel+19, Proposition 4.3 and Theorem 4.6]. A concrete
description of Φ is also given by the results of our Section 3.

Proposition 4.7. Let L be an oriented link diagram. Then Xor(L) is stably homotopy
equivalent to X (L).

Proof. The statement follows from the claim that the Burnside functors

F, For : 2n −→ Bσ

are naturally isomorphic, where F (thought of as a functor 2n −→ Bσ where all
signs are +1) was constructed in [LLS20] and For is the result of Section 4.1. Here a
natural isomorphism is a natural transformation For −→ F such that for each vertex
u the morphism For(u) −→ F (u) is an isomorphism in Bσ. In the case at hand the
natural isomorphism η arises from the bijection between the basis in Definition
3.7 and the canonical Khovanov basis; denote this bijection ψ. More precisely,
η : 21 × 2n −→ Bσ is defined on objects by η(0, u) = F (u), η(1, u) = For(u) for u ∈
{0, 1}n. Define η on the edges eu : (1, u)→ (0, u) to be the signed correspondence

η(eu) =
(
For(u)

id←− For(u)
ψu−→ F (u)

)
,

with the sign given by Lemma 4.6. The fact that this indeed gives rise to a natural
isomorphism can be seen for example by following the detailed discussion in
[AKW21, Section 3.6]. An isomorphism of Burnside functors induces a stable
homotopy equivalence as stated in the proposition, cf. [SSS20, Lemma 4.17] �
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