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GEOMETRIC COMPLEXITY OF EMBEDDINGS IN Rd

MICHAEL FREEDMAN AND VYACHESLAV KRUSHKAL

Dedicated to Misha Gromov on the occasion of his 70th birthday

Abstract. Given a simplicial complex K , we consider several notions of geometric
complexity of embeddings of K in a Euclidean space Rd : thickness, distortion, and
refinement complexity (the minimal number of simplices needed for a PL embed-
ding). We show that any n-complex with N simplices which topologically embeds

in R2n , n > 2, can be PL embedded in R2n with refinement complexity O(eN
4+ǫ

).
Families of simplicial n-complexes K are constructed such that any embedding of
K into R2n has an exponential lower bound on thickness and refinement complex-
ity as a function of the number of simplices of K . This contrasts embeddings in the
stable range, K ⊂ R2n+k , k > 0, where all known bounds on geometric complexity
functions are polynomial. In addition, we give a geometric argument for a bound on
distortion of expander graphs in Euclidean spaces. Several related open problems
are discussed, including questions about the growth rate of complexity functions of
embeddings, and about the crossing number and the ropelength of classical links.

1. Introduction.

We use the abbreviation n-complex to mean an n-dimensional simplicial complex.
By general position any n-complex embeds into the Euclidean space Rd in the stable
range, d ≥ 2n+1. There have been recent developments, cf. [7, 21], in quantifying the
geometry of embeddings, and polynomial “complexity” has been established in the
stable range. There are several possible notions of thickness and distortion of which
we will mention four. We also consider refinement complexity, the minimal number
of simplices needed for a PL embedding of a given complex into Rd . We prove that
for the refinement complexity and for the notion of thickness defined below the lower
bound shifts from polynomial to at least exponential when the dimension d passes
from 2n+ 1 to 2n. We do not presently know if there is a similar transition for the
other notions of geometric complexity of embeddings. For the refinement complexity
we also establish an upper bound: we prove that any n-complex, n > 2, with N
simplices and with trivial van Kampen’s obstruction can be PL embedded in R2n

with refinement complexity O(eN
4+ǫ

). Our conclusions on thickness and refinement
complexity are summarized in a table appearing near the end of section 4.
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Section 2 considers the smallest codimensions 0, 1, 2. There are families of (d − 1)-
and d-complexes for which the refinement complexity with respect to embeddings into
Rd , d ≥ 5, is a non-recursive function of the number of simplices. We conjecture that
the thickness (defined below) of these complexes is also non-recursive, see section 2.
This construction [16], stated as theorem 2.1, is based on Novikov’s theorem on the
algorithmic unrecognizability of spheres Sn , n ≥ 5, and it is motivated by the work
[16] on algorithmic undecidability of the embedding problem in codimensions 0, 1.

In theorem 2.4 we show that in the relative setting there are also embedding problems
in codimension 2: pairs (K,L) where L is a subcomplex of a (d − 2)-complex K
with a fixed embedding L ⊂ Rd , d ≥ 5, such that the refinement complexity (and
conjecturally thickness) of any extension to an embedding K ⊂ Rd is a non-recursive
function. These examples are based on groups with undecidable word problem.

The rest of the paper addresses the question of what kinds of complexity functions
can be realized in higher codimensions nearer the stable range. To formulate an
upper bound for n-complexes in R2n and to fix the notation we state the following
definition.

Definition 1.1. Refinement complexity (rc). Given a complex Kn and d ≥ n,
rc(K, d) is the minimal number of simplices in a PL embedding of K into Rd . We say
rc(K, d) = ∞ if there is no PL embedding i : Kn →֒ Rd . There is also an extrinsic
form: given a piecewise mooth embedding i : K →֒ Rd , rc(i) is the minimum number
of simplices of a PL embeddings of K piecewise smoothly isotopic to i.

Theorem 1.2. Let K be an n-complex with N simplices which topologically embeds
in R2n , n > 2 . Then rc(K, 2n) = O(eN

4+ǫ

) for any ǫ > 0 .

The proof of this theorem in section 3 is a quantitative version of the proof that the
vanishing of the van Kampen cohomological obstruction for n-complexes in R2n is
sufficient for embeddability for n > 2.

The main result of section 4 is the construction of n-complexes in R2n with an (at
least) exponential lower bound on refinement complexity and thickness. To formulate
this result, we first state two relevant notions of embedding thickness.

Consider embeddings Kn −→ Bd
1 ⊂ Rd of an n-dimensional simplicial complex into

the unit ball in Rd . Following [7], we say that such an embedding has Gromov-Guth
thickness at least T if the distance between the images of any two non-adjacent sim-
plices is at least T . Assuming that local combinatorial complexity of K is bounded,

it is shown in [7] that if d ≥ 2n + 1 then N− 1

d−n is a sharp (up to an ǫ summand
in the exponent) bound for the Gromov-Guth thickness of K in Rd , where N is
the number of vertices of K . This is a generalization of earlier work of Kolmogorov
and Barzdin [10] which, predating a formal definition of expander graphs, used their
properties to establish the sharp bound N−1/2 for embedding thickness of graphs in
3-space. Next we define the notion of thickness used in this paper.
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Definition 1.3. Consider embeddings Kn −→ Bd
1 ⊂ Rd which are cell-wise smooth.

(Explicitly this means that each closed k -simplex is carried into Rd by some C∞

embedding of a neighborhood N (σk) ⊂ Rk .) We say that the thickness of such
an embedding is at least T if the distance between the images of any two non-
adjacent simplices is at least T and all simplices have embedded T -normal bundles.
(In the codimension zero case there is no normal bundle requirement on d-simplices
embedded in Rd .)

This definition, like other notions of thickness and distortion, has two versions: thick-
ness of an isotopy class of an embedding i (where one takes the supremum over all
embeddings isotopic to i), and intrinsic thickness of K (the supremum over all em-
beddings into Rd ).

The notion of thickness introduced above, taking into account the size of the normal
bundle, arises naturally when one considers isotopy classes of embeddings of mani-
folds. In particular, related measures of complexity have been investigated in knot
theory, cf. [2, 12, 19].

In contrast to the known polynomial bounds on thickness, refinement complexity and
distortion (discussed below) of embeddings in the stable range, we show the following.

Theorem 1.4. For each n ≥ 2 there exist families of n-complexes {Kl} with
ml −→ ∞ simplices and bounded local combinatorial complexity which embed
into R2n , and the thickness of any such embedding is at most c−ml . Moreover,

Cml < rc(Kl, 2n) < ∞.

Here the constants c, C > 1 depend on n.

Remarks. 1. The phrase “bounded local combinatorial complexity” means that
in a family Kl the maximum number of simplices incident to any fixed simplex is
bounded independently of l .

The proof of theorem 1.4 is given in section 4. At the end of that section we state an
addendum extending this theorem to (n + k)-complexes in R2n+k for all k ≥ 0. A
table summarizing our results on refinement complexity and thickness of n-complexes
in Rd for various values of (n, d) is included at the end of section 4.

Other related families of 2-complexes in R4 are discussed in section 5. This con-
struction is a geometric implementation of nested commutators and other recursively
defined elements in the free group. The key feature is that a word of length 2k

can be created using O(k) 2-cells. It seems likely that these examples also have
exponentially small thickness as in theorem 1.4, however at present this is an open
problem. Section 5 also formulates related questions about the thickness and the
crossing number of links in R3 .
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Next we review some of the known results about distortion of embeddings into Eu-
clidean spaces. Given a subset K ⊂ Rn and two points x, y ∈ K , let dK(x, y) denote
the intrinsic metric: the infimum of the lengths of paths in K connecting x and y .
The distortion of K is defined as

(1.1) δ(K) := sup
x,y∈K

dK(x, y)

dRd(x, y)
.

