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EMBEDDING OBSTRUCTIONS AND 4-DIMENSIONAL
THICKENINGS OF 2-COMPLEXES

VYACHESLAV S. KRUSHKAL

(Communicated by Ronald A. Fintushel)

Abstract. The vanishing of Van Kampen’s obstruction is known to be nec-
essary and sufficient for embeddability of a simplicial n-complex into R2n for
n 6= 2, and it was recently shown to be incomplete for n = 2. We use algebraic-
topological invariants of four-manifolds with boundary to introduce a sequence
of higher embedding obstructions for a class of 2-complexes in R4.

1. Introduction

By general position any n-dimensional simplicial complex K PL embeds into
R2n+1, while the image of a generic map of K into R2n has a finite number of double
points. By counting double points of an immersion one gets the cohomological
obstruction to embeddability of an n-complex into R2n, introduced by Van Kampen
[12]. He also constructed for each n examples which do not admit an embedding.
An application of the Whitney trick shows that this obstruction is complete for
n > 2 (see [12], [10], [13], [4]). It follows from Kuratowski’s planarity criterion for
graphs [7] that this result also holds for n = 1. The remaining case, n = 2, was
open until recently when the obstruction was shown in [4] to be incomplete.

This paper is centered around the question of embeddability of 2-complexes
in R4, and is motivated by the result of [4]. We define for 2-complexes K with
H1(K;Q) = 0 a sequence of higher embedding obstructions {om(K)}, using Massey
products on the boundary of a 4-dimensional thickening M4 of K. Roughly, Van
Kampen’s obstruction corresponds in this setting to the intersection pairing on
M , modulo the choice of a thickening M . Since different thickenings may give
different Massey products, {om(K)} in general are subsets of the corresponding
cohomology groups; om+1(K) is defined if om(K) contains zero. If K embeds into
R4, then 0 ∈ om(K) for each m. We prove that these higher obstructions detect
non-embeddability of the family of examples introduced in [4] by showing that
om(K) does not contain zero for some m. Our proof uses the result of Conway-
Gordon and Sachs that any embedding of a complete graph on 6 vertices into S3

contains two disjoint linking cycles ([1], [8]).
In the simplest relative case, for the disjoint union of 2-disks with a prescribed

embedding of their boundaries into S3, by a result of Turaev [11] Massey products
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correspond to Milnor’s µ̄-invariants of the link in S3, so our obstructions may be
thought of as an absolute analogue of µ̄-invariants. As in the case of µ̄-invariants
(for example, the Whitehead double of the Hopf link is not a slice link, while
all µ̄-invariants vanish), one does not expect that the entire sequence of obstruc-
tions defined here is complete, although no examples are known at this time. The
question about 2-complexes has an additional subtlety, being in piecewise-linear
category, where embeddings are not necessarily locally flat.

The definition of Van Kampen’s obstruction is recalled in section 2. In section
3 we prove its reformulation in the context of thickenings, and we introduce the
sequence of higher obstructions {om(K)}. We review the examples of 2-complexes
in [4] in section 4, and we compute the obstructions for these examples. Section 5
gives a reformulation of Van Kampen’s obstruction in terms of configuration spaces,
which suggests another approach to defining higher embedding obstructions.

The present study of the embedding problem for 2-complexes in R4 is moti-
vated, in part, by the 4-dimensional topological surgery conjecture, via its (A,B)-
slice reformulation [3]. More precisely, the surgery conjecture is equivalent to the
relative embedding question for a certain family of 4-dimensional handlebodies—
“thickenings” of 2-complexes in the sense of section 3. However, many interesting
examples of these handlebodies have non-trivial first homology, and for this appli-
cation the obstructions {oi(K)} need to be extended to the general case.

2. Van Kampen’s obstruction

In this section we briefly review the definition of Van Kampen’s obstruction;
more details are given in [4]. In 1933 Van Kampen [12] introduced an obstruc-
tion o(K) ∈ H2n

Z/2(K∗;Z) to piecewise-linear embeddability of an n-dimensional
simplicial complex K into R2n. The cohomology in question is Z/2-equivariant co-
homology where Z/2 acts on the deleted product K∗= K×K\∆ of a complex K by
exchanging the factors of K∗ and also acts on the coefficients by multiplication with
(−1)n. The diagonal ∆ consists of all products σ × τ such that simplices σ and τ
have at least one vertex in common. Note that for n even (in particular, in the case
of main interest in this paper, n = 2) the action of Z/2 on the coefficients is trivial,
and o(K) is an element of the ordinary cohomology group H2n(K∗/(Z/2);Z).

Let f be any PL immersion of K into R2n. The obstruction is defined on the
cochain level by counting algebraic intersection numbers of the images of disjoint
top-dimensional simplices of K: of (σn × τn) = f(σ) · f(τ). Here σ × τ is viewed
as an oriented generator of the 2n-th chain group of K ×K \∆. The cohomology
class o(K) of of is independent of the chosen immersion f . Clearly o(K) is trivial
if K embeds into R2n. Shapiro [10] and Wu [13] made this definition precise and
proved, using the Whitney trick, the converse in dimension n greater than 2.

Theorem 2.1 ([12], [10], [13], [7]). For n 6= 2 an n-dimensional simplicial complex
K admits an embedding into R2n if and only if o(K) vanishes.

