Filling links in 3-manifolds

Slava Krushkal (joint work with Michael Freedman)

March 29, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation.

A general theme: links (or knots) can be built in a general 3-manifold which in a sense are as "robust" as an embedded 1-complex can be. For example:

- 1. Bing's theorem (1958): A closed 3-manifold M is diffeomorphic to S^3 if and only if every knot K in M is contained ("engulfed") in a 3-ball.
- "Disk busting curves" (Myers, 1982): For any compact 3-manifold *M* there is a knot *K* in *M* so that every essential sphere or disk meets *K*.

(Suitable versions of these questions are open in higher dimensions.)

Motivation.

A general theme: links (or knots) can be built in a general 3-manifold which in a sense are as "robust" as an embedded 1-complex can be. For example:

- 1. Bing's theorem (1958): A closed 3-manifold M is diffeomorphic to S^3 if and only if every knot K in M is contained ("engulfed") in a 3-ball.
- "Disk busting curves" (Myers, 1982): For any compact 3-manifold *M* there is a knot *K* in *M* so that every essential sphere or disk meets *K*.

These theorem trivially hold when K is replaced with a 1-complex.

This talk is about another instance of such a problem.

Preliminary definition: a 1-spine or spine of a 3-manifold M:

(a) (The "rank" definition) A spine is a 1-complex in M of least first Betti number, surjecting onto $\pi_1(M)$.

[1-complexes are considered up to I - H moves (a.k.a. Whitehead moves); so they may be thought of as handlebodies.]

Figure: I-H

(b) A spine is a handlebody in M up to isotopy with the property that it is onto on π_1 but no smaller handlebody obtained from compression of a non-separating disk is onto.

We'll work with the (easier) rank definition:

(a) (The "rank" definition) A spine is a 1-complex in M of least first Betti number, surjecting onto $\pi_1(M)$.

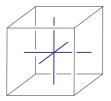


Figure: Example: the standard spine of the 3-torus.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The main notion of this talk:

Given a compact 3-manifold M, is there a link L in M so that whenever G is a spine in M and G is disjoint from L, then $\pi_1(G) \longrightarrow \pi_1(M \smallsetminus L)$ is injective?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

If there is such a link L, we call it *filling* in M.

The main notion of this talk:

Given a compact 3-manifold M, is there a link L in M so that whenever G is a spine in M and G is disjoint from L, then $\pi_1(G) \longrightarrow \pi_1(M \smallsetminus L)$ is injective?

If there is such a link L, we call it *filling* in M.

It is easy to find a filling 1-complex in any 3-manifold (a spine of a Heegaard handlebody):

Lemma Let $M = H \cup H^*$ be a Heegaard decomposition. Then given a spine $G \subset M$, any embedding $i: G \longrightarrow M \setminus H^*$ induces an injection $\pi_1 G \rightarrowtail \pi_1 (M \setminus H^*)$.

Lemma (filling 1-complex) Let $M = H \cup H^*$ be a Heegaard decomposition. Then given a spine $G \subset M$, any embedding $i: G \longrightarrow M \setminus H^*$ induces an injection $\pi_1 G \mapsto \pi_1(M \setminus H^*)$.

[Recall: A spine is a 1-complex in M of least first Betti number, surjecting onto $\pi_1(M)$.]

Proof. Let π be the image of $\pi_1(G)$ in $\pi_1(M \setminus H^*) \cong \pi_1(H)$.

Being a subgroup of a free group, π is free. Also $rank(\pi)$ is less than or equal $rank(\pi_1(G))$ since the map $\pi_1(G) \longrightarrow \pi$ is onto.

If that map has a kernel, by the Hopfian property of free groups $rank(\pi) < rank(\pi_1(G))$, contradicting minimal rank.

$$\pi_1(G) \longrightarrow \pi_1(M \smallsetminus H^*) \longrightarrow \pi_1(M)$$

Elementary observations:

• We can find a *knot* K giving π_1 -injectivity for a *fixed* embedding of a spine H (of a Heegaard handlebody):

Consider a minimal genus Heegaard decomposition $M^3 = H \cup H^*$, and let K be a diskbusting curve in the handlebody H^* . If $\pi_1 H \longrightarrow \pi_1(M \setminus K)$ had kernel, by the loop theorem there would be a compressing disk in H^* disjoint from K, a contradiction.