The distortion of an isotopy class of an embedding i : K −→ Rd is the infimum
over all embeddings isotopic to i. Measuring the distortion is often a rather subtle
problem. A recent advance in the subject is due to J. Pardon [21] who used in-
tegral geometry of curves on surfaces to show that the distortion of torus knots is
unbounded, δ(Tp,q) >

1
160

min(p, q), answering a 1983 question of M. Gromov [6]. A
different construction of families of knots with unbounded geometry using the volume
of branched covers is due to Gromov-Guth [7].

The intrinsic distortion of a complex K with respect to embeddings in Rd is defined
as

(1.2) Dd(K) := inf
i

δ(i(K)),

where the infimum is taken over all embeddings i : K →֒ Rd . It is established in [1]
that any N -point metric space can be embedded in the Euclidean space of dimension
O(log N) with distortion O(log N). The vertex sets of expander graphs (discussed
in more detail in section 6) of bounded degree with the graph metric are examples of
metric spaces for which this distortion bound is tight (even for embeddings into the
Hilbert space l2 ) [11].

However if one is interested in embeddings into the Euclidean space of a fixed dimen-
sion d , the bounds on distortion are polynomial: [14] gives upper and lower bounds
on distortion of an N -point metric space into Rd , d ≥ 3 (recall that f(N) = Ω(g(N))
means: f(N) > c g(N) asymptotically):

(1.3) O(N2/dlog3/2N) and Ω(N2/d) (d even), Ω(N
2

d+1 ) (d odd).

In section 6 we analyze the distortion of embeddings of expander graphs in a Euclidean
space of a fixed dimension, where the metric space is taken to be the entire graph
(including its edges), not just the vertex set. We give a geometric argument, to
some extent following the natural approach of [10, 7] of slicing the embedding by
codimension 1 hypersurfaces, to show that for families of expander graphs of bounded
degree the distortion Dd with respect to embeddings into Rd has a lower bound
Ω(N1/(d−1)), see theorem 6.1. It is an interesting question whether there is a transition
to exponential distortion for embeddings of complexes below the stable range, similar
to the behavior of thickness discussed in section 4; for intrinsic distortion we do not
have a candidate family to propose.
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2. Non-recursive complexity of embeddings in codimensions 0, 1, 2.

It is proved in [16] that the embedding problem for both d- and (d−1)- complexes in
Rd is undecidable, for d ≥ 5. Their starting point is Novikov’s theorem that there can
be no decision procedure for determining if a d-complex Σd , d ≥ 5, which we may
assume is a homology d-sphere, is actually homeomorphic to Sd . A second ingredient
is Newman’s theorem [20] that any PL embedding (in the technical sense: a piecewise-
linear embedding of a subdivision of the standard triangulation of) Sd−1 →֒ Sd is
topologically bicollared. Then the topological Schoenflies theorem implies that the
closed complementary domains of any such embedding are homeomorphic to Bd ,
the d-ball. From this it follows directly that there can be no algorithm either for
determining the embeddability of Σdrint(∆d) or Σdr⊔iint(∆

d
i ) in Rd , where the first

complex is a homology d-ball obtained by deleting the interior of a single d-simplex
and the second complex is the (d−1)-skeleton Skd−1(Σd). Let {Jd

i } = {Σd
i rint(∆d)}

and {Jd−1
i } = {Skd−1(Σd

i )} denote these undecidable families.

The following theorem, giving a refinement complexity (rc) - analogue of these state-
ments, is given in [16, Corollary 1.2]. Modulo a technical conjecture 2.3 below, the
statement also holds for thickness, see conjecture 2.2.

Theorem 2.1. For each d ≥ 5 there exists a sequence {Ki} of d-complexes ((d−1)-
complexes) with ni simplices which after subdivision PL embed in Rd , but there is
no recursive function of ni which lower bounds rc(ni) .

Proof. The Tarski-Seidenberg theorem [25] on quantifier elimination implies that
arbitrarily quantified sentences in first order semi-real algebraic geometry are decid-
able. Clearly the existence of a linear embedding (no refinement) of a fixed finite
complex in Rd can be reduced to quantified polynomial inequalities. For example
the statement that there are disjoint line segments in R3 may be expressed as:

∃ ~x1, ~x2, ~x3, ~x4, ∀ s, t F ( ~x1, ~x2, ~x3, ~x4, s, t) > 0, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, where

F ( ~x1, ~x2, ~x3, ~x4, s, t) = ‖ s~x1 + (1− s)~x2 − t~x3 − (1− t)~x4 ‖2 .

Hence “linear embedding” is decidable. Let {Jij} be the subsequence of either family
of complexes (dimension d or d − 1) discussed prior to theorem 2.1 which actually
do have PL embeddings into Rd . Consider the function rc(nij ). If this function
were upper bounded on {nij} by any recursive function r(ni) we could write an
algorithm for deciding the PL embeddability of the family {Ji} . We would run the
(in principle) Tarski-Seidenberg algorithm on each of the finitely many subdivisions
of Ji containing ≤ m simplices for each m ≤ r(ni). If one of these subroutines found
a solution to the quantified embedding inequalities we would know that Ji PL embed
in Rd . If by the time we have checked all subdivisions with ≤ r(ni) simplices no
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solution has been found we could halt the search knowing further subdivision to be
fruitless. {Jij} serves as the {Kj} in the statement. This contradiction proves the
theorem. �

Conjecture 2.2. For each d ≥ 5 there exists a sequence {Ki} of d-complexes
((d − 1)-complexes) with mi simplices which can be piecewise smoothly embedded
in Rd but the intrinsic thickness satisfies:

thickness (Ki) < r(ni)

where r is any positive recursive function.

To discuss the relation between theorem 2.1 and conjecture 2.2, note that our defi-
nition 1.3 of piecewise smooth embeddings is rather minimal. It has the virtue that
because the closed simplices are smoothly embedded, the complex automatically sat-
isfies the Whitney stratification conditions (A and B). However in other regards our
definition is bare bones. It does not control how closely adjacent simplices may
approach each other. For example our definition allows the 1-complex with two
1-simplices joined to form the letter V to be embedded in R2 by:

f1(s) = (s, 0), 0 ≤ s ≤ 1,

f2(t) = (t, F (t)), 0 ≤ t ≤ 1,

where F (0) = 0, F (1) = 1 is any smooth function (F (t) > 0 for t > 0). F might
satisfy F (1/n) = (Ackermann(n))−1 , or even decay nonrecursively.

While the minimal nature of our definition is adequate for the main results in sec-
tion 4, it makes it quite technical (but we think possible) to prove a lemma relevant to
theorem 2.1 in the context of thickness. We choose to state this lemma as conjecture
2.3 which we recommend to anyone with technical interest in stratified sets:

Conjecture 2.3. If Kn admits a piecewise smooth embedding of thickness ǫ into
Rd (more specifically, into the unit ball Bd

1 ⊂ Rd ) then rc(K) < r(ǫ) where r is a
recursively computable function of ǫ.

Remark. Given this, conjecture 2.2 follows from the proof of theorem 2.1.

Next we establish non-recursive complexity in codimension 2 for a family of relative
embedding problems.

Theorem 2.4. For each d ≥ 5 there exists a sequence of (d − 2)-complex pairs
(Ki, Li) with a fixed embedding Li ⊂ Rd such that the refinement complexity (and
conjecturally the thickness) of any extension to an embedding Ki ⊂ Rd is a non-
recursive function of the number of simplices of Ki .



