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Motivation.

A general theme: links (or knots) can be built in a general
3-manifold which in a sense are as “robust” as an embedded
1-complex can be. For example:

1. Bing’s theorem (1958): A closed 3-manifold M is
diffeomorphic to S3 if and only if every knot K in M is
contained (“engulfed”) in a 3-ball.

2. “Disk busting curves” (Myers, 1982): For any compact
3-manifold M there is a knot K in M so that every essential
sphere or disk meets K .

(Suitable versions of these questions are open in higher
dimensions.)



Motivation.

A general theme: links (or knots) can be built in a general
3-manifold which in a sense are as “robust” as an embedded
1-complex can be. For example:

1. Bing’s theorem (1958): A closed 3-manifold M is
diffeomorphic to S3 if and only if every knot K in M is
contained (“engulfed”) in a 3-ball.

2. “Disk busting curves” (Myers, 1982): For any compact
3-manifold M there is a knot K in M so that every essential
sphere or disk meets K .

These theorem trivially hold when K is replaced with a 1-complex.

This talk is about another instance of such a problem.



Preliminary definition: a 1-spine or spine of a 3-manifold M:

(a) (The “rank” definition) A spine is a 1-complex in M of least
first Betti number, surjecting onto π1(M).

[1-complexes are considered up to I − H moves (a.k.a.
Whitehead moves); so they may be thought of as
handlebodies.]

Figure: I-H

(b) A spine is a handlebody in M up to isotopy with the property
that it is onto on π1 but no smaller handlebody obtained from
compression of a non-separating disk is onto.



We’ll work with the (easier) rank definition:

(a) (The “rank” definition) A spine is a 1-complex in M of least
first Betti number, surjecting onto π1(M).

Figure: Example: the standard spine of the 3-torus.



The main notion of this talk:

Given a compact 3-manifold M, is there a link L in M so that
whenever G is a spine in M and G is disjoint from L, then
π1(G ) −→ π1(M r L) is injective?

If there is such a link L, we call it filling in M.



The main notion of this talk:

Given a compact 3-manifold M, is there a link L in M so that
whenever G is a spine in M and G is disjoint from L, then
π1(G ) −→ π1(M r L) is injective?

If there is such a link L, we call it filling in M.

It is easy to find a filling 1-complex in any 3-manifold (a spine of a
Heegaard handlebody):

Lemma Let M = H ∪ H∗ be a Heegaard decomposition. Then
given a spine G ⊂ M, any embedding i : G −→ M r H∗ induces
an injection π1G � π1(M r H∗).



Lemma (filling 1-complex) Let M = H ∪ H∗ be a Heegaard
decomposition. Then given a spine G ⊂ M, any embedding
i : G −→ M r H∗ induces an injection π1G � π1(M r H∗).

[Recall: A spine is a 1-complex in M of least first Betti number,
surjecting onto π1(M).]

Proof. Let π be the image of π1(G ) in π1(M r H∗) ∼= π1(H).

Being a subgroup of a free group, π is free. Also rank(π) is less
than or equal rank(π1(G )) since the map π1(G ) −→ π is onto.

If that map has a kernel, by the Hopfian property of free groups
rank(π) < rank(π1(G )), contradicting minimal rank.

π1(G ) −→ π1(M r H∗) −→ π1(M)



Elementary observations:

• We can find a knot K giving π1-injectivity for a fixed embedding
of a spine H (of a Heegaard handlebody):

Consider a minimal genus Heegaard decomposition M3 = H ∪ H∗,
and let K be a diskbusting curve in the handlebody H∗. If
π1H −→ π1(M r K ) had kernel, by the loop theorem there would
be a compressing disk in H∗ disjoint from K , a contradiction.

• The problem of finding a filling link L (so an arbitrary embedding
of a spine is π1-injective in M r L) has a trivial solution for genus
one 3-manifolds:

M3 = H ∪ H∗ where H,H∗ are solid tori. A filling knot is given by
the core circle of H∗.



