Filling links in 3-manifolds

Slava Krushkal
(joint work with Michael Freedman)

March 29, 2021

Motivation.

A general theme: links (or knots) can be built in a general 3-manifold which in a sense are as "robust" as an embedded 1-complex can be. For example:

1. Bing's theorem (1958): A closed 3-manifold M is diffeomorphic to S^{3} if and only if every knot K in M is contained ("engulfed") in a 3-ball.
2. "Disk busting curves" (Myers, 1982): For any compact 3-manifold M there is a knot K in M so that every essential sphere or disk meets K.
(Suitable versions of these questions are open in higher dimensions.)

Motivation.

A general theme: links (or knots) can be built in a general 3-manifold which in a sense are as "robust" as an embedded 1-complex can be. For example:

1. Bing's theorem (1958): A closed 3-manifold M is diffeomorphic to S^{3} if and only if every knot K in M is contained ("engulfed") in a 3-ball.
2. "Disk busting curves" (Myers, 1982): For any compact 3-manifold M there is a knot K in M so that every essential sphere or disk meets K.

These theorem trivially hold when K is replaced with a 1-complex.
This talk is about another instance of such a problem.

Preliminary definition: a 1-spine or spine of a 3-manifold M :
(a) (The "rank" definition) A spine is a 1-complex in M of least first Betti number, surjecting onto $\pi_{1}(M)$.
[1-complexes are considered up to $I-H$ moves (a.k.a.
Whitehead moves); so they may be thought of as handlebodies.]

Figure: I-H
(b) A spine is a handlebody in M up to isotopy with the property that it is onto on π_{1} but no smaller handlebody obtained from compression of a non-separating disk is onto.

We'll work with the (easier) rank definition:
(a) (The "rank" definition) A spine is a 1-complex in M of least first Betti number, surjecting onto $\pi_{1}(M)$.

Figure: Example: the standard spine of the 3-torus.

The main notion of this talk:
Given a compact 3-manifold M, is there a link L in M so that whenever G is a spine in M and G is disjoint from L, then $\pi_{1}(G) \longrightarrow \pi_{1}(M \backslash L)$ is injective?

If there is such a link L, we call it filling in M.

The main notion of this talk:
Given a compact 3-manifold M, is there a link L in M so that whenever G is a spine in M and G is disjoint from L, then $\pi_{1}(G) \longrightarrow \pi_{1}(M \backslash L)$ is injective?

If there is such a link L, we call it filling in M.

It is easy to find a filling 1-complex in any 3-manifold (a spine of a Heegaard handlebody):

Lemma Let $M=H \cup H^{*}$ be a Heegaard decomposition. Then given a spine $G \subset M$, any embedding $i: G \longrightarrow M \backslash H^{*}$ induces an injection $\pi_{1} G \longmapsto \pi_{1}\left(M \backslash H^{*}\right)$.

Lemma (filling 1-complex) Let $M=H \cup H^{*}$ be a Heegaard decomposition. Then given a spine $G \subset M$, any embedding $i: G \longrightarrow M \backslash H^{*}$ induces an injection $\pi_{1} G \mapsto \pi_{1}\left(M \backslash H^{*}\right)$.
[Recall: A spine is a 1-complex in M of least first Betti number, surjecting onto $\pi_{1}(M)$.]

Proof. Let π be the image of $\pi_{1}(G)$ in $\pi_{1}\left(M \backslash H^{*}\right) \cong \pi_{1}(H)$.
Being a subgroup of a free group, π is free. Also $\operatorname{rank}(\pi)$ is less than or equal $\operatorname{rank}\left(\pi_{1}(G)\right)$ since the map $\pi_{1}(G) \longrightarrow \pi$ is onto.

If that map has a kernel, by the Hopfian property of free groups $\operatorname{rank}(\pi)<\operatorname{rank}\left(\pi_{1}(G)\right)$, contradicting minimal rank.

$$
\pi_{1}(G) \longrightarrow \pi_{1}\left(M \backslash H^{*}\right) \longrightarrow \pi_{1}(M)
$$

Elementary observations:

- We can find a knot K giving π_{1}-injectivity for a fixed embedding of a spine H (of a Heegaard handlebody):
Consider a minimal genus Heegaard decomposition $M^{3}=H \cup H^{*}$, and let K be a diskbusting curve in the handlebody H^{*}. If $\pi_{1} H \longrightarrow \pi_{1}(M \backslash K)$ had kernel, by the loop theorem there would be a compressing disk in H^{*} disjoint from K, a contradiction.
- The problem of finding a filling link L (so an arbitrary embedding of a spine is π_{1}-injective in $M \backslash L$) has a trivial solution for genus one 3-manifolds:
$M^{3}=H \cup H^{*}$ where H, H^{*} are solid tori. A filling knot is given by the core circle of H^{*}.