GEOMETRIC COMPLEXITY OF EMBEDDINGS IN Rd
7

Proof. Indeed, consider a 2-complex K realizing a finite presentation of a group with
undecidable word problem. Some thickening of K to a d-dimensional 2-handlebody
H , d ≥ 5, embeds into the d-sphere Sd . There is a sequence of curves Ci in H , say
those exhausting the kernel [π1(1-skeleton of K) −→ π1(K)], bounding disks which
embed in H , so that the refinement complexity of such embeddings is necessarily non-
recursive as a function of the length of the boundary curve. Otherwise an algorithm
which searched by brute force for such disks up to a (recursively) computed upper
bound on complexity would succeed in solving the word problem in π1(K).

Consider the complement X := Sd r H , a codimension zero subcomplex of Sd .
For each i the curve Ci may be assumed to be embedded in the 1-skeleton of ∂X
for a sufficiently fine triangulation. Define K ′

i = X ∪Ci
D2 . Then (K ′

i, X) is a
d-dimensional pair satisfying the conclusion of the theorem.

The dimension of the complex can be reduced to d− 2 by considering Y := (d− 1)-
skeleton of X , with the same fixed embedding into Sd . Repeat the construction
above with Y in place of X , yielding pairs (Ki, Y ). Now the group in which we have
to study the word problem is the original group π1(K) free product with a finitely
generated free group. The free summand does not affect the decision problem. �

The codimension 2 relative examples (Ki, Li) with a fixed embedding of Li in the-
orem 2.4 do not admit an immediate generalization to the absolute setting Li = ∅ .
Indeed, fixing the fundamental group is a crucial ingredient in the proof, and if one
considers arbitrary embeddings of a complex into Rd the fundamental group of the
complement is not controlled by Alexander duality. (The Stallings theorem gives a
partial control of the fundamental group, modulo its lower central series for some
codimension 2 embeddings, see section 5 for more details.)

3. An upper bound for n-complexes in R2n .

By general position a PL embedding of an n-complex K in the stable range does not
require any subdivisions. At the other extreme discussed in section 2, in codimen-
sions 0, 1 (and in codimension 2 in the relative setting), the refinement complexity
(definition 1.1) is non-recursive. In this section we establish an upper bound at the
edge of the stable range, for n-complexes in R2n :

Theorem 1.2. Let K be an n-complex with N simplices which topologically embeds
in R2n , n ≥ 3 . Then rc(K, 2n) = O(eN

4+ǫ

) for any ǫ > 0 .

To be more specific, the upper bound will be obtained in terms of N =max(number
of (n−1)-simplices, number of n-simplices). Examples in section 4 complement this
upper bound on refinement complexity with an exponential lower bound.

Proof of theorem 1.2. We start by briefly recalling the definition of the van Kampen
obstruction and refer the reader to [4] for more details. Predating a formal definition
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of cohomology, Van Kampen’s 1933 paper [26] gave a rough description of a cohomo-
logical embedding obstruction for n-complexes Kn in R2n . Any general position map
f : Kn −→ R2n gives rise to a Z/2-equivariant 2n-dimensional simplicial cochain of
on K ×K r∆, where ∆ is the union of all products of simplices that have at least
one vertex in common. Given 2n-dimensional σ × τ ∈ K ×K r∆, of(σ × τ) is de-
fined as the algebraic intersection number f(σ) · f(τ) in R2n . The cohomology class
o(K) ∈ H2n

Z/2(K ×K r∆;Z) of of is independent of the map f : a general position

homotopy between two maps f, f ′ has finitely many non-generic times {ti} when an
n-cell intersects an (n − 1)-cell, and it is not difficult to see that of , of ′ differ by
the coboundary of the sum over {ti} of the products (n-cell)ti × ((n− 1)-cell)ti [4].
(Note that the action of Z/2 on the cohomology coefficients is trivial [22, 17] and not
(−1)n as stated in [4].) Moreover, for any cochain representative c of o(K) there is
a map f such that c = of [4, Section 2.4, Lemma 2].

The vanishing of the van Kampen obstruction is clearly a necessary condition for
embeddability of Kn in R2n for any n. For n > 2 it is also a sufficient condition,
due to the validity of the Whitney trick, see [22], [4, Theorem 3] and the discussion
below. (For n = 2 the obstruction is incomplete [4].)

Suppose an n-complex K with N simplices embeds in R2n . First map it linearly
into R2n , in general position. That is, consider a generic map of the vertices of K
to R2n and extend linearly to get a map f : K −→ R2n . The rank of the 2n-th
cellular cochain group C2n of K ×K r ∆ is < N2 , and the possible values of the
van Kampen cochain of on each 2n-cell are 0,±1, so ||of || < N . Here and in other
estimates below we will work with the l2 -norms on the cochain groups C2n , C2n−1

where the 2n- (respectively (2n− 1)-) dimensional product cells σ × τ are taken as
orthonormal generators.

There are two steps in changing this map to a PL embedding. Since K embeds in
R2n , the van Kampen obstruction o(K) vanishes and of is a coboundary. Therefore,
as discussed above, there are “finger move” homotopies pushing n-simplices of K
across (n− 1)-simplices, so that the result is a PL map g : K −→ R2n with og ≡ 0,
in other words g(σ) · g(τ) = 0 for any two non-adjacent n-simplices σ, τ of K . Each
finger move homotopy amounts to taking a connected sum of an n-simplex f(σ) with
a small oriented PL n-sphere linking ±1 an (n−1)-simplex f(ν) of K (cf. figure 2.1
in [4]). The connected sum is taken along a straight line segment in general position
with f(K). This move requires a constant (depending on the dimension n) number
of subdivisions of the simplex σ .

The second step consists of applications of the Whitney move to remove the intersec-
tions among the images of the n-simplices under g . In general there are three types
of Whitney moves: corresponding to

(1) a ± pair of intersections of two non-adjacent simplices g(σn), g(τn),

(2) an intersection point of two distinct adjacent n-simplices, and



GEOMETRIC COMPLEXITY OF EMBEDDINGS IN Rd
9

(3) a self-intersection point of an n-simplex.

To begin with, the map f is linear on each simplex and so there are no intersections
of types (2), (3). The finger moves implementing a homotopy to g may introduce
intersections of type (2), however since the finger move always involves non-adjacent
simplices σn, νn−1 , self-intersections will not be introduced and so the move of type
(3) is not needed.

Correspondingly, there are two types of Whitney circles C : the usual Whitney circle
consisting of two arcs pairing up the intersection points in two non-adjacent simplices
σn, τn , and a slightly different type connecting an intersection between two adjacent
simplices through a common vertex. In either case, the Whitney circle consists of a
bounded number (to be specific, at most 6) line segments. For the Whitney disk W
in each case take the cone on the Whitney circle C . A generic choice of the cone
point ensures that the interior of W is disjoint from g(K). Therefore each Whitney
disk W consists of at most 6 2-simplices.

Due to the bounded combinatorial complexity of the Whitney disk discussed above,
the classical Whitney move of type (1), changing one of the simplices g(σ), g(τ) by
an ambient PL isotopy, requires an a priori bounded number of subdivisions. The
Whitney move of type (2) is described in lemma 5 in [4]. It eliminates an intersection
point between two adjacent simplices while also introducing a bounded number of
subdivisions.

Since each finger move gives rise to at most N new intersection points, the number of
Whitney moves is bounded by N times the number of finger moves. The remaining
problem is to get an estimate on the number of finger moves needed to get from f
to g . This problem is equivalent to getting an upper bound on the l1 -norm of a
(2n − 1)-cochain which maps onto the van Kampen 2n-cocycle of . We will work
with the l2 -norms below, however the required estimate on the l1 -norm will follow
since ||v||1 ≤ N ||v||2 (recall that the ranks of C2n−1, C2n are < N2 ) .