This talk will focus on the case of M = the 3-torus T 3.

The problem of π1-injectivity of any embedding of a spine G in the
complement of a given link L in T 3 is subtle.

ker[π1G −→ π1T
3] is the commutator subgroup of the free group

π1G on 3 generators.

π1T
3

π1G π1(T 3 r L)
1−1 ?

A standard classical tool for showing injectivity of maps of the free
group is the Stallings theorem. However it does not directly apply
here (as I will explain next).



The existence of a filling link in T 3 is an open question.

??



The existence of a filling link in T 3 is an open question.

??

We establish a weaker result:

A link L ⊂ M is k-filling if whenever G is a spine in M and G is
disjoint from L, the injectivity holds modulo the kth term of the
lower central series: π1G/(π1G )k � π1(M r L)/π1(M r L)k .

Theorem (Freedman-K., 2020)
For any k ≥ 2 there exists a k-filling link in T 3.



It is interesting to note the similarity of the problem with the
current state of knowledge of the topological 4-dimensional surgery
theorem for free non-abelian groups.

The underlying technical statement, the π1-null disk lemma, also
has a variable homotopy, and the question is whether the map on
π1 can be made trivial. One can solve the problem modulo any
term of the lower central series, but the question itself is open.

γ

Does γ bound a π1-null disk in a 4D thickening of the capped
grope?



[Digression: the Stallings theorem]

Given a group A, its lower central series is defined inductively by
A1 = A, Ak = [Ak−1,A]; Aω = ∩∞k=1Ak .

Stallings’ theorem (1965) Let f : A −→ B be a group
homomorphism inducing an isomorphism on H1 and an
epimorphism on H2. Then f induces an isomorphism
A/Ak −→ B/Bk for all finite k , and an injective map
A/Aω −→ B/Bω.



Stallings’ theorem Let f : A −→ B be a group homomorphism
inducing an isomorphism on H1 and an epimorphism on H2. Then
f induces an isomorphism A/Ak −→ B/Bk for all finite k, and an
injective map A/Aω −→ B/Bω.

Example: Consider S2
∐

S2 ↪→ R4.

Take A = π1(S1 ∨ S1),B = π1(R4 r (S2 t S2)). It follows that
π1(R4 r (S2 t S2)) is isomorphic to the free group modulo any
finite term of the l.c.s. Moreover, Free2 ↪→ π1(R4 r (S2 t S2)).



Stallings’ theorem Let f : A −→ B be a group homomorphism
inducing an isomorphism on H1 and an epimorphism on H2. Then
f induces an isomorphism A/Ak −→ B/Bk for all finite k, and an
injective map A/Aω −→ B/Bω.

Dwyer extended the theorem, relaxing the surjectivity to be onto
H2 modulo the k-th term of the Dwyer filtration:

φn(A) = ker[H2(A) −→ H2(A/An)]

(Geometrically φn(A) is represented by maps of gropes of height
n − 1.)



Stallings’ theorem Let f : A −→ B be a group homomorphism
inducing an isomorphism on H1 and an epimorphism on H2. Then
f induces an isomorphism A/Ak −→ B/Bk for all finite k, and an
injective map A/Aω −→ B/Bω.

Dwyer extended the theorem, relaxing the surjectivity to be onto
H2 modulo the k-th term of the Dwyer filtration:

φn(A) = ker[H2(A) −→ H2(A/An)]

Dwyer’s theorem (1975) Assuming that f : A −→ B is an
isomorphism on H1, f induces an isomorphism
A/Ak+1 −→ B/Bk+1 if and only if it induces an epimorphism
H2(A)/φk(A) −→ H2(B)/φk(B).



The Stallings theorem does not work in general for the derived
series.

For a group B, its derived series is defined by
B(0) = B, B(n+1) = [B(n),B(n)].

