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NOTES ON ENDS OF HYPERBOLIC 3-MANIFOLDS

MICHAEL H. FREEDMAN
VYACHESLAV S. KRUSHKAL

Lecture 1. The central theme of these notes is a question of Marden [M]: Do all hyperbolic -
3-manifolds with finitely-generated fundamental group have product ends?

An end is said to have a product structure {or to be tame) if it is homeomorphic to
(0 end) x Ry. Marden’s question may be reformulated as follows: Is every hyperbolic
3-manifold M with finitely-generated fundamental group homeomorphic to the interior of
a compact 3-manifold?

- By work of Canary [C], the afﬁrmatwe answer to Marden’s question for a finitely-
generated Kleinian group G 2 7y (M) implies Ahlfors’ conjecture [A] for G: The limit set
A is either the whole 2-sphere at infinity or has Lebesgue measure zero.

Note that hyperbolic 3-manifolds with finitely-generated fundamental | group have ﬁmtely
many ends. (ThlS is not true in general for d1men51ons greater than three. ) To prove this, .
recall

Scott core theorem [S]. Let M be a hyperbolic 3-mamfold with ﬁmtely generated fun-
damental group. Then there exists a compact, codirnension zero submamfold C of M such
that the inclusion map C — M induces an isomorphism of fundamental groups.

In particular, =;(M) is finitely presented, and Ha(M;Z) = Hy(m(M);Z) is finitely
generated. Let (H!'/*(M) denote the homology of locally-finite chains on M. By Poincaré

duality H; (M) = H?(M) is also finitely generated. Considering lines exiting through

various ends of M shows that k ends of M provide (k — 1) linearly independent elements

of H; ok (M), hence M has finitely many ends. ‘
The classes of groups for which Marden’s conjecture has been verified are:

(1) Fuchsian groups {2-dimensional case): G C PSL(2,R} C PSL(2,C).
A fundamental domain for the action of G on-HP (Poincaré model) is an “apple
. core”, bounded by a finite number of totally geodesic planes orthogonal to the.
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standard H? C HP. It is easy to visualize a product structure on H*/G:
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FIGURE 1.1

(2} Quasi-Fuchsian groups. The limit sets of these groups are quasi-circles; fundamen-
tal domains have more bites taken out of the “apple core” but are still finite-sided
convex polyhedra.

(3) Certain limits of geometrically-finite groups analyzed by Thurston [Th]. -

(4) Indecomposable groups (Bonahon [B]). Recall that group G is called indecompos-
able if G # Z, and G 2 A * B implies one of the groups A and B is trivial.

Notice that if m; (M) is indecomposable, Scott core C' of M has a special feature: M ~ C
is a homotopy product (8C) x R4. To prove this, first observe that dC is incompressible in
C. We may assume, using induction, that M —C is connected. Suppose the homomorphism
induced by inclusion 7 (8C) — m(C) is not injective. By the loop theorem and Dehn’s
lemma there exists an embedded disk (D, 8D) C (C, 8C) with 8D essential in 9C. The disk
D cannot be separating, since it would provide a free decomposition of m (C) = m(M). In
the non-separating case, since m (M) 2 Z, we can take a band sum of two parallel copies
of D to get a separating disk D' C C with 8D’ still essential in dC. This contradicts the
assumption that x(0C) — 71{C) is not injective.

By Seifert-van Kampen’s theorem m (M) is the pushout:

m(0C) —=— mm(C)

d [
m(M~C) —— m(M)
Since « is injective and 8 is an isomorphism, « is also an isomorphism. This shows that
M — C is a homotopy product (9C) x R4.

This is not necessarily the case when 71 (M) is decomposable.r For example, let M be
a genus two handlebody. Then both the standard wedge of two circles and a knotted one
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are Scott cores of M.
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FIGURE 1.2

The idea of ‘Thurston and Bonahon in the indecomposable case—to find a sequence of
pleated surfaces, homeomorphic to 8C, exiting the end of M—does not work in the de-
composable case for a knotted core as in the example above. One would like to find a
“natural” geometric core to avoid this problem. _

We will now state two geometric reformulations of the condition that the ends of M are

tame.

Fix a finitely-generated Kleinian group G = n; (M) and let O denote the orbit G(z) of
a point z € H.
Theorem 1.1. [F] The following two conditions are equivalent:

(a) For any r there exists a (sufficiently large) R such that every arc in
(H® \ N.(0),0N,.(O)) can be deformed, relative to its ends, into
(Nr(O) ~ N.(0),0N.(0)), where N, denotes the neighborhood of radius r.

(b) All ends of M are tame.