This talk will focus on the case of $M=$ the 3 -torus T^{3}.

The problem of π_{1}-injectivity of any embedding of a spine G in the complement of a given link L in T^{3} is subtle.
$\operatorname{ker}\left[\pi_{1} G \longrightarrow \pi_{1} T^{3}\right]$ is the commutator subgroup of the free group $\pi_{1} G$ on 3 generators.

A standard classical tool for showing injectivity of maps of the free group is the Stallings theorem. However it does not directly apply here (as I will explain next).

The existence of a filling link in T^{3} is an open question.

The existence of a filling link in T^{3} is an open question.

We establish a weaker result:
A link $L \subset M$ is k-filling if whenever G is a spine in M and G is disjoint from L, the injectivity holds modulo the k th term of the lower central series: $\pi_{1} G /\left(\pi_{1} G\right)_{k} \mapsto \pi_{1}(M \backslash L) / \pi_{1}(M \backslash L)_{k}$.

Theorem (Freedman-K., 2020)
For any $k \geq 2$ there exists a k-filling link in T^{3}.

It is interesting to note the similarity of the problem with the current state of knowledge of the topological 4-dimensional surgery theorem for free non-abelian groups.

The underlying technical statement, the π_{1}-null disk lemma, also has a variable homotopy, and the question is whether the map on π_{1} can be made trivial. One can solve the problem modulo any term of the lower central series, but the question itself is open.

Does γ bound a π_{1}-null disk in a 4D thickening of the capped grope?
[Digression: the Stallings theorem]
Given a group A, its lower central series is defined inductively by $A_{1}=A, A_{k}=\left[A_{k-1}, A\right] ; A_{\omega}=\cap_{k=1}^{\infty} A_{k}$.

Stallings' theorem (1965) Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_{1} and an epimorphism on H_{2}. Then f induces an isomorphism $A / A_{k} \longrightarrow B / B_{k}$ for all finite k, and an injective map $A / A_{\omega} \longrightarrow B / B_{\omega}$.

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_{1} and an epimorphism on H_{2}. Then f induces an isomorphism $A / A_{k} \longrightarrow B / B_{k}$ for all finite k, and an injective map $A / A_{\omega} \longrightarrow B / B_{\omega}$.

Example: Consider $S^{2} \coprod S^{2} \hookrightarrow \mathbb{R}^{4}$.

Take $A=\pi_{1}\left(S^{1} \vee S^{1}\right), B=\pi_{1}\left(\mathbb{R}^{4} \backslash\left(S^{2} \sqcup S^{2}\right)\right)$. It follows that $\pi_{1}\left(\mathbb{R}^{4} \backslash\left(S^{2} \sqcup S^{2}\right)\right)$ is isomorphic to the free group modulo any finite term of the I.c.s. Moreover, Free ${ }_{2} \hookrightarrow \pi_{1}\left(\mathbb{R}^{4} \backslash\left(S^{2} \sqcup S^{2}\right)\right)$.

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_{1} and an epimorphism on H_{2}. Then f induces an isomorphism $A / A_{k} \longrightarrow B / B_{k}$ for all finite k, and an injective map $A / A_{\omega} \longrightarrow B / B_{\omega}$.

Dwyer extended the theorem, relaxing the surjectivity to be onto H_{2} modulo the k-th term of the Dwyer filtration:

$$
\phi_{n}(A)=\operatorname{ker}\left[H_{2}(A) \longrightarrow H_{2}\left(A / A_{n}\right)\right]
$$

(Geometrically $\phi_{n}(A)$ is represented by maps of gropes of height $n-1$.)

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_{1} and an epimorphism on H_{2}. Then f induces an isomorphism $A / A_{k} \longrightarrow B / B_{k}$ for all finite k, and an injective map $A / A_{\omega} \longrightarrow B / B_{\omega}$.

Dwyer extended the theorem, relaxing the surjectivity to be onto H_{2} modulo the k-th term of the Dwyer filtration:

$$
\phi_{n}(A)=\operatorname{ker}\left[H_{2}(A) \longrightarrow H_{2}\left(A / A_{n}\right)\right]
$$

Dwyer's theorem (1975) Assuming that $f: A \longrightarrow B$ is an isomorphism on H_{1}, f induces an isomorphism $A / A_{k+1} \longrightarrow B / B_{k+1}$ if and only if it induces an epimorphism $H_{2}(A) / \phi_{k}(A) \longrightarrow H_{2}(B) / \phi_{k}(B)$.