But there is a version of the theorem for the torsion-free derived
series (a notion due to Harvey). A corollary when the domain is
the free group:

Theorem (Cochran - Harvey, 2008) Suppose F is a free group, B is
a finitely-related group, φ : F −→ B induces a monomorphism on
H1(−;Q), and H2(B;Q) is spanned by B(n)-surfaces. Then φ
induces a monomorphism F/F (n+1) ⊂ B/B(n+1).

The notion of B(n)-surfaces (maps of surfaces into K (B, 1) where
the image on π1 is in B(n) gives an analogue of the Dwyer
filtration in the derived setting.



[Back to the existence of fillings links]

Stallings’ theorem Let f : A −→ B be a group homomorphism
inducing an isomorphism on H1 and an epimorphism on H2. Then
f induces an isomorphism A/Ak −→ B/Bk for all finite k.

The Stallings theorem does not apply to the map
π1G −→ π1(T 3 r L) because it is not surjective on second
homology, and it is injective, rather than an isomorphism, on H1.

The complexity of the problem reflects the fact that the image of
the map on π1 depends on the embedding of the spine G .



[Back to the existence of fillings links]

Stallings’ theorem Let f : A −→ B be a group homomorphism
inducing an isomorphism on H1 and an epimorphism on H2. Then
f induces an isomorphism A/Ak −→ B/Bk for all finite k.

The Stallings theorem does not apply to the map
π1G −→ π1(T 3 r L) because it is not surjective on second
homology, and it is injective, rather than an isomorphism, on H1.

The complexity of the problem reflects the fact that the image of
the map on π1 depends on the embedding of the spine G .

One may attempt to apply the Stallings theorem to the map
[π1G , π1G ] −→ K , where K is the kernel π1(T 3 r L) −→ π1(T 3).
But injectivity of the infinitely generated first homology of the
commutator subgroup is hard to establish when the embedding
G −→ T 3 r L changes by an arbitrary homotopy.



[Back to the main theorem]

A link L ⊂ M is k-filling if whenever G is a spine in M and G is
disjoint from L, the injectivity holds modulo the kth term of the
lower central series: π1G/(π1G )k � π1(M r L)/π1(M r L)k .

Theorem (Freedman-K., 2020)
For any k ≥ 2 there exists a k-filling link in T 3.

To prove the theorem we give an extension of the Stallings
theorem using powers of the augmentation ideal Z[Z3], which
applies uniformly to all embeddings G −→ T 3 r L, where the
conclusion holds modulo a given term of the lower central series.



Main steps of the proof:

• An equivariant homological framework for analyzing the effect
of homotopies of a spine in terms of powers of the
augmentation ideal.

• Construction of links satisfying the homological conditions.

• An extension of the Stallings theorem, relating powers of the
augmentation ideal to the lower central series.



Consider the relative case where the construction of k-filling links
is easier to describe, M = T 2 × I .

Fix the standard “relative spine” G = ({∗} × I ) ∪ (T 2 × ∂I ), and
the dual spine G ∗ = S1 ∨ S1 ⊂ T 2 × {1/2}. Their preimages in
the universal cover:

Figure: The preimage G̃ in the universal cover R2 × I of the standard
relative spine G = ({∗} × I ) ∪ (T 2 × ∂I ) consists of the top and bottom
shaded panels union the vertical line segments. The mid-level horizontal
grid is the preimage of the dual spine S1 ∨ S1 ⊂ T 2 × {1/2}.



The goal is to analyze the map on π1 induced by inclusion when
G ∗ is replaced by a link. In this figure the link L is obtained by
“resolving” the dual spine G ∗ into two disjoint essential circles.

Figure: An example of a link L ⊂ T 2 × (0, 1), and a finger move.

Different embeddings of the vertical interval are related by
homotopies that may pass through link components and may be
thought of as finger moves.



G : the standard embedding of the relative spine into T 2× I ; G̃ : its
preimage in the universal cover. The notation G ′, G̃ ′ will be used
for an arbitrary embedding, i.e. related to the standard embedding
by finger moves. The fundamental group of G̃ , and also of G̃ ′ is

K := ker[Z2 ∗ Z2 −→ Z2].