' To understand condition (a), note that for a simple closed curve K in §%, knottedness
is the failure of the relative fundamental group m (S < K, 8) to be trivial. jFrom this
perspective the negation of (a) means that the orbit of G is coarsely knotied at all size

scales. -

-

‘FIGURE 1.3

Before giving the proof of Theorem 1.1, we recall
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Tucker’s Theorem. [T] Let M be a hyperbolic S-manifold with finitely-generated funda-
mental group. Then all ends of M are tame if and only if 7 (M ~\ K) is finitely generated
for all compact submanifolds K C M.

Proof of Theorem 1.1. Let % be the image of z in M = HP/G. Pick a basepoint
p € &(M ~ N.(3)) and fix a preimage p € 8(N.(0)) of p. The fundamental group
m1(M ~ N.(Z),p) may be interpreted as classes of paths in the universal cover, start-
'ing at p and ending at various lifts of p. The multiplication is given by composition of
paths, using covering translations. By Tucker’s theorem M has product ends if and only
if (M ~ N.()) is finitely generated for all r. This is equivalent to finding a set of
generators in the universal cover within a bounded distance from N.(0). O

Another sufficient condition for the existence of a product structure is the following
“Elder Sibling Property”.

Consider the case when the dormain of discontinuity §2¢ is non-empty. Let z € {}g and
let A C H? be a horoball based at z. Consider the orbit G(k) in the upper-half space model
where « is the point at infinity. Each horoball in the orbit meets only finitely many of its
G-translates, and for h sufficiently large the union of the orbit UG(k) is path-connected.

1.2. We say that G satisfies the Elder Sibling Property (ESP) if there exists a horoball
h based at z € Qg such that in the upper-half space model with z the point at infinity,
each horoball in G(h) of finite (Euclidean) size meets a larger or infinite one.
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FiGURE 1.4

Let C denote H? ~ (UG(h)).
Theorem 1.3. | F] Suppose G & n1(M) satisfies ESP. Then m,(C,8C) is trivial, and all .
ends of M are tame,

The idea of the proof is to use Tucker’s theorem with the image of A in M thought
of as an almost compact set. In fact, h touches 52 at a point of dlSCOl’ltlIlUlty where its
behavior is well understood.



Sketch of the proof. Consider the Morse function on C, given by the height in the upper-
half space model. There are six types of critical points that may occur on C—each one
has one of three Morse indices 0, 1, 2 and one of two signs + or —, according to whether the
interior of C' lies above or below 8C at the critical point. It follows from the geometry of
C, that points of index (+,2) do not occur. The only possibility for = (C, 8C) to be non-

trivial is that there are critical points of index (+,0), which introduce at these respective -

height levels new components of C, which are then connected in a non-trivial way at points
of index (—,1). This possibility is eliminated by the ESP assumption, since each (+,0)
point is canceled by a corresponding saddle point. O



Lecture 2. A new extension of the Kneser-Haken finiteness principle to manifolds with
boundary.

Let G 2 m1(M) be a free finitely-generated Kleinian group, for example the free group
on two generators. Let z,y be a free basis of G. Similarly to representing an essential
element of a fundamental group by a least-length geodesic, the chosen basis of G may be
represented by a least length web (wedge of two circles) W. Let W C H® denote the
preimage of W in the universal cover.

Lemma 2.1. = (H? ~ W) i3 a free group.
Proof. Let z be a vertex of W, and let vq, ..., v4 denote the unit tangent vectors at = to the

4
four edges of 7% containing x. It follows from the choice of W that E v; = 0 —otherwise -

a first order variation would reduce the length of W. =

Fix a point p € H® and let r denote the (hyperbolic) radius function on H® centered at
p. The restriction r[; cannot have a local maximum at an interior point of an edge since
W is a least length web, and it does not have one at a vertex by the “balanced” condition
discussed above. It follows that the presentation of m;(H? \ W) associated to r has no

relations. O :

FIGURE 2.1

2.2. Examples of open 3-manifolds with free fundamental group on two generators may
be built using an analogue of Whitehead’s construction [Wh]. Let (Hg); = (H3)i41 be an
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inclusion of a genus two handlebody into the interior of another one, which is homotopic
but not isotopic to the identity map.

FIGURE 2.2

. o0
Let M denote the infinite nested union U(Hz);‘. For Marden’s conjecture to hold, these

i=1 .
manifolds should not admit a hyperbolic structure. This can be proved in many cases by

finding a closed incompressible surface in H? W, showing that my (H® ~ W) is not free.
A technique for finding incompressible surfaces is described below. (See Theorem 2.6.)

It turns out that this method does not always work, since many 3-manifolds have locally
free but not free fundamental group, and hence they do not contain incompressible surfaces.
Recall that a group G is called locally free if every finitely-generated subgroup of G is free.