The Stallings theorem does not work in general for the derived series.

For a group B, its derived series is defined by
$B^{(0)}=B, B^{(n+1)}=\left[B^{(n)}, B^{(n)}\right]$.
But there is a version of the theorem for the torsion-free derived series (a notion due to Harvey). A corollary when the domain is the free group:

Theorem (Cochran - Harvey, 2008) Suppose F is a free group, B is a finitely-related group, $\phi: F \longrightarrow B$ induces a monomorphism on $H_{1}(-; \mathbb{Q})$, and $H_{2}(B ; \mathbb{Q})$ is spanned by $B^{(n)}$-surfaces. Then ϕ induces a monomorphism $F / F^{(n+1)} \subset B / B^{(n+1)}$.

The notion of $B^{(n)}$-surfaces (maps of surfaces into $K(B, 1)$ where the image on π_{1} is in $B^{(n)}$ gives an analogue of the Dwyer filtration in the derived setting.
[Back to the existence of fillings links]
Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_{1} and an epimorphism on H_{2}. Then f induces an isomorphism $A / A_{k} \longrightarrow B / B_{k}$ for all finite k.

The Stallings theorem does not apply to the map $\pi_{1} G \longrightarrow \pi_{1}\left(T^{3} \backslash L\right)$ because it is not surjective on second homology, and it is injective, rather than an isomorphism, on H_{1}.

The complexity of the problem reflects the fact that the image of the map on π_{1} depends on the embedding of the spine G.
[Back to the existence of fillings links]
Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_{1} and an epimorphism on H_{2}. Then f induces an isomorphism $A / A_{k} \longrightarrow B / B_{k}$ for all finite k.

The Stallings theorem does not apply to the map $\pi_{1} G \longrightarrow \pi_{1}\left(T^{3} \backslash L\right)$ because it is not surjective on second homology, and it is injective, rather than an isomorphism, on H_{1}.

The complexity of the problem reflects the fact that the image of the map on π_{1} depends on the embedding of the spine G.

One may attempt to apply the Stallings theorem to the map $\left[\pi_{1} G, \pi_{1} G\right] \longrightarrow K$, where K is the kernel $\pi_{1}\left(T^{3} \backslash L\right) \longrightarrow \pi_{1}\left(T^{3}\right)$.
But injectivity of the infinitely generated first homology of the commutator subgroup is hard to establish when the embedding $G \longrightarrow T^{3} \backslash L$ changes by an arbitrary homotopy.
[Back to the main theorem]
A link $L \subset M$ is k-filling if whenever G is a spine in M and G is disjoint from L, the injectivity holds modulo the k th term of the lower central series: $\pi_{1} G /\left(\pi_{1} G\right)_{k} \mapsto \pi_{1}(M \backslash L) / \pi_{1}(M \backslash L)_{k}$.

Theorem (Freedman-K., 2020) For any $k \geq 2$ there exists a k-filling link in T^{3}.

To prove the theorem we give an extension of the Stallings theorem using powers of the augmentation ideal $\mathbb{Z}\left[\mathbb{Z}^{3}\right]$, which applies uniformly to all embeddings $G \longrightarrow T^{3} \backslash L$, where the conclusion holds modulo a given term of the lower central series.

Main steps of the proof:

- An equivariant homological framework for analyzing the effect of homotopies of a spine in terms of powers of the augmentation ideal.
- Construction of links satisfying the homological conditions.
- An extension of the Stallings theorem, relating powers of the augmentation ideal to the lower central series.

Consider the relative case where the construction of k-filling links is easier to describe, $M=T^{2} \times I$.

Fix the standard "relative spine" $G=(\{*\} \times I) \cup\left(T^{2} \times \partial I\right)$, and the dual spine $G^{*}=S^{1} \vee S^{1} \subset T^{2} \times\{1 / 2\}$. Their preimages in the universal cover:

Figure: The preimage \widetilde{G} in the universal cover $\mathbb{R}^{2} \times I$ of the standard relative spine $G=(\{*\} \times I) \cup\left(T^{2} \times \partial I\right)$ consists of the top and bottom shaded panels union the vertical line segments. The mid-level horizontal grid is the preimage of the dual spine $S^{1} \vee S^{1} \subset T^{2} \times\{1 / 2\}$.