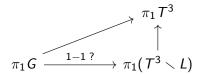
• The problem of finding a filling link L (so an *arbitrary* embedding of a spine is π_1 -injective in $M \setminus L$) has a trivial solution for genus one 3-manifolds:

 $M^3 = H \cup H^*$ where H, H^* are solid tori. A filling knot is given by the core circle of H^* .

This talk will focus on the case of M = the 3-torus T^3 .

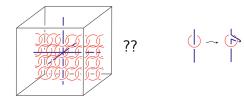
The problem of π_1 -injectivity of *any* embedding of a spine *G* in the complement of a given link *L* in T^3 is subtle.

 $\ker[\pi_1 G \longrightarrow \pi_1 T^3]$ is the commutator subgroup of the free group $\pi_1 G$ on 3 generators.



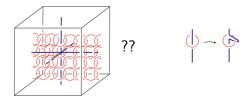
A standard classical tool for showing injectivity of maps of the free group is the Stallings theorem. However it does not directly apply here (as I will explain next).

The existence of a filling link in T^3 is an open question.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The existence of a filling link in T^3 is an open question.



We establish a weaker result:

A link $L \subset M$ is *k*-filling if whenever G is a spine in M and G is disjoint from L, the injectivity holds modulo the kth term of the lower central series: $\pi_1 G/(\pi_1 G)_k \rightarrow \pi_1 (M \smallsetminus L)/\pi_1 (M \smallsetminus L)_k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Freedman-K., 2020) For any $k \ge 2$ there exists a k-filling link in T^3 . It is interesting to note the similarity of the problem with the current state of knowledge of the topological 4-dimensional surgery theorem for free non-abelian groups.

The underlying technical statement, the π_1 -null disk lemma, also has a variable homotopy, and the question is whether the map on π_1 can be made *trivial*. One can solve the problem modulo any term of the lower central series, but the question itself is open.

Does γ bound a π_1 -null disk in a 4D thickening of the capped grope?

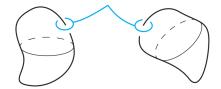
[Digression: the Stallings theorem]

Given a group A, its lower central series is defined inductively by $A_1 = A$, $A_k = [A_{k-1}, A]$; $A_{\omega} = \bigcap_{k=1}^{\infty} A_k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Stallings' theorem (1965) Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_1 and an epimorphism on H_2 . Then f induces an isomorphism $A/A_k \longrightarrow B/B_k$ for all finite k, and an injective map $A/A_\omega \longrightarrow B/B_\omega$. Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_1 and an epimorphism on H_2 . Then f induces an isomorphism $A/A_k \longrightarrow B/B_k$ for all finite k, and an injective map $A/A_\omega \longrightarrow B/B_\omega$.

Example: Consider $S^2 \coprod S^2 \hookrightarrow \mathbb{R}^4$.



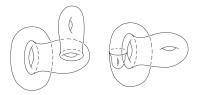
Take $A = \pi_1(S^1 \vee S^1)$, $B = \pi_1(\mathbb{R}^4 \smallsetminus (S^2 \sqcup S^2))$. It follows that $\pi_1(\mathbb{R}^4 \smallsetminus (S^2 \sqcup S^2))$ is isomorphic to the free group modulo any finite term of the l.c.s. Moreover, $\operatorname{Free}_2 \hookrightarrow \pi_1(\mathbb{R}^4 \smallsetminus (S^2 \sqcup S^2))$.

・ロト・西・・川川・・(日・・日・

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_1 and an epimorphism on H_2 . Then f induces an isomorphism $A/A_k \longrightarrow B/B_k$ for all finite k, and an injective map $A/A_\omega \longrightarrow B/B_\omega$.

Dwyer extended the theorem, relaxing the surjectivity to be onto H_2 modulo the *k*-th term of the *Dwyer filtration*:

$$\phi_n(A) = \ker[H_2(A) \longrightarrow H_2(A/A_n)]$$



(Geometrically $\phi_n(A)$ is represented by maps of gropes of height n-1.)