Denote by A the matrix representing the coboundary map C2n−1 −→ C2n with
respect to the chosen cell basis. The minimal norm of a cochain c ∈ C2n−1 such that
Ac = og is upper bounded by λ−1||of || , where

(3.1) λ = minv 6=0∈(kerA)⊥⊂C2n−1

||Av||
||v|| = min

〈AtAv, v〉1/2
||v|| .

Therefore we need to estimate the smallest absolute value µ of a non-zero eigenvalue
of the symmetric matrix M := AtA. The coboundary map from (n − 1)- to n-
cochains of the original complex K has O(N) ±1 entries, the rest are zeros. The
matrix A has O(N2) ±1’s, the rest of the matrix entries are zeros. Then the sum
of the absolute values of the entries of M is bounded in absolute value by O(N4).

Let χ be the characteristic polynomial of M with variable x. Unless the original
linear map happened to be embedded and no subdivision was necessary, M must
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have a non-zero eigenvalue, otherwise the non-zero obstruction element could not be
a coboundary. It follows that χ must have at least two non-zero terms; let the term
of lowest degree read: ckx

k . To estimate how small (in absolute value) a root of χ
could possibly be, we take ck as small in absolute value as possible, ck = −1 and
all the coefficients of higher terms as large as possible. Estimating this bound B by
computing determinants we find the maximum is cj = O((N4)!N4), N2 > j > k . We

get a (smallest case) equation: xk =
∑N2

i=k+1Bxi .

Summing the geometric series obtain 1 = Bx/(1− x). We find a lower bound on µ :
µ can be no smaller than (O((N4)!N4))−1 . Then the minimal norm of a cochain c

with Ac = og is < λ−1||of || < µ−1/2N = O(eN
4+ǫ

). �

Remarks. 1. The upper bound on rc(K, 2n) in theorem 1.2 is established in terms
of the weakest possible isoperimetric constant of the coboundary map C2n−1 −→ C2n

of the deleted product K ×K r ∆ that works for any K . If one is interested in a
specific n-complex K with a larger isoperimetric constant, the proof above would
give a more optimal bound on the refinement complexity of K .

2. A more careful linear algebra estimate may improve the power on N in the
exponent in the statement of the theorem. It does not seem likely however that a
minor improvement along these lines would close the gap with the lower bound cN

proved in the next section.

3. It seems reasonable to believe that a version of theorem 1.2 also holds for thickness.
Such a statement would follow if one established an estimate on thickness in terms
of the number M of simplices in a PL embedding. For example, it is plausible that
thickness ∼ M−1 .

4. Exponentially thin n-complexes in R2n .

This section gives the proof of theorem 1.4. Note that most n-dimensional complexes
do not embed into R2n , and for those complexes that do embed a given generic map
into R2n may not in general be approximable by embeddings. The idea of the proof
is to construct a sequence of n-complexes which “barely” embed into R2n : any em-
bedding necessarily involves an exponential amount of linking, and as a consequence
an exponential bound on thickness and recursive complexity.

Let Kn
0 denote the n-skeleton of the (2n + 2)-simplex, (∆2n+2)n , with a single n-

simplex T removed. Denote the boundary (n− 1)-sphere of the missing simplex by
Sn−1
1 , and let Sn

2 be the n-sphere spanned in K by the n+2 vertices which are not
in S1 .

Proposition 4.1. The n-complex Kn
0 embeds into R2n . Moreover, for any embed-

ding i : Kn
0 −→ R2n the mod-2 linking number lkmod 2(i(S

n−1
1 ), i(Sn

2 )) is non-zero.
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This proposition essentially follows from the work of van Kampen [26]. We give an
outline of the argument below and refer the reader to lemma 6 in [4] for more details.
([4] states the proof for 2-complexes in R4 ; the argument for all n ≥ 2 is directly
analogous.)

The complex (∆2n+2)n for n = 1 is the complete graph on 5 vertices (well-known
from the Kuratowski planarity criterion), which can be drawn on the plane with a
single intersection point between two non-adjacent edges. Van Kampen [26] (and
independently Flores [3]) observed that this is also true for n ≥ 2: (∆2n+2)n can be
mapped into R2n with a single double point between two non-adjacent n-simplices.
For example, for n = 2 this can be seen concretely as follows: consider the 2-skeleton
(∼= S2 ) of ∆3 ⊂ R3 × 0 ⊂ R4 . To get the 2-skeleton of ∆6 add another vertex v5
inside the 2-sphere ∂∆3 in R3 , and v6, v7 in R4

+,R
4
− respectively. Connect v6, v7 by

an edge intersecting R3× 0 in a point outside of ∆3 . It is not difficult to see that all
2-cells embed disjointly, except for the 2-cell with vertices v5v6v7 whose boundary
circle links the 2-sphere ∂∆3 . Adding this 2-cell introduces a single double point
with one of the four faces forming the 2-sphere.

Van Kampen proved that the embedding obstruction (discussed in the proof of the-
orem 1.2 in section 3) is non-trivial for the complex (∆2n+2)n by starting with the
map with a single double point discussed above and showing that any homotopy
preserves (mod 2) the sum of the cochain of over all 2n-cells. Now suppose the
linking number is zero in the statement of the proposition for some embedding
i : K0 →֒ R2n . Attach an n-cell T to Sn−1

1 and map it into R2n , thus extend-
ing i to a map f : (∆2n+2)n −→ R2n . By assumption the intersection number
f(T ) · f(Sn

2 ) = lk(i(Sn−1
1 ), i(Sn

2 )) equals zero (mod 2). Then the sum of the val-
ues of the cochain of over all 2n-cells is zero, a contradiction. This concludes an
outline of the proof of proposition 4.1. �

We are now in a position to construct the complexes used in the proof of theorem
1.4. For convenience of the reader we restate it here:

Theorem 1.4. For each n ≥ 2 there exist families of n-complexes {Kl} with
ml −→ ∞ simplices and bounded local combinatorial complexity which embed into
R2n and the thickness of any such embedding is at most c−ml . Moreover,

(4.1) Cml < rc(Kl, 2n) < ∞.

Here the constants c, C > 1 depend on n.

Proof. Fix n and for each l ≥ 1 define the n-complex Kl to be the l -fold mapping
telescope

(4.2) Sn−1 ×2−→ Sn−1 ×2−→ . . .
×2−→ Sn−1 ×2−→ K0
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where the last arrow denotes the degree 2 map from Sn−1 to the (n − 1)-sphere
Sn−1
1 ⊂ K0 from the statement of proposition 4.1. Sometimes the dimension of this

sphere will be dropped and it will be denoted S1 .

Concretely each stage of the mapping telescope is a copy of Sn−1× [0, 1] triangulated
so that Sn−1× 0 receives an induced triangulation as ∂∆n , and Sn−1 × 1 is triangu-
lated as the 2-fold branched cover of ∂∆n along ∂∆n−2 , for some ∆n−2 ⊂ ∂∆n . The
map between each product segment of the telescope is the aforementioned branched
cover. Therefore Kl has O(l) n-simplices and the local combinatorial complexity of
Kl does not increase with l .

Next observe that the embedding i : K0 →֒ R2n discussed in proposition 4.1 extends
to an embedding Kl →֒ R2n . Recall that the n-cell T = (∆2n+2)n r K0 bounded
by S1 can be mapped into R2n creating a single double point with a non-adjacent
n-cell. In particular, a collar S1× [0, 1] on the boundary (n−1)-sphere of T embeds
into R2n disjointly from the rest of the complex K0 . A disk normal bundle over T
in R2n , restricted to the collar, which we will parametrize as S1 × Dn × [0, 1], also
embeds into R2n disjointly from the rest of K0 . The sphere Sn−1

1 ⊂ K0 is identified
with S1 × 0× 0 in this normal bundle.