The goal is to analyze the map on π_{1} induced by inclusion when G^{*} is replaced by a link. In this figure the link L is obtained by "resolving" the dual spine G^{*} into two disjoint essential circles.

Figure: An example of a link $L \subset T^{2} \times(0,1)$, and a finger move.

Different embeddings of the vertical interval are related by homotopies that may pass through link components and may be thought of as finger moves.
G : the standard embedding of the relative spine into $T^{2} \times I$; \widetilde{G} : its preimage in the universal cover. The notation $G^{\prime}, \widetilde{G}^{\prime}$ will be used for an arbitrary embedding, i.e. related to the standard embedding by finger moves. The fundamental group of \widetilde{G}, and also of \widetilde{G}^{\prime} is

$$
K:=\operatorname{ker}\left[\mathbb{Z}^{2} * \mathbb{Z}^{2} \longrightarrow \mathbb{Z}^{2}\right]
$$

Let L be any link in $T^{2} \times(0,1)$ whose components are all essential in $\pi_{1}\left(T^{2}\right)$, and let \widetilde{L} denote its preimage: a \mathbb{Z}^{2}-equivariant collection of lines in the universal cover.

Note: $\pi_{1}\left(\mathbb{R}^{2} \times I \backslash \widetilde{L}\right)$ is free.

The starting point is to analyze the injectivity of the map α in the commutative triangle

$$
\pi_{1}(G) \xrightarrow[\beta]{\alpha} \pi_{1}\left(T^{2} \times I \backslash L\right)
$$

The focus is on the map

$$
\begin{equation*}
K \longrightarrow \pi_{1}\left(\mathbb{R}^{2} \times I \backslash \widetilde{L}\right) \tag{1}
\end{equation*}
$$

Denote by J the first homology of $\widetilde{G}, J=K /[K, K]$, and let H denote $H_{1}\left(\mathbb{R}^{2} \times I \backslash \widetilde{L}\right)$. Since $\pi_{1}\left(\mathbb{R}^{2} \times I \backslash \widetilde{L}\right)$ is a free group, if $J \longrightarrow H$ were injective, the Stallings theorem would imply that the map

$$
\begin{equation*}
K \longrightarrow \pi_{1}\left(\mathbb{R}^{2} \times I \backslash \widetilde{L}\right) . \tag{2}
\end{equation*}
$$

is injective (for the standard spine G).
Denote the map $J \longrightarrow H$ by $L k$. The group H is generated by meridians $m(I)$, one for each line I in \widetilde{L}. The map $L k$ is given by \mathbb{Z}^{2}-equivariant linking, sending a 1 -cycle c in \widetilde{G} to a linear combination of meridians $\sum_{i} a_{i} m\left(l_{i}\right)$, where the coefficient $a_{i} \in \mathbb{Z}\left[\mathbb{Z}^{2}\right]$ is the linking "number" of c and l_{i}. Since there is a single generator $m(I)$ for each line I, when there is no risk of confusion we will write

$$
L k(c)=\sum_{i} a_{i} l_{i}
$$

As a module over $\mathbb{Z}\left[\mathbb{Z}^{2}\right], J$ is generated by the boundaries of two vertical "plaquettes", denoted P_{x} and P_{y}. Think of elements of J as linear combinations of these plaquettes, with coefficients in $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$. The translations in the directions perpendicular to P_{x}, P_{y} are denoted respectively by x, y. Note that the relation

$$
\begin{equation*}
(1-x) P_{x}+(1-y) P_{y}=0 \tag{3}
\end{equation*}
$$

holds in J.

Figure:
(a): Plaquettes P_{x}, P_{y} generating J over $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$.
(b), (c): Projection onto \mathbb{R}^{2}; dots represent the preimage of the edge $\{*\} \times I$ of the relative spine.
(a)

Figure:
(a): Plaquettes P_{x}, P_{y} generating J over $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$.
(b), (c): Projection onto \mathbb{R}^{2}; dots represent the preimage of the edge $\{*\} \times I$ of the relative spine.

The figure shows the case when the link L has a single component, the (1,1)-curve in the torus $T^{2} \times\{1 / 2\}$. In this case the two translations act the same way on \tilde{L} : for any line $I, x I=y I .(b, c)$ show the projection onto \mathbb{R}^{2} of two elements of $J:(1-y) P_{x}$, $(1-x) P_{x}$. Denoting the line intersecting the plaquette P_{x} by I_{0}, we have

$$
L k\left((1-y) P_{x}\right)=(1-y) I_{0}, \quad \operatorname{Lk}\left((1-x) P_{x}\right)=(1-x) I_{0}
$$

Since $(1-y) I_{0}=(1-x) I_{0}$ in this example, the map $J \longrightarrow H$ is not injective.