Let L be any link in T 2 × (0, 1) whose components are all essential
in π1(T 2), and let L̃ denote its preimage: a Z2-equivariant
collection of lines in the universal cover.

Note: π1(R2 × I r L̃) is free.



The starting point is to analyze the injectivity of the map α in the
commutative triangle

π1(G ) π1(T 2 × I r L)

π1(T 2 × I )

α

β
γ

The focus is on the map

K −→ π1(R2 × I r L̃). (1)



Denote by J the first homology of G̃ , J = K/[K ,K ], and let H
denote H1(R2 × I r L̃). Since π1(R2 × I r L̃) is a free group, if
J −→ H were injective, the Stallings theorem would imply that the
map

K −→ π1(R2 × I r L̃). (2)

is injective (for the standard spine G ).

Denote the map J −→ H by Lk. The group H is generated by
meridians m(l), one for each line l in L̃. The map Lk is given by
Z2-equivariant linking, sending a 1-cycle c in G̃ to a linear
combination of meridians

∑
i ai m(li ), where the coefficient

ai ∈ Z[Z2] is the linking “number” of c and li . Since there is a
single generator m(l) for each line l , when there is no risk of
confusion we will write

Lk(c) =
∑
i

ai li .



As a module over Z[Z2], J is generated by the boundaries of two
vertical “plaquettes”, denoted Px and Py . Think of elements of J
as linear combinations of these plaquettes, with coefficients in
Z[Z2]. The translations in the directions perpendicular to Px ,Py

are denoted respectively by x , y . Note that the relation

(1− x)Px + (1− y)Py = 0 (3)

holds in J.

Px

Py

(a)

Px

−yPx

Px −xPx

(b) (c)l l

Figure:
(a): Plaquettes Px ,Py generating J over Z[Z2].
(b), (c): Projection onto R2; dots represent the preimage of the edge
{∗} × I of the relative spine.



Px

Py

(a)

Px

−yPx

Px −xPx

(b) (c)l l

Figure:
(a): Plaquettes Px ,Py generating J over Z[Z2].
(b), (c): Projection onto R2; dots represent the preimage of the edge
{∗} × I of the relative spine.

The figure shows the case when the link L has a single component,
the (1, 1)-curve in the torus T 2 × {1/2}. In this case the two
translations act the same way on L̃: for any line l , xl = yl . (b, c)
show the projection onto R2 of two elements of J: (1− y)Px ,
(1− x)Px . Denoting the line intersecting the plaquette Px by l0,
we have

Lk((1− y)Px) = (1− y) l0, Lk((1− x)Px) = (1− x) l0.

Since (1− y) l0 = (1− x) l0 in this example, the map J −→ H is
not injective.



Consider elements of Z[Z2] as Laurent polynomials in two
commuting variables x , y . Let I denote the augmentation ideal of
Z[Z2]. The following lemma provides a convenient tool for
analyzing the injectivity of the linking map for an arbitrary spine,
modulo powers of the augmentation ideal.

Lemma
If

ik : I kJ/I k+1J −→ I kH/I k+1H

is injective for some k , then for any relative spine G ′ ⊂ T 3 r L,

i ′k : I kJ ′/I k+1J ′ −→ I kH/I k+1H

is injective. Here ik , i
′
k are the map induced by the inclusions of

G ,G ′ into T 3 r L.



Lemma
For any k there exists a link Lk ⊂ T 2 × I such that
ij : I jJ/I j+1J −→ I jH/I j+1H is injective for all 1 ≤ j ≤ k.

lx

ly

lxy lxy2

Figure: The preimage of the curves in T 2 × I in the universal cover:
projection of R2 × I onto R2 is shown; the dots represent the preimage of
the edge {∗} × I of the relative spine.