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_1 and an epimorphism on H_2 . Then f induces an isomorphism $A/A_k \longrightarrow B/B_k$ for all finite k, and an injective map $A/A_\omega \longrightarrow B/B_\omega$.

Dwyer extended the theorem, relaxing the surjectivity to be onto H_2 modulo the *k*-th term of the *Dwyer filtration*:

$$\phi_n(A) = \ker[H_2(A) \longrightarrow H_2(A/A_n)]$$

Dwyer's theorem (1975) Assuming that $f: A \longrightarrow B$ is an isomorphism on H_1 , f induces an isomorphism $A/A_{k+1} \longrightarrow B/B_{k+1}$ if and only if it induces an epimorphism $H_2(A)/\phi_k(A) \longrightarrow H_2(B)/\phi_k(B)$.

The Stallings theorem does *not* work in general for the *derived series*.

For a group B, its derived series is defined by $B^{(0)} = B$, $B^{(n+1)} = [B^{(n)}, B^{(n)}]$.

But there is a version of the theorem for the *torsion-free derived series* (a notion due to Harvey). A corollary when the domain is the free group:

Theorem (Cochran - Harvey, 2008) Suppose F is a free group, B is a finitely-related group, $\phi: F \longrightarrow B$ induces a monomorphism on $H_1(-;\mathbb{Q})$, and $H_2(B;\mathbb{Q})$ is spanned by $B^{(n)}$ -surfaces. Then ϕ induces a monomorphism $F/F^{(n+1)} \subset B/B^{(n+1)}$.

The notion of $B^{(n)}$ -surfaces (maps of surfaces into K(B, 1) where the image on π_1 is in $B^{(n)}$ gives an analogue of the Dwyer filtration in the derived setting. [Back to the existence of fillings links]

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_1 and an epimorphism on H_2 . Then f induces an isomorphism $A/A_k \longrightarrow B/B_k$ for all finite k.

The Stallings theorem does not apply to the map $\pi_1 G \longrightarrow \pi_1(T^3 \setminus L)$ because it is not surjective on second homology, and it is injective, rather than an isomorphism, on H_1 .

The complexity of the problem reflects the fact that the image of the map on π_1 depends on the embedding of the spine *G*.

[Back to the existence of fillings links]

Stallings' theorem Let $f: A \longrightarrow B$ be a group homomorphism inducing an isomorphism on H_1 and an epimorphism on H_2 . Then f induces an isomorphism $A/A_k \longrightarrow B/B_k$ for all finite k.

The Stallings theorem does not apply to the map $\pi_1 G \longrightarrow \pi_1(T^3 \setminus L)$ because it is not surjective on second homology, and it is injective, rather than an isomorphism, on H_1 .

The complexity of the problem reflects the fact that the image of the map on π_1 depends on the embedding of the spine *G*.

One may attempt to apply the Stallings theorem to the map $[\pi_1 G, \pi_1 G] \longrightarrow K$, where K is the kernel $\pi_1(T^3 \setminus L) \longrightarrow \pi_1(T^3)$. But injectivity of the infinitely generated first homology of the commutator subgroup is hard to establish when the embedding $G \longrightarrow T^3 \setminus L$ changes by an arbitrary homotopy. [Back to the main theorem]

A link $L \subset M$ is *k-filling* if whenever G is a spine in M and G is disjoint from L, the injectivity holds modulo the kth term of the lower central series: $\pi_1 G/(\pi_1 G)_k \rightarrow \pi_1 (M \smallsetminus L)/\pi_1 (M \smallsetminus L)_k$.

Theorem (Freedman-K., 2020)

For any $k \ge 2$ there exists a k-filling link in T^3 .

To prove the theorem we give an extension of the Stallings theorem using powers of the augmentation ideal $\mathbb{Z}[\mathbb{Z}^3]$, which applies uniformly to all embeddings $G \longrightarrow T^3 \smallsetminus L$, where the conclusion holds modulo a given term of the lower central series.