Consider elements of $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$ as Laurent polynomials in two commuting variables x, y. Let l denote the augmentation ideal of $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$. The following lemma provides a convenient tool for analyzing the injectivity of the linking map for an arbitrary spine, modulo powers of the augmentation ideal.

Lemma

If

$$
i_{k}: I^{k} J / I^{k+1} J \longrightarrow I^{k} H / I^{k+1} H
$$

is injective for some k, then for any relative spine $G^{\prime} \subset T^{3} \backslash L$,

$$
i_{k}^{\prime}: I^{k} J^{\prime} / I^{k+1} J^{\prime} \longrightarrow I^{k} H / I^{k+1} H
$$

is injective. Here i_{k}, i_{k}^{\prime} are the map induced by the inclusions of G, G^{\prime} into $T^{3} \backslash L$.

Lemma

For any k there exists a link $L_{k} \subset T^{2} \times I$ such that
$i_{j}: I^{j} J / I^{j+1} J \longrightarrow I^{j} H / I^{j+1} H$ is injective for all $1 \leq j \leq k$.

Figure: The preimage of the curves in $T^{2} \times I$ in the universal cover: projection of $\mathbb{R}^{2} \times I$ onto \mathbb{R}^{2} is shown; the dots represent the preimage of the edge $\{*\} \times I$ of the relative spine.

Powers of the augmentation ideal and the lower central series

Let $i^{\prime}: G^{\prime} \longrightarrow T^{3} \backslash L$ denote any spine homotopic to the standard spine G, where L is a link whose components are all essential in $\pi_{1} T^{3}$.

Recall the notation:
F denotes $\pi_{1} G^{\prime}$, the free group on three generators, and

$$
K:=\operatorname{ker}\left[\pi_{1}\left(T^{3} \backslash L\right) \longrightarrow \pi_{1} T^{3}\right]
$$

is isomorphic to $\pi_{1}\left(\mathbb{R}^{3} \backslash \widetilde{L}\right)$, a free group. J^{\prime} denotes the first homology of the preimage \mathcal{G}^{\prime} of G^{\prime} in \mathbb{R}^{3} and H denotes $H_{1}\left(\mathbb{R}^{3} \backslash \widetilde{L}\right)$,

$$
J^{\prime} \cong F_{2} /\left[F_{2}, F_{2}\right], \quad H \cong K /[K, K] .
$$

J^{\prime} and H are considered as modules over $\mathbb{Z}\left[\mathbb{Z}^{3}\right]$, and I^{k} denotes the k-th power of the augmentation ideal $/$ of $\mathbb{Z}\left[\mathbb{Z}^{3}\right]$.
F denotes $\pi_{1} G^{\prime}$, the free group on three generators, and

$$
K:=\operatorname{ker}\left[\pi_{1}\left(T^{3} \backslash L\right) \longrightarrow \pi_{1} T^{3}\right]
$$

is isomorphic to $\pi_{1}\left(\mathbb{R}^{3} \backslash \widetilde{L}\right)$, a free group. J^{\prime} is the first homology of the preimage \widetilde{G}^{\prime} of G^{\prime} in \mathbb{R}^{3} and H denotes $H_{1}\left(\mathbb{R}^{3} \backslash \widetilde{L}\right)$,

$$
J^{\prime} \cong F_{2} /\left[F_{2}, F_{2}\right], \quad H \cong K /[K, K] .
$$

J^{\prime} and H are considered as modules over $\mathbb{Z}\left[\mathbb{Z}^{3}\right]$, and I^{k} denotes the k-th power of the augmentation ideal I of $\mathbb{Z}\left[\mathbb{Z}^{3}\right]$.

The main result relating the filtrations of J^{\prime}, H in terms of powers of the augmentation ideal and the lower central series:

Lemma. Suppose $J^{\prime} / I^{k} J^{\prime} \longrightarrow H / I^{k} H$ is injective for some k. Then the map

$$
F / F_{k+1} \longrightarrow \pi_{1}(M \backslash L) / \pi_{1}(M \backslash L)_{k+1}
$$

is injective.