By general position a degree 2 map Sn−1 −→ Sn−1
1 can be perturbed to an embedding

Sn−1 →֒ Sn−1
1 × Dn × t1 , 0 < t1 < 1. Then the mapping cylinder Sn−1 ×2−→ S1

embeds level-wise into S1 × Dn × [0, t1], where the target sphere is identified with
S1×0×0. Proceeding by induction and embedding the spheres Sn−1 in S1×Dn× ti ,
0 < t1 < . . . < tl ≤ 1, the l cells forming the mapping telescope (4.2) embed in
S1 ×Dn × [0, 1], showing that Kl embeds into R2n .

To establish the bound on embedding thickness of the complexes Kl claimed in the-
orem 1.4, consider any simplex-wise smooth embedding into the unit ball in R2n ,
i : Kl −→ B2n

1 . Denote by S̄n−1 ⊂ Kl the left-most (n− 1)-sphere in (4.2). Accord-
ing to proposition 4.1, the mod-2 linking number lkmod 2(i(S

n−1
1 ), i(Sn

2 )) is non-zero.
Switching to the integer-valued linking number, it follows that

(4.3) |Lk (i(S̄n−1), i(Sn
2 ))| ≥ 2l.

Recall from the introduction that the thickness of an embedding i : Kn −→ B2n
1 ⊂

R2n is defined as the supremum of T such that the distance between the images of
any two non-adjacent simplices is at least T and all simplices have embedded T -
normal bundles. Next we will use the Gauss linking integral to get an upper bound
on T .

For a 2-component link in S3 whose components are parametrized by α, β : S1 −→
R3 , the classical Gauss integral in 3-space computes the linking number L in terms
of the triple scalar product of α̇ , β̇ and v := α(s)− β(t):

Lk (α, β) =
1

4π

∫
[α̇(s), β̇(t), v]

|v|3 ds dt
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Denoting by α, β parametrizations of the spheres i(S̄n−1), i(Sn
2 ) in R2n , consider the

higher-dimensional analogue (cf. [23] for a more detailed discussion) of the Gauss
integral computing the degree of the corresponding map Sn−1×Sn −→ S2n−1 , equal
(up to a sign) to the linking number:

(4.4) Lk (α, β) = c

∫
Sn−1×Sn

det [ dα, dβ, v ]

|v|2n

Since i is an embedding into the unit ball B2n
1 and the embedding thickness is T , it

follows that T < |v| < 1. Then the integral (4.4) has an upper bound in terms of the
(n− 1)-volume Vα , the n-volume Vβ and the thickness T , leading to the inequality

(4.5) 2l ≤ Lk (α, β) <
Vα Vβ

T 2n
.

Recall that that the spheres S̄n−1, Sn
2 are considered with standard triangulations.

Then

(4.6) T 2n 2l < Vα Vβ < (n + 1)(n+ 2) V ′
α V

′
β,

where the prime denotes the largest volume among the simplices forming the two
linking spheres.

We will next obtain a lower bound on the 2n-volume of the T -normal bundles over
the relevant simplices of S̄n−1, Sn

2 in terms of their (n− 1)-, respectively n-volumes
V ′
α, V

′
β . There is a polynomial expression, the classical Weyl tube formula [27], for

the volume of an ǫ-regular neighborhood of a submanifold of a Euclidean space in
terms of the volume of the submanifold. For example, the Weyl formula for closed
surfaces in R3 states:

Vol(NǫΣ) = 2Area(Σ) ǫ +
4π

3
χ(Σ) ǫ3,

cf. [5, section 1.2]. Note that in general this formula does not immediately give a
lower bound for the volume in terms of the area since higher order terms may be
negative (and we don’t have an apriori estimate on how small ǫ is). Instead we
will use a more direct argument to get a rough estimate relating the volumes of the
submanifold and of its normal bundle.

For brevity of notation let S denote the relevant (n− 1)- (respectively n-) simplex
in the sphere i(S̄n−1), respectively in i(Sn

2 ), and let q denote its dimension. Let ν
be the distance from S to its nearest focal point and set ǫ = ν/2. Consider the
restriction φ of the exponential map (defined on the tangent bundle of R2n ) to the
ǫ-disk normal bundle Nǫ over S . Denote the ǫ-regular neighborhood of S in R2n by
Nǫ .
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Nǫ

S

Figure 1. The ǫ-tube around S .

We will derive a rough bound |det ( dx φ)| > 1/2q on the differential of the diffeo-
morphism φ : Nǫ −→ Nǫ at any point x ∈ Nǫ to get an estimate:

(4.7) Vol2n(Nǫ) ≥ Vol2n−q(D
2n−q
ǫ ) Volq(S)

2q
,

The bound on the differential is particularly easy to see in the case of a hypersurface,
pictured in figure 1: due to the choice of ǫ = ν/2 where ν is the distance to the
nearest focal point, the tangent vectors to S do not contract by more than a factor
1/2 when mapped to any point within Nǫ . (In some directions the tangent vectors
expand - however we are looking for just a very rough estimate so we take the “worst
case” bound in every direction.) This gives a lower bound of 1/2 on the eigenvalues
of the differential restricted to vectors tangent to S , and the vectors tangent to the
normal disk are mapped isometrically by dp φ .

Proving (4.7) in general (for submanifolds of higher codimension) requires a bit more
care, and we will refer to [5] for details of the statements below. Fix p ∈ S and let
u be a unit vector normal to S at p. Denote by St the boundary of the tube of
radius t around S . Then the principal curvatures κi, i = 1, . . . , 2n− 1 of St at the
point p+tu satisfy the differential equation κ′

i(t) = (κi(t))
2 ([5, Corollary 3.5] states

this in a more general setting where R2n is replaced with an arbitrary Riemannian
manifold.)

The first q of these principal curvatures of St may be thought of as corresponding
to the directions tangent to S , and they are given by κi(t) = κi(0) (1 − t κi(0))

−1 ,
i = 1, . . . , q . The rest correspond to the directions normal to S , κi(t) = −t−1 ,
i = q+1, . . . , 2n− 1 (they are equal to the corresponding principal curvatures of the
t-sphere normal bundle, since the exponential map is an isometry in these directions).
Then as expected the determinant of the differential of the exponential map may be
expressed in terms of the first q principal curvatures:

(4.8) |det ( dp+tuφ)| =
q∏

i=1

(1− tκi(0)),
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see [5, (3.27)]. The principal curvatures κi(0), i = 1, . . . , q satisfy the inequality
κi(0) ν ≤ 1, where as above ν denotes the distance to the nearest focal point [5,
section 8.1, Lemma 8.9]. We assumed that 0 ≤ t ≤ ǫ = ν/2, so 1 − tκi(0) > 1/2.
According to (4.8) then |det ( dpφ)| > 2−q , concluding the proof of the estimate (4.7).

We proceed with the proof of theorem 1.4. The complex Kl is embedded in the unit
ball and the T -normal bundles to the simplices are assumed to be embedded. Since
ν is the distance to a closest focal point, T < ν = 2ǫ. If T > ǫ then Vol2n(NT ) >
Vol2n(Nǫ). If T < ǫ then the inequality (4.7) holds for T in place of ǫ. In either
case, as a consequence of (4.7) one has

(4.9) Vol2n(NT ) >
c2n−q(T/2)

2n−q Volk(S)

2q
>

T 2n−q Volk(S)

22n
,

where c2n−q is the constant in the expression for the volume of the ball D2n−q
T/2 . The

effect of this constant is minor on the final estimate (4.13) on thickness below, so it is
omitted in the last term in (4.9). To get a very rough upper bound on Vol(NT ) note
that the T -regular neighborhood of each simplex is embedded in the ball of radius 2,
so its 2n-volume is less than (2π)n/n!. Combine this with the estimate (4.9) where S
is largest volume simplex in i(S̄n−1), i(Sn

2 ) as in (4.6), so Volk(S) = V ′
α , respectively

V ′
β :

(4.10)
T n+1

22n
V ′
α <

πn

n!
,

T n

22n
V ′
β <

πn

n!