Main steps of the proof:

- An equivariant homological framework for analyzing the effect of homotopies of a spine in terms of powers of the augmentation ideal.
- Construction of links satisfying the homological conditions.
- An extension of the Stallings theorem, relating powers of the augmentation ideal to the lower central series.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Consider the *relative case* where the construction of *k*-filling links is easier to describe, $M = T^2 \times I$.

Fix the standard "relative spine" $G = (\{*\} \times I) \cup (T^2 \times \partial I)$, and the dual spine $G^* = S^1 \vee S^1 \subset T^2 \times \{1/2\}$. Their preimages in the universal cover:

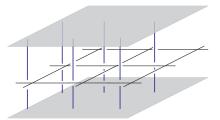


Figure: The preimage \widetilde{G} in the universal cover $\mathbb{R}^2 \times I$ of the standard relative spine $G = (\{*\} \times I) \cup (T^2 \times \partial I)$ consists of the top and bottom shaded panels union the vertical line segments. The mid-level horizontal grid is the preimage of the dual spine $S^1 \vee S^1 \subset T^2 \times \{1/2\}$.

The goal is to analyze the map on π_1 induced by inclusion when G^* is replaced by a link. In this figure the link *L* is obtained by "resolving" the dual spine G^* into two disjoint essential circles.

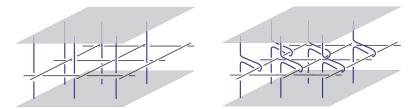


Figure: An example of a link $L \subset T^2 \times (0,1)$, and a finger move.

Different embeddings of the vertical interval are related by homotopies that may pass through link components and may be thought of as finger moves.

G: the standard embedding of the relative spine into $T^2 \times I$; \tilde{G} : its preimage in the universal cover. The notation G', \tilde{G}' will be used for an arbitrary embedding, i.e. related to the standard embedding by finger moves. The fundamental group of \tilde{G} , and also of \tilde{G}' is

$$\mathcal{K} := \ker[\mathbb{Z}^2 * \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2].$$

Let L be any link in $T^2 \times (0, 1)$ whose components are all essential in $\pi_1(T^2)$, and let \tilde{L} denote its preimage: a \mathbb{Z}^2 -equivariant collection of lines in the universal cover.

Note: $\pi_1(\mathbb{R}^2 \times I \smallsetminus \widetilde{L})$ is free.

The starting point is to analyze the injectivity of the map α in the commutative triangle

The focus is on the map

$$K \longrightarrow \pi_1(\mathbb{R}^2 \times I \smallsetminus \widetilde{L}). \tag{1}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Denote by J the first homology of \widetilde{G} , J = K/[K, K], and let H denote $H_1(\mathbb{R}^2 \times I \smallsetminus \widetilde{L})$. Since $\pi_1(\mathbb{R}^2 \times I \smallsetminus \widetilde{L})$ is a free group, if $J \longrightarrow H$ were injective, the Stallings theorem would imply that the map

$$\mathcal{K} \longrightarrow \pi_1(\mathbb{R}^2 \times I \smallsetminus \widetilde{L}). \tag{2}$$

is injective (for the standard spine G).

Denote the map $J \longrightarrow H$ by Lk. The group H is generated by meridians m(I), one for each line I in \widetilde{L} . The map Lk is given by \mathbb{Z}^2 -equivariant linking, sending a 1-cycle c in \widetilde{G} to a linear combination of meridians $\sum_i a_i m(I_i)$, where the coefficient $a_i \in \mathbb{Z}[\mathbb{Z}^2]$ is the linking "number" of c and I_i . Since there is a single generator m(I) for each line I, when there is no risk of confusion we will write

$$Lk(c) = \sum_{i} a_i l_i.$$

As a module over $\mathbb{Z}[\mathbb{Z}^2]$, *J* is generated by the boundaries of two vertical "plaquettes", denoted P_x and P_y . Think of elements of *J* as linear combinations of these plaquettes, with coefficients in $\mathbb{Z}[\mathbb{Z}^2]$. The translations in the directions perpendicular to P_x , P_y are denoted respectively by *x*, *y*. Note that the relation

$$(1-x)P_x + (1-y)P_y = 0$$
 (3)

holds in J.