2.3. Example of 2 locally free but not free group. Let N be a thickening in R?® of the
following infinite 2-complex:

FIGURE 2.3
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w1 (N) is locally free, since the union of a finite number of consequent fundamental
domains has free fundamental group, and these are joined along incompressible annuli.
m1(N) 'is not free, since the loop 7 bounds in N an infinite half-grope, showing that
(7] € (m1(N})w —the w-term of the lower-central series. +y represents a non-trivial element '
of m1 (N}, since a null-homotopy would lie in a compact piece of N; on the other hand, the
w:term of free groups is trivial.

Question 2.4. Give a general geometric method for showing that a fundamental group
is not free. '

Lemma 2.5. Let M be an irreducible non-compact $-manifold without boundary. The
following conditions are equivalent:

(1) m (M) is locally free.

(2) M contains no closed incompressible surface.

(3) M is exhausted by handlebodies.

We will now describe a technique for finding closed incompressible surfaces in non-
compact 3-manifolds.

Theorem 2.6. [F-F] Let C be a curve in the solid torus M = D? x S which is homotopic
but not isotopic to the core {0} x S of M, and let C C D? x R denote its preimage in the
universal cover. Then (D? x R) ~\ C contains a closed incompressible surface.

FIGURE 2.4

In this case, for a genus one handlebody, the existence of a hyperbolic structure is not an
issue, but this is a good test case for finding incompressible surfaces.

Proof of Theorem 2.6. Let M, denote the union of n consequent fundamental domains
in D? x R, with C cut out. Notice that a surface which is incompressible in My, is also
incompressible in D? x R ~ C since m (M,) injects into 7(D? x R \ C) as a factor in
the free product with amalgamation. Let T, denote the boundary of M, —a genus three
surface, pushed slightly into the interior of M,. It will be shown that M, is not a genus
three handlebody for sufficiently large n. This will prove that ¥, does not compress to a
2-sphere and will complete the proof of Theorem 2.6. O

8 A



Note that the argument given below gives n exponential in the complexity of the curve
C in M. An easier argument was later found by C. Gordon and by A. Reid-D. Cooper-D.
Long. ' '

Let T denote the twice-punctured torus shown in FIGURE 2.4 with 8T ¢ (D? x R)~. C.
T and its translates provide (n + 1) non-parallel inicompressible surfaces in M,,. If M,, was
a genus three handlebody, this would give a contradiction for large n with the bounded
case of Kneser-Haken finiteness theorem. (See Theorem 2.7 below.) 0 '

Recall the Kneser-Haken finiteness principle for a closed 3-manifold M: There exists an
integer ¢(M) which bounds from above the number of disjoint closed non-parallel incom-
pressible surfaces in M. The idea of the proof is the observation that the intersection of -
a collection S of surfaces in normal form with each 3-simplex A in a triangulation of M
provides at most six non-product regions of A \ § (FIGURE 2.5). The product regions of
various tetrahedra glue up, modulo the homological correction term, to (surfaces) x I.

This proof does not extend to the bounded case in the absence of the boundary-
incompressibility assumption on surfaces: § N A may contain tunnels providing an un-
controlled number of non-product regions. (FIGURE 2.8.) :

FIGURE 2.5 FIGURE 2.6

W. Sherman [Sh] exhibited arbitrarily many non-parallel incompressible surfaces in
(genus two surface) x I. His example has the property that the complexity of surfaces
increases with their number.

Theorem 2.7, [F-F] Let M be a compact §-manifold with boundary and b .an integer
greater than zero. There i3 a constant c(M,b) such that if S1,...,S5%, k > ¢, 13 a collection
of incompressible surfaces such that all Betti numbers, b1(5;) < b, 1 £1 £k, and no §;,
1 <1 <k, i3 a boundary-parallel annulus or a boundary-parallel disk, then at least two

members of S; and S; are parallel.

Remarks. 1. The bound in the closed case is roughly 6 - (number of tetrahedra in
a triangulation of M), while in the bounded case Theorem 2.7 gives the bound which is

exponential in the complexity of the data.



2. The proof of Theorem 2.6 does not apply to handlebodies of genus greater that one.
The difference is that a free group with more than one generator has exponential growth,
and the number of fundamental domains in the ball of radius R in the universal cover is_
comparable with the genus of the bounding surface.
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Lecture 3. Before formulating a topological approach to the product-end conjecture, we
first recall the observation (essentially contained in [C]) that in order to detect a wild end
of a hyperbolic 3-manifold it suffices to check the infinite-generation condition in Tucker’s
theorem for just one of the “algebraically disk-busting” geodesics:

Lemma 3.1. Let 7 be a simple closed geodesic in an open hyperbolic 3-manifold M satis-
fying ,

(1) [yl =0€ Hi(M;Z>),

(2) no conjugate of v lies in a factor of a non-trivial free product m(M)= A* B,

If M has a wild end, then m{{M ~ v) is infinitely generated.