Combine (4.6), (4.10):

(4.11) T 2n 2l < (n+ 1)(n+ 2)
(4π)2n

T 2n+1 (n!)2

It follows that

(4.12) T 4n+1 < 2−l(n+ 1)(n+ 2)
(4π)2n

(n!)2

To a good approximation this implies

(4.13) T < 2−l/(4n+1) n−1/2.

This is the sought exponential thinness in terms of l .

Proof of the bound (4.1) on refinement complexity. Instead of computing linking((k−
1)-sphere, k -sphere) by an integral formula, we can instead use intersection numbers
in a generic projection to R2k−1 . Since for two linearly embedded simplices of dual
dimensions the possible intersection numbers are: −1, 0, or 1, there must be ex-
ponentially many pairs of simplices to account for the exponential linking number.
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Denote by Mi the number of simplices in a PL embedding. Then M2
i > cmi ⇒ Mi >

(
√
c)mi . �

Addendum. The statement of theorem 1.4 (both for thickness and rc) applies to
(n + k)-complexes in R2n+k , for any k ≥ 0 .

Proof of addendum. Consider the n-complexes Ki and their embeddings in the
2n-sphere Ki ⊂ S2n constructed in the proof of theorem 1.4. Applying (iterated)
suspension, one gets embeddings ΣkKi ⊂ ΣkS2n ∼= S2n+k . Recall the exponential
bound (4.3) on the linking number of the (n−1)-sphere i(S) and the n-sphere i(S2)
for any embedding i : Ki ⊂ S2n . Then for any embedding ik : ΣkKi ⊂ S2n+k one has
the same exponential bound on the linking number of ik(S) and ik(ΣkS2). By induc-
tion assume exponential linking is established between ij(S) and ij(ΣjS2) in S2n+j .
Now look at any embedding ij+1 of Σj+1Ki intersect a small ǫ-radius sphere S2n+j

ǫ

about one of the embedded suspension points and apply the inductive hypothesis.
This linking number in S2n+j

ǫ must of course agree with lk(ij+1(S), ij+1(Σj+1S2)) in
S2n+j+1 . The rest of the proof is identical to that of theorem 1.4. �

Our results on thickness and refinement complexity are summarized in Table 1.

n�d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1P 1P 1P 1P 1P 1P
2 * 1P rr EE 1P 1P 1P
3 * rr EE EE EE 1P 1P 1P
4 * EE Nn EE EE EE 1P 1P
5 * Nn Nn EE EE EE EE 1P 1P
6 * * Nn Nn EE EE EE EE EE 1P 1P
7 * Nn Nn EE EE EE EE EE EE 1P

Table 1. The (n, d) entry in the table is a pair (Refinement complex-
ity, thickness) for n-complexes in Rd . Explanation of the notation:

Refinement complexity: 1=no refinement, E=(at least) exponential re-

finement, E=exponential lower bound and O(eN
4+ǫ

) upper bound for
n-complexes in R2n, n ≥ 3, N=non-recursive refinement, r=we conjec-
ture to be recursive.

Thickness: P=polynomial, E=(at least) exponential, n=non-recursive
(modulo conjecture 2.3), r=we conjecture to be recursive.

∗ = cannot embed since d < n.

Remarks. We conjecture decidable (recursive) behavior in d = 3 in line with nu-
merous recent results in 3-manifold topology. Cells (3,4) and (4,4) are filled in “EE”
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since one may trivially add an additional 3- or 4-simplex to the examples in (2,4).
Similarly all “Nn” are certainly at least “NE”.

The interested reader may find it instructive to compare this table with table 1 on
page 4 in [16] which lists the algorithmic complexity of the embedding problem for
simplicial n-complexes into Rd . In particular, it is interesting to note that the algo-
rithmic complexity of the embedding problem for Kn in R2n , n ≥ 3 is polynomial
(this amounts to checking whether van Kampen’s cohomological obstruction van-
ishes [16]), while we have shown that the geometric complexity (thickness and also
refinement complexity) of embeddings in these dimensions is at least exponential.

5. Further examples of 2-complexes in R4 , and links in R3 .

Section 4 introduced a family of n-complexes which “barely” embed into R2n : any
embedding is necessarily exponentially thin. Here we examine the case n = 2 in
more detail. The main purpose of this section is to discuss and formulate a number
of open questions about related families of 2-complexes in R4 and also about classical
links in 3-space. Their definition is based on the lower central series and other more
general iterated word constructions.

This discussion of 2-complexes is motivated by two problems. First, the bound
on thickness in section 4 is based on the integral formula for the linking number.
It is an interesting question whether similar bounds on thickness may be obtained
when the linking numbers vanish but a (suitably interpreted) higher-order Massey
product is non-trivial. There are integral formulas that may be used to compute
Massey products, but they do not seem to be directly suitable for getting a thickness
estimate as above. At the end of the section we also pose a related question for links
in 3-space where Massey products correspond to Milnor’s µ̄-invariants [18].

Another motivation is suggested by Milnor’s representation [18] of a link which for
convenience of the reader is reproduced in figure 2. This is a Brunnian link, in
particular the sublink formed by the components l1, . . . , lq+1 is the (q+1)-component
unlink, so the fundamental group of its complement is the free group generated by
meridians x1, . . . , xq+1 to these components. The remaining curve w′

q represents a
(q + 1)-fold commutator w′

q = [x1, [x2, [x3, . . . , [xq, xq+1]]]] in this free group.

The length of w′
q with respect to the word metric in the free group Fx1,...,xq+1

is
exponential in q , however note that as indicated in the figure the thickness of the
link is linear in q . This may be thought of as a “shared distortion” phenomenon,
an example of load balancing where a linear amount of local distortion creates an
overall exponential effect. This phenomenon makes the question discussed below for
Milnor’s invariants/Massey products interesting and probably more subtle compared
to the linking number.
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w′

q

l1 l2 lq

lq+1

Figure 2. w′
q = [x1, [x2, [x3, . . . , [xq, xq+1]]]], where xi denotes a

meridian to the corresponding link component li .

We now describe the relevant 2-complexes. Similar complexes were studied in the ap-
pendix of [8] and seen to exhibit exponential distortion, but not in R4 , but when em-
bedded into certain non simply connected targets. It is an open problem whether ex-
amples exhibiting exponential intrinsic distortion exist when the ambient 4-manifold
is R4 . The construction below concerns embeddings into R4 , with the focus on their
thickness (rather than distortion).

A brief outline of the construction is as follows. Take two (or more) copies of the 2-
complex from section 4, then any embedding into R4 creates a link of 2-spheres in R4 .
For homological reasons the fundamental group of the complement of this link modulo
any finite term of the (mod 2) lower central series (see below) is isomorphic to the
corresponding quotient of the free group. The complex also provides circles that link
the 2-spheres in R4 . Then word constructions in the free group can be implemented
by attaching additional 2-cells to the complex, and for suitable choices of the 2-cells
the complex still embeds into R4 . Generalizing the construction in section 4, one may
use 2-cells realizing commutators to create elements in an arbitrarily high term of
the lower central series. This is followed by the mapping telescope construction (4.2).
Since the embedding into 4-space is not fixed, the subtlety is that the fundamental
group of the 2-link in R4 cannot be assumed to be actually isomorphic to the free
group, as it is controlled only modulo a term of the (mod 2) lower central series. To
illustrate this problem we pose an analogous question for classical links in R3 at the
end of this section. We now turn to the details of the construction.