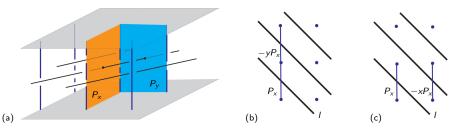


Figure:

(a): Plaquettes P_x, P_y generating J over Z[Z²].
(b), (c): Projection onto R²; dots represent the preimage of the edge {*} × I of the relative spine.

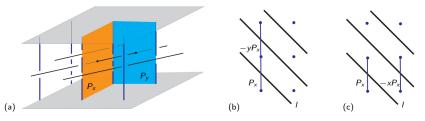


Figure:

(a): Plaquettes P_x, P_y generating J over ℤ[ℤ²].
(b), (c): Projection onto ℝ²; dots represent the preimage of the edge {*} × I of the relative spine.

The figure shows the case when the link *L* has a single component, the (1, 1)-curve in the torus $T^2 \times \{1/2\}$. In this case the two translations act the same way on \tilde{L} : for any line *I*, xI = yI. (b, c) show the projection onto \mathbb{R}^2 of two elements of *J*: $(1 - y)P_x$, $(1 - x)P_x$. Denoting the line intersecting the plaquette P_x by I_0 , we have

$$Lk((1-y)P_x) = (1-y) I_0, \ Lk((1-x)P_x) = (1-x) I_0.$$

Since $(1 - y) l_0 = (1 - x) l_0$ in this example, the map $J \longrightarrow H$ is not injective.

Consider elements of $\mathbb{Z}[\mathbb{Z}^2]$ as Laurent polynomials in two commuting variables x, y. Let I denote the augmentation ideal of $\mathbb{Z}[\mathbb{Z}^2]$. The following lemma provides a convenient tool for analyzing the injectivity of the linking map for an arbitrary spine, modulo powers of the augmentation ideal.

Lemma

lf

$$i_k: I^k J/I^{k+1} J \longrightarrow I^k H/I^{k+1} H$$

is injective for some k, then for any relative spine $G' \subset T^3 \smallsetminus L$,

$$i'_k \colon I^k J' / I^{k+1} J' \longrightarrow I^k H / I^{k+1} H$$

is injective. Here i_k, i'_k are the map induced by the inclusions of G, G' into $T^3 \setminus L$.

Lemma

For any k there exists a link $L_k \subset T^2 \times I$ such that $i_j : I^j J/I^{j+1} J \longrightarrow I^j H/I^{j+1} H$ is injective for all $1 \le j \le k$.

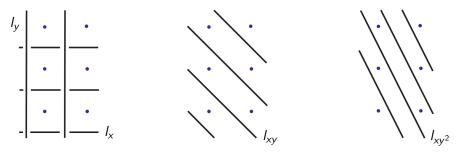


Figure: The preimage of the curves in $T^2 \times I$ in the universal cover: projection of $\mathbb{R}^2 \times I$ onto \mathbb{R}^2 is shown; the dots represent the preimage of the edge $\{*\} \times I$ of the relative spine.

イロト 不得 トイヨト イヨト

Sac

Powers of the augmentation ideal and the lower central series

Let $i': G' \longrightarrow T^3 \smallsetminus L$ denote any spine homotopic to the standard spine G, where L is a link whose components are all essential in $\pi_1 T^3$.

Recall the notation:

F denotes $\pi_1 G'$, the free group on three generators, and

$$K := \ker \left[\, \pi_1(\, T^3 \smallsetminus L) \longrightarrow \pi_1 \, T^3 \, \right]$$

is isomorphic to $\pi_1(\mathbb{R}^3 \smallsetminus \widetilde{L})$, a free group. J' denotes the first homology of the preimage $\widetilde{G'}$ of G' in \mathbb{R}^3 and H denotes $H_1(\mathbb{R}^3 \smallsetminus \widetilde{L})$,

$$J' \cong F_2/[F_2, F_2], \ H \cong K/[K, K].$$

J' and H are considered as modules over $\mathbb{Z}[\mathbb{Z}^3]$, and I^k denotes the k-th power of the augmentation ideal I of $\mathbb{Z}[\mathbb{Z}^3]$.