Lemma. Suppose $J^{\prime} / I^{k} J^{\prime} \longrightarrow H / I^{k} H$ is injective for some k. Then the map

$$
F / F_{k+1} \longrightarrow \pi_{1}(M \backslash L) / \pi_{1}(M \backslash L)_{k+1}
$$

is injective.
Consider

$$
\begin{equation*}
\pi:=\operatorname{image}\left[F \xrightarrow{i_{*}^{\prime}} \pi_{1}\left(T^{3} \backslash L\right)\right] . \tag{4}
\end{equation*}
$$

The proof is by induction on k; the inductive assumption is that $F / F_{k} \longrightarrow \pi / \pi_{k}$ is an isomorphism. The strategy is motivated by the proof of the Stallings theorem.

Note that both F_{2} and π_{2} are free groups but the map $F_{2} \longrightarrow \pi_{2}$ is not an isomorphism on H_{1}. Being an isomorphism on H_{1} is equivalent to $J^{\prime} / I^{k} J^{\prime} \cong \bar{H} / I^{k} \bar{H}$ for all k. Rather the lemma has a weaker assumption, $J^{\prime} / I^{k} J^{\prime} \cong \bar{H} / I^{k} \bar{H}$ for some fixed k.

Let ϕ_{k} denote the inclusion $F_{k} \subset F_{2}$ composed with the quotient map $F_{2} \longrightarrow F_{2} /\left[F_{2}, F_{2}\right]$, and consider its kernel:

$$
\begin{equation*}
1 \longrightarrow F_{k} \cap\left[F_{2}, F_{2}\right] \longrightarrow F_{k} \xrightarrow{\phi_{k}} F_{2} /\left[F_{2}, F_{2}\right] \tag{5}
\end{equation*}
$$

Denote the generators of F by x, y, z; the same letters will denote the covering translations of \mathbb{R}^{3}.

A basic example, the triple commutator $[[x, y], z] \in F_{3}$. The map ϕ_{k} is implemented by first expanding
$[[x, y], z]=[x, y] \cdot\left([x, y]^{-1}\right)^{z}$. The first factor is mapped to the boundary of the plaquette P_{z}. The second factor is mapped to the boundary of this plaquette with the opposite orientation and shifted one unit up, $-z P_{z}$. So $\phi_{3}([[x, y], z])=(1-z) P_{z}$.

The image of ϕ_{k} is $I^{k-2} J \subset J$.

The main ingredient in the proof of the inductive step:

$$
\begin{align*}
& 1 \longrightarrow \frac{F_{k} \cap\left[F_{2}, F_{2}\right]}{F_{k+1} \cap\left[F_{2}, F_{2}\right]} \longrightarrow \frac{F_{k}}{F_{k+1}} \longrightarrow \frac{l^{k-2} J}{I^{k-1} J} \longrightarrow 1 \\
& \downarrow \alpha \quad \downarrow \beta \quad \downarrow^{\gamma} \tag{6}\\
& 1 \longrightarrow \frac{\pi_{k} \cap\left[\pi_{2}, \pi_{2}\right]}{\pi_{k+1} \cap\left[\pi_{2}, \pi_{2}\right]} \longrightarrow \frac{\pi_{k}}{\pi_{k+1}} \longrightarrow \frac{l^{k-2} \bar{H}}{l^{k-1} \bar{H}} \longrightarrow 1
\end{align*}
$$

Compare with the Stallings' proof:

$$
\begin{gathered}
H_{2}(A) \rightarrow H_{2}\left(A / A_{\alpha}\right) \rightarrow A_{\alpha} / A_{\alpha+1} \rightarrow H_{1}(A) \rightarrow H_{1}\left(A / A_{\alpha}\right) \\
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
H_{2}(B) \rightarrow H_{2}\left(B / B_{\alpha}\right) \rightarrow B_{\alpha} / B_{\alpha+1} \leftarrow H_{1}(B) \rightarrow H_{1}\left(B / B_{\alpha}\right)
\end{gathered}
$$

More recently Christopher Leininger and Alan Reid proved:

Theorem

Let M be a closed orientable 3-manifold such that $\pi_{1}(M)$ has rank 2. Then M contains a filling hyperbolic link.

The proof relies on work of Jaco-Shalen:
Let $L \subset M$ be a hyperbolic link with at least 3 components.
The possibilities for the image H of $\pi_{1}(G)$ in $\pi_{1}(M \backslash L)$ are:

1. H is free of rank 2 , or
2. H is free abelian of rank ≤ 2, or
3. H has finite index in $\pi_{1}(M \backslash L)$.