Let K0 denote two copies of the complex K2
0 from the statement of proposition 4.1,

with two vertices (one in each copy) identified. Recall that K2
0 is the 2-skeleton of

the 6-simplex, where one 2-cell has been removed. Consider the boundary circle of
the missing 2-cell, and the 2-sphere spanned in K0 by the 4 vertices which are not
in the circle. Denote the two copies of these circles and 2-spheres in K0 by C ′, C ′′

and S ′, S ′′ respectively. According to proposition 4.1, the complex K0 embeds into
R4 and for any embedding i, lk (i(C ′), i(S ′)) and lk (i(C ′′), i(S ′′)) are non-zero (mod
2). Pick the two vertices that are identified in the construction of K0 to be in the
circles C ′, C ′′ , and denote these two loops based at the common vertex by x, y . This
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common vertex will be taken as the basepoint in the fundamental group calculations
below.

Now the 2-complex Kq is defined to be K0 ∨ (q circles labeled w1, . . . , wl) ∪ (q
2-cells D1, . . . , Dq) reading off the relations

(5.1) D1 : w1 = [x, y], D2 : w2 = [x, w1], . . . , Dl : wq = [x, wq−1].

The 2-cells Di exhibit wq as the q -fold commutator

(5.2) wq := [x, [x, [x, . . . , [x, y]]]].

A slightly different version of the construction involves q + 1 copies of the complex
K2

0 , giving rise to a commutator in distinct generators

(5.3) w′
q = [x1, [x2, [x3, . . . , [xq, xq+1]]]].

Considered in the free group F on generators x, y , the word length of wq, w
′
q is expo-

nential in q . Note that it is created using q 2-cells, with bounded local combinatorial
complexity. (However based on the discussion below of the corresponding problem
for links in S3 , we expect that Kq embeds into R4 with thickness polynomial in q .)

Finally, define Kq,l := Kq ∪ l -fold mapping telescope as in (4.2), attached to the
curve wq . Denote by Cq,l the left-most circle in the mapping telescope (4.2). It is
not difficult to see that an embedding K2

0 ⊂ R4 extends to an embedding of Kq,l .
To analyze the fundamental group of the complement, recall the mod-2 version of
the Stallings theorem.

Given a group π , define its mod 2 - lower central series by π0 = π , πn+1 = [π, πn]2
where [π, πn]2 is the subgroup of π generated by all elements of the form fgf−1g−1h2

with f ∈ π and g, h ∈ πn . A theorem of Stallings [24] states that if a group homo-
morphism G −→ H induces an isomorphism on H1(−;Z/2) and an epimorphism on
H2(−;Z/2) then for each k it also induces an isomorphism G/Gk

∼= H/Hk . More-
over, G/Gω −→ H/Hω is injective, where the ω -term of the mod-2 lower central
series of π is πω = ∩∞

k=1πk .

Consider any embedding i : Kq,l ⊂ R4 . The inclusion

i(C ′ ∨ C ′′) →֒ R4 r (i(S ′) ∪ i(S ′′))

induces a homomorphism from F to π1(R
4 r (i(S ′)∪ i(S ′′))) which sends the gener-

ators x, y to the based loops denoted by the same letters. By Alexander duality and
the Stallings theorem, for each k

(5.4) F/Fk −→ π1(R
4 r (i(S ′) ∪ i(S ′′)))/(π1)k

is an isomorphism. Switching to the integral lower central series, observe that the
curve Cq,l represents a power wN

q of the commutator (5.2), where |N | > 2l . The
integral estimates on the linking number in section 4 do not immediately extend to
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the analysis of elements of higher terms of the lower central series. It seems reasonable
to expect an exponential bound, however at present this is an open problem:

Question. Is there an exponential upper bound c−l on the embedding thickness of
the complexes Kq,l in R4 (where c > 1 depends on q )?

An analogous question can be formulated for classical links in R3 . As discussed
above, there are two versions of the question: one with the commutator (5.2) in two
generators x, y and another version (5.3) with q + 1 distinct generators. Figure 2
shows a standard example of a link (an iterated Bing double of the Hopf link) realizing
the commutator (5.3).

In this example the components li form the unlink. More generally if they form
a boundary link, then there is a map to the free group given by intersections with
the spanning surfaces, and the commutators wq, w

′
q are exponentially long words in

the free group. (It is interesting to note however that the link w ∪ {li} may be
embedded into S3 with thickness linear in the number of components, as suggested
by figure 2.) To proceed with the analogy to the mapping telescope construction
above, take the N = 2l -power of the commutator wq . This is reflected in the value
of the corresponding Milnor µ-invariant [18] in non-repeating indices.

The map (5.4) is automatically an isomorphism for 2-links in R4 . The analogous
condition holds for links in 3-space if the µ-invariants of the link {li} are assumed
to be trivial.

Question. Let L be a q -component link in S3 which is almost homotopically trivial
(i.e. every proper sublink is homotopically trivial, in the sense of Milnor). Let M be
the maximum value among Milnor’s µ-invariants with distinct indices |µi1,...,iq(L)| .
Is there a bound thickness(L) < cqM

−1 for some constant cq > 0 independent of the
link L? Is there a bound on the crossing number of L in terms of M ?

The integral formula estimates in section 4 (which apply more generally to two-
component links Sk ⊔Sd−k−1 ⊂ Rd ) give an affirmative answer to the question about
thickness in the case of Milnor’s invariant of length 2, equal to the linking number.
(A bound on the ropelength in terms of the linking number for links in S3 was given
in [2].) The question posed above asks whether there is an analogous estimate for
higher Milnor’s µ-invariants.

6. Distortion of expander graphs.

In this section we discuss distortion of embeddings into Euclidean spaces, focusing on
spaces with unbounded intrinsic distortion (1.2). Specifically, we give a lower bound
on distortion of expander graphs of bounded degree with respect to embeddings into
Rn for any fixed n ≥ 3. Recall that a graph Γ is an α-expander if whenever S is a
subset of the set of vertices V of Γ with |S| ≤ |V |/2, the number of edges connecting
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vertices in S to vertices in V rS is at least α|S| . Interesting examples are families of
expander graphs Γk of bounded degree and fixed α > 0, with the number of vertices
|V (Γk)| going to infinity. Such families of examples are given by random bipartite
graphs, and explicit constructions are based on groups with property (T) [13], see [9]
for a survey.

We stress that in the following statement the distortion is measured for the metric
space which is the entire graph (including its edges), not just the vertex set. We are
not aware of prior results in the literature on the distortion of graphs considered as
1- (rather than 0-)complexes embedded in a Euclidean space.

Theorem 6.1. Let Γ be an α-expander of degree ≤ d with |V | = N vertices. Then
its intrinsic distortion D3(Γ) with respect to embeddings into R3 satisfies

(6.1) D3(Γ) > C(α, d)N
1

2 .

A brief outline of the proof of theorem 6.1 is as follows. If a surface S in R3 is chosen
so that it divides the vertices of Γ roughly in half then since Γ is an α-expander there
are at least αN/2 edges of Γ intersecting S . Fixing a normalization, this implies
the distance between these intersection points in S is roughly ∼ N−1/2 , and this
gives a bound on the number of vertices of Γ in a neighborhood of S in terms of
distortion and the degree of Γ. This argument is valid for various surfaces cutting
the vertices of Γ in half, and applying it three times shows that most vertices are in a
neighborhood of the triple intersection which is zero-dimensional, giving the required
estimate on distortion.