F denotes $\pi_1 G'$, the free group on three generators, and

$$K := \ker \left[\pi_1(T^3 \smallsetminus L) \longrightarrow \pi_1 T^3 \right]$$

is isomorphic to $\pi_1(\mathbb{R}^3 \setminus \widetilde{L})$, a free group. J' is the first homology of the preimage \widetilde{G}' of G' in \mathbb{R}^3 and H denotes $H_1(\mathbb{R}^3 \setminus \widetilde{L})$,

$$J' \cong F_2/[F_2, F_2], \ H \cong K/[K, K].$$

J' and H are considered as modules over $\mathbb{Z}[\mathbb{Z}^3]$, and I^k denotes the k-th power of the augmentation ideal I of $\mathbb{Z}[\mathbb{Z}^3]$.

The main result relating the filtrations of J', H in terms of powers of the augmentation ideal and the lower central series:

Lemma. Suppose $J'/I^k J' \longrightarrow H/I^k H$ is injective for some k. Then the map

$$F/F_{k+1} \longrightarrow \pi_1(M \smallsetminus L)/\pi_1(M \smallsetminus L)_{k+1}$$

is injective.

Lemma. Suppose $J'/I^k J' \longrightarrow H/I^k H$ is injective for some k. Then the map

$$F/F_{k+1} \longrightarrow \pi_1(M \smallsetminus L)/\pi_1(M \smallsetminus L)_{k+1}$$

is injective.

Consider

$$\pi := \text{image} \left[F \stackrel{i'_*}{\longrightarrow} \pi_1(T^3 \smallsetminus L) \right]. \tag{4}$$

The proof is by induction on k; the inductive assumption is that $F/F_k \longrightarrow \pi/\pi_k$ is an isomorphism. The strategy is motivated by the proof of the Stallings theorem.

Note that both F_2 and π_2 are free groups but the map $F_2 \longrightarrow \pi_2$ is not an isomorphism on H_1 . Being an isomorphism on H_1 is equivalent to $J'/I^k J' \cong \overline{H}/I^k \overline{H}$ for all k. Rather the lemma has a weaker assumption, $J'/I^k J' \cong \overline{H}/I^k \overline{H}$ for some fixed k.

Let ϕ_k denote the inclusion $F_k \subset F_2$ composed with the quotient map $F_2 \longrightarrow F_2/[F_2, F_2]$, and consider its kernel:

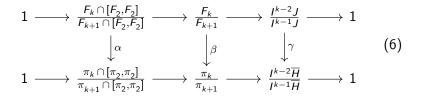
$$1 \longrightarrow F_k \cap [F_2, F_2] \longrightarrow F_k \stackrel{\phi_k}{\longrightarrow} F_2/[F_2, F_2]$$
(5)

Denote the generators of F by x, y, z; the same letters will denote the covering translations of \mathbb{R}^3 .

A basic example, the triple commutator $[[x, y], z] \in F_3$. The map ϕ_k is implemented by first expanding $[[x, y], z] = [x, y] \cdot ([x, y]^{-1})^z$. The first factor is mapped to the boundary of the plaquette P_z . The second factor is mapped to the boundary of this plaquette with the opposite orientation and shifted one unit up, $-zP_z$. So $\phi_3([[x, y], z]) = (1 - z)P_z$.

The image of ϕ_k is $I^{k-2}J \subset J$.

The main ingredient in the proof of the inductive step:



Compare with the Stallings' proof:

More recently Christopher Leininger and Alan Reid proved:

Theorem

Let M be a closed orientable 3-manifold such that $\pi_1(M)$ has rank 2. Then M contains a filling hyperbolic link.

The proof relies on work of Jaco-Shalen:

Let $L \subset M$ be a hyperbolic link with at least 3 components.

The possibilities for the image H of $\pi_1(G)$ in $\pi_1(M \setminus L)$ are:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- 1. H is free of rank 2, or
- 2. *H* is free abelian of rank \leq 2, or
- 3. *H* has finite index in $\pi_1(M \setminus L)$.