Remarks. Note that the set of aIgebra.lcally disk-busting (that is, satisfying condition
(2) above) geodesics has full measure in the set of all geodesics ([K],[C]). If a geodesic ~
is not simple, then the arguments below apply to any C!-perturbation of .

The algebraically disk-busting condition for a curve v in a compact 3-manifold N is
equivalent to the condition that -y meets every essential disk in N.

Proof of Lemma 8. 1 Suppose m; (M ) is finitely generated. We will show that the 2-fold
branched cover M ' of M with the branching locus « has ﬁmtely—generated mdecomposable

fundamental group. By a theorem of Gromov and Thurston [G-Th] M then admits a
metric of pmched negative curvature, and Bonahon’s proof [B] extends to this setting to

" show that M _ has product ends. Since branched coverings preserve the structure of ends,
the proof of Lemma 3.1 will be complete once we show that m; (M 7) is finitely generated

and indecomposable.
By the relative Scott core theorem [Mc] there is a compact core C C M \ N{v) with
AN(v) C C, where N(v) denotes a closed tubular neighborhood of C. By assumption (1)

v bounds a surface T in M and M " is constructed by gluing two copies of M ~\ N(Z) to

obtain a double cover M of M \ N(v) and then regluing back N(«). Cores are functorial
under these operations:

&Y c YA
J -
52 Hz
! l

C “—— M~ N(y)

Now the problem is reduced to the compact setting, and as in [C] the equivariant Dehn'’s
Lemma and Sphere Theorem, combined with the assumptions (1), (2) on -, show that

m(C 7) & (M 7) is indecomposable. 0O



Topological Conjecture 3.2. Let M be an open 3-manifold with finitely-generated fun-
damental group and with the universal cover M = R3, and let v C M be a simple closed
curve with m (M ~ 7) mﬁmtely generated. Then (M 7~1(v)) % (R?, standard countable

collection of lines} where w: M — M is the covering projection.

A model for the standard collection above is given by the vertlcal hnes in R? passing
through points of the integral lattice in a horizontal plane.

This topological conjecture implies Marden’s and Ahlfors’ conjectures, since for M hy-
perbolic the preimage in H? of a simple closed geodesic « is standard by Morse theory.

Some evidence for the conjecture is provided by the fact that while in the higher-
dimensional case there are various restrictions that one may impose on an end, such as
m1-stability at infinity or vanishing of Ky-obstruction, the known conditions in dimension
three that restrict wildness already imply the existence of a product structure.

3.3. Various examples of wild ends fna.y be produced by using Whitehead’s construction
[Wh]. (See also [S-T].) - :

Let M = UT,- where T} 2 8! x D? and the embedding T; - Ti4+1 is shown in

i=1

FIGURE 3.1.

o:‘l

FIGURE 3.1

This 3-manifold has the properties that = (M) = Z and the universal cover M = R3, but
M 2 81 x R%. Let v denote the core curve of Tj. An algorithm for drawing the preimage
of v in the universal cover is given in FIGURE 3.2.
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3 fundamental domains of T}

5 fundamental domains of fﬁ and Cﬁa :

- FIGURE 3.2
Let T: denote the preimage of T; in M. One starts by drawing three fundamental domains
of ﬁ. The second step is to draw five fundamental domains of ‘f"g and extend the existing
picture for T} by one (rather stretched) domain to the left and to the right inside T,. The
next step is seven fundgmenta.l domains of T; and an extension of fz and then ﬁ to seven
domains, each inside T3.... Note that each step of the algorithm does not change the
result of the previous step, hence providing an exhausting picture for the universal.cover
M. Tt follows that m (R? \ ¥) is infinitely generated, and the conjecture is true in this
example.

In some cases the fact that a collection of lines in R? is not standard may be detected,
as in Lecture 2, by finding an incompressible surface in the complement, showing that the
fundamental group of the complement is not free. However, there is again a possibility of
a locally free but not free group. '

' Example 3.4. Let M be the infinite-nested union of genus two handlebodies,
oo

M= U(Hz),’, where the inclusion (H3); < (Hz)i4+1 is shown'in FIGURE 3.3.

=1

FiGuRE 3.3
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The map of fundamental groups Z * Z — Z » Z induced by inclusion sends the first factor
isomorphically onto the first factor, and the second factor to the identity element, hence
m1 (M) = Z. Let v denote a curve representing the sum of the two standard generators of

m1{(H2)1)- | -
By M. Brown’s criterion of exhaustion by balls [Br] the universal cover M is R®. The
complement of ¥ in M may be represented as a nested union of handlebodies, hence by

Lemma 2.5, my (H %) is locally free. The fact that it is not a free group may be established
in this example by a rather special argument: by Alexander duality its Abelianization is

isomorphic to the integers.
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