Powers of the augmentation ideal and the lower central series

Let i ′ : G ′ −→ T 3 r L denote any spine homotopic to the standard
spine G , where L is a link whose components are all essential in
π1T

3.

Recall the notation:
F denotes π1G

′, the free group on three generators, and

K := ker [π1(T 3 r L) −→ π1T
3 ]

is isomorphic to π1(R3 r L̃), a free group. J ′ denotes the first
homology of the preimage G̃ ′ of G ′ in R3 and H denotes
H1(R3 r L̃),

J ′ ∼= F2/[F2,F2], H ∼= K/[K ,K ].

J ′ and H are considered as modules over Z[Z3], and I k denotes the
k-th power of the augmentation ideal I of Z[Z3].



F denotes π1G
′, the free group on three generators, and

K := ker [π1(T 3 r L) −→ π1T
3 ]

is isomorphic to π1(R3 r L̃), a free group. J ′ is the first homology
of the preimage G̃ ′ of G ′ in R3 and H denotes H1(R3 r L̃),

J ′ ∼= F2/[F2,F2], H ∼= K/[K ,K ].

J ′ and H are considered as modules over Z[Z3], and I k denotes the
k-th power of the augmentation ideal I of Z[Z3].

The main result relating the filtrations of J ′, H in terms of powers
of the augmentation ideal and the lower central series:

Lemma. Suppose J ′/I kJ ′ −→ H/I kH is injective for some k. Then
the map

F/Fk+1 −→ π1(M r L)/π1(M r L)k+1

is injective.



Lemma. Suppose J ′/I kJ ′ −→ H/I kH is injective for some k. Then
the map

F/Fk+1 −→ π1(M r L)/π1(M r L)k+1

is injective.

Consider

π := image [F
i ′∗−→ π1(T 3 r L) ]. (4)

The proof is by induction on k ; the inductive assumption is that
F/Fk −→ π/πk is an isomorphism. The strategy is motivated by
the proof of the Stallings theorem.

Note that both F2 and π2 are free groups but the map F2 −→ π2
is not an isomorphism on H1. Being an isomorphism on H1 is
equivalent to J ′/I kJ ′ ∼= H/I kH for all k . Rather the lemma has a
weaker assumption, J ′/I kJ ′ ∼= H/I kH for some fixed k .



Let φk denote the inclusion Fk ⊂ F2 composed with the quotient
map F2 −→ F2/[F2,F2], and consider its kernel:

1 −→ Fk ∩ [F2,F2] −→ Fk
φk−→ F2/[F2,F2] (5)

Denote the generators of F by x , y , z ; the same letters will denote
the covering translations of R3.

A basic example, the triple commutator [[x , y ], z ] ∈ F3. The map
φk is implemented by first expanding
[[x , y ], z ] = [x , y ] · ([x , y ]−1)z . The first factor is mapped to the
boundary of the plaquette Pz . The second factor is mapped to the
boundary of this plaquette with the opposite orientation and
shifted one unit up, −zPz . So φ3([[x , y ], z ]) = (1− z)Pz .

The image of φk is I k−2J ⊂ J.



The main ingredient in the proof of the inductive step:

1
Fk ∩ [F2,F2]

Fk+1 ∩ [F2,F2]
Fk

Fk+1

I k−2J
I k−1J

1

1
πk ∩ [π2,π2]
πk+1 ∩ [π2,π2]

πk
πk+1

I k−2H
I k−1H

1

α β γ (6)

Compare with the Stallings’ proof:



More recently Christopher Leininger and Alan Reid proved:

Theorem
Let M be a closed orientable 3-manifold such that π1(M) has rank
2. Then M contains a filling hyperbolic link.

The proof relies on work of Jaco-Shalen:

Let L ⊂ M be a hyperbolic link with at least 3 components.

The possibilities for the image H of π1(G ) in π1(M \ L) are:

1. H is free of rank 2, or

2. H is free abelian of rank ≤ 2, or

3. H has finite index in π1(M \ L).


	