Remarks. 1. A direct generalization of the proof gives a bound on the distortion
Dn(Γ) for embeddings into Rn for any n ≥ 3:

(6.2) Dn(Γ) > C(α, d, n)N
1

n−1 ,

where the factor C is of the form

(6.3) C(α, d, n) = c n
n

n−1 α
n

n−1 d−1.

2. J. Matoušek informed us that he has established an upper bound [15] which almost
matches our lower bound (6.2): a graph with N vertices, maximum degree d , and
diameter D , embeds in Rn with distortion O(D(dN)1/(n−2)). (As in theorem 2.1,
the distortion is measured here for the metric space which consists of the entire graph
including its edges, not just the vertex set.)

3. It is worth noting that any embedding into R3 of an expander graph Γ with a large
number of vertices should contain many knot and link types. However the theorems
of [7, 21] on distortion of knots do not immediately carry over to the underlying
graph Γ since the distance between points in a knot x, y ∈ K ⊂ Γ ⊂ R3 in general
is shorter in Γ than the distance between x, y measured in the knot K .
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Proof of theorem 6.1. The proof will be given for distortion in R3 and at the end we
will indicate the slight modifications needed in the general case of embeddings into
Rn . Suppose to the contrary that

(6.4) δ < C(α, d)N
1

2

where δ is the distortion of some embedding i : Γ →֒ R3 and C(α, d) is the constant
given in (6.3) for n = 3, that is

(6.5) C(α, d) = c′ α3/2 d−1.

We will identify Γ with its image under i. Note that the definition (1.1) of δ is
invariant under rescaling. It is convenient to fix the scale as follows. Pick any point
p in R3 and choose a radius rp such that at least N/2 vertices of Γ are inside the
closed ball centered at p of radius rp and at least N/2 vertices are in the closure of
the complement of this ball. Consider

(6.6) r := inf
p∈R3

rp.

The vertices of Γ are a discrete subset of R3 and r > 0 (and the infimum in (6.6) is
in fact a minimum). Let p be a point such that rp = r . Now rescale the embedding
i so that r = 1 and denote by S the sphere centered at p of radius rp = 1.

Since Γ is an α-expander, there are at least αN/2 edges connecting the vertices inside
the ball bounded by S with the vertices which are outside of the ball. Therefore
there are at least αN/2 distinct edges intersecting the sphere S . Since all these
intersections are contained in the 2-sphere of radius 1, a rough estimate shows that
there are at least αN/8 distinct pairs of points {x, y} among these intersections with

(6.7) dR3(x, y) < 2 (αN)−1/2.

Since the distortion equals δ , for each such pair {x, y} one has dΓ(x, y) < 2δ(αN)−1/2 .
Since the edges intersecting the sphere are distinct, any path connecting p, q in Γ
must pass through a vertex of Γ. Moreover, since the degree of Γ is at most d , there
are at least αN/(8d) vertices in the 2δ(αN)−1/2 -neighborhood of the sphere S . For
simplicity of notation, denote

(6.8) ν :=
2δ

(αN)1/2
,

and let Nν(S) be the ν -neighborhood of the sphere S . The following inequality
summarizes the discussion so far:

(6.9) |V ∩ Nν(S)| >
αN

8d
.
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Picking the constant c′ in the expression (6.5) to be 10−5 , it follows from the as-
sumption (6.4) that

(6.10) ν <
α

104 d
.

Recall that 0 < α < 1 and d > 1, so the estimate (6.9) states that an (α/8d)-fraction
of vertices V of Γ is located in a thin ν -neighborhood of the unit sphere S . We
will next show that under the assumption (6.4), in fact most of the vertices of Γ are
contained in a fairly thin neighborhood of S :

Proposition 6.2. Let ǫ > 0 (more concretely one may take ǫ = .1 for the proof of
theorem 6.1 in R3 ).

(6.11) Let k =
10 d

α ǫ3/2
. Then |V ∩Nkν(S)| > (1− 2ǫ)N.

Applying this proposition to ǫ = .1 and using the inequality (6.10), one has kν <
1/10. The proposition therefore asserts that a subset of the vertices V of Γ of
cardinality > .8N is contained in the 1/10-neighborhood of the unit sphere S .

Proof of proposition 6.2. Let Br denote the ball centered at p of radius r . The
estimate (6.11) will follow from the inequalities

(6.12) |V ∩ B1−kν | < ǫN, |V ∩ (R3 rB1+kν)| < ǫN,

Suppose at least one of the inequalities in (6.12) does not hold, for example |V ∩
B1−kν | ≥ ǫN .

Let r be any radius satisfying 1−kν < r < 1, then ǫN < |V ∩Br| < N/2, so there are
at least αǫN distinct edges of Γ intersecting the sphere Sr := ∂Br . As in the proof of
(6.9) it follows that there are at least αǫN/(8d) vertices in the ν/ǫ1/2 -neighborhood
of the sphere Sr .

Since k = 10d/(αǫ3/2), there are 10d/(αǫ) of such disjoint “shells”: ν/ǫ1/2 -neighborhoods
of spheres that fit in B1 rB1−kν , so there are a total of more than

10 d

αǫ
· αǫN

8d
> N

vertices in this region. This contradiction concludes the proof of inequalities (6.12)
and of proposition 6.2. �

Remark. There is a sharper version of the bound (6.11): denote by f(r) the cardi-
nality f(r) = V ∩ Br . The assumption that Γ is an α-expander yields a discrete
version of the differential inequality

f ′(r) >
αf(r)

d δ
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for r < 1 and an analogous inequality for r > 1. This inequality implies exponential
decay for f(kν) as a function of k which may be used to get a better constant
C(α, d, n) in (6.1), however this does not give a better estimate on the exponent of
N .

To proceed with the proof of theorem 6.1 for embeddings into R3 , pick ǫ = .1 in
proposition 6.2 to conclude that a subset of the vertices V of Γ of cardinality > .8N
is located within the 1/10-neighborhood of the sphere S .

Now pick a point q ∈ S and repeat the argument: consider a sphere S ′ centered at q
such that at least N/2 vertices of Γ are inside S ′ and at least N/2 vertices outside.

Because of the normalization (6.6), the radius r′ of S ′ is ≥ 1. However since most
of the vertices are in a small neighborhood of the unit sphere S , it is clear that
r′ < 3. Now the argument for S given above applies verbatim to S ′ , in particular
the estimate on the number of points satisfying (6.7) is valid since the radii of S , S ′

differ only by a bounded factor (< 3). This implies that a subset of the vertices of
Γ of cardinality > .8N is located within a 1/10-neighborhood of S ′ , so at least .6N
vertices are in the intersection of the two neighborhoods N1/10(S) ∩N1/10(S

′).

The intersection S ∩ S ′ is either (i) a circle C of radius > 1/2, or (ii) a smaller
circle, a point or is empty. (The empty intersection S ∩S ′ is hypothetically possible,
where the 1/10-neighborhoods of S, S ′ still overlap.) In the first case apply the
same argument as above to a sphere S ′′ centered at a point in S ∩ S ′ so the triple
intersection is at most zero-dimensional. Moreover, at least .4N vertices are in the
intersection of the 1/10-neighborhoods of the three 2-spheres. In this case, as well as
in case (ii) above, run the argument again for a 2-sphere centered at the intersection
point of the spheres or their neighborhoods to reach a contradiction. This completes
the proof of theorem 6.1 for embeddings into R3 .

The changes needed in the proof in higher dimensions n ≥ 3 are the estimate (6.7) on
the density of points in the unit (n−1)-sphere: the exponent in general is 1/(n−1),
and the number n of (n − 1)-spheres in Rn at the end of the proof needed to cut
down the dimension of the intersection down to zero. �
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