See [4] for a modern exposition of the proof for n > 2. For n = 1 this theorem
follows from Kuratowski’s planarity criterion. The obstruction in the remaining
case, for n = 2, was shown to be incomplete in [4]. We recall the construction of
examples in [4] in section 4.
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3. Obstructions via 4-dimensional thickenings of 2-complexes

In this section we give a rational reformulation of Van Kampen’s obstruction
o(K) in terms of thickenings of K, and we introduce a sequence of higher embed-
ding obstructions {om(K)} for 2-complexes whose rational first homology vanishes.
Throughout this section all coefficients are Q, unless stated otherwise, and K de-
notes a simplicial 2-complex.

Definition 3.1. A thickening of K is a smooth 4-manifold M with boundary,
obtained by replacing each i-simplex of K with a 4-dimensional i-handle, i = 0, 1, 2.
The attaching map of each 2-handle is required to be isotopic, within the union of
0- and 1-handles, to the attaching map of the corresponding 2-dimensional simplex.

In general, K may have different thickenings depending on the choice of attaching
maps of the 2-handles. For example, S2 × S2 \ 4-cell and the boundary-connected
sum S2 ×D2\S2 ×D2 are both thickenings of S2 ∨ S2.

The intersection pairing on M defines an element ι∈ Hom(H2(M)⊗H2(M),Q).
Let ῑ ∈ H4(K ×K \∆;Q) denote its image under the homomorphism

Hom(H2(M)⊗H2(M),Q) ∼= Hom(H2(K)⊗H2(K),Q)

∼= H4(K ×K) −→ H4(K ×K \∆)

where the last map is induced by inclusion.

Theorem 3.2. The image of the (rational) Van Kampen’s obstruction o(K) under
the homomorphism induced by the quotient map

H4
Z/2(K ×K \∆;Q) −→ H4(K ×K \∆;Q)

coincides with −ῑ.

Proof. Suppose a thickening M is induced by an immersion f : K −→ R4, so
that f extends to an immersion M −→ R4. By subdividing the complex K, if
necessary, one may assume that f(σ) ∩ f(τ) = ∅ for all (open) 2-simplices σ 6= τ
with σ × τ ∈ ∆, and f |σ is an embedding for each σ. Let ōf : C4(K × K) −→
Q denote the extension by zero on the diagonal of Van Kampen’s cochain of :
C4(K×K \∆) −→ Q. It suffices to prove that [ōf ] and −ι define identical elements
in Hom(H2(K)⊗H2(K),Q). Let a, b be two classes in H2(K) and let α = Σαiσi,
β = Σβiσi be their cycle representatives where {σi} is the set of 2-simplices of K.
In order to compute a · b in M , perturb α and β to α̃ and β̃ which intersect each
other transversely (in a finite number of double points). The intersection number
of two cycles f(α̃) and f(β̃) in R4 is trivial. On the other hand, f(α̃) · f(β̃) may be
computed as the sum of two terms: one is the intersection number of α̃ and β̃ in
M , the other is obtained by considering the intersections of f(α̃) and f(β̃) in R4,
which are singular points of f . This last term is equal to ōf (α×β), and this proves

[ōf ] = −ι : H2(K)⊗H2(K) −→ Q.
The restriction of [ōf ] to H4(K ×K \∆;Q) coincides with o(K); thus the result is
proved for thickenings induced by immersions.

In general not every thickening of K may be immersed into R4. Let M4 be an
arbitrary thickening of K and let f : K −→ R4 be any immersion. Again one may
assume that f(σ) ∩ f(τ) = ∅ if σ × τ ∈ ∆, σ 6= τ , and f |σ is an embedding for
each simplex σ. The immersion f extends to an embedding of 0- and 1-handles of
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M . There is an integer obstruction to extending it over each 2-handle, due to a
possible difference in the framing of the 2-handle and of the normal bundle of the
2-simplex in R4. However, each 2-handle may be mapped into R4 as a bundle over
the corresponding 2-simplex, pinched over several points.

The proof, given above in the case of an immersion, carries through, if one
extends of to ōf by setting ōf (σ × σ) to be equal to the difference in framings,
discussed above, and setting ōf (σ × τ) = 0 for all σ × τ ∈ ∆, σ 6= τ .

Remark 3.3. In general the intersection pairing varies within the homotopy type of
a 4-manifoldM . In the example above the intersection pairing on S2×D2\S2×D2 is
trivial, while the pairing on S2×S2\4-cell is non-degenerate. However, Theorem 3.2
shows that the pull-back of the intersection pairing on thickenings to a cohomology
class on K × K \ ∆ is an invariant of K, which coincides with the image of the
(negative) Van Kampen’s obstruction.

As a corollary to the proof of Theorem 3.2, we have the following result.

Lemma 3.4. Let K be a 2-complex such that Van Kampen’s obstruction o(K) van-
ishes. Then there is a 4-dimensional thickening M of K with the trivial intersection
pairing ι = 0 ∈ Hom(H2(M)⊗H2(M);Q).

Proof. Any cochain representative of the obstruction o(K) is given by of for some
immersion f (see [12] or [4]). Since o(K) vanishes, there exists an immersion f :
K −→ R4, giving rise to the trivial Van Kampen’s cochain of = 0. Let M denote
the thickening induced by f . It follows from the proof of Theorem 3.2 that if one
extends of by zero on the diagonal to a cochain ōf on K ×K, then ι = [ōf ] = 0 ∈
Hom(H2(M)⊗H2(M);Q).

Before introducing higher embedding obstructions, we recall the definition of
Massey products. See [6] for proofs and additional properties.

Definition 3.5. Let X be a space, and let α1, . . . , αm be elements in H1(X).
Suppose there is a collection of 1-cochains S = {cij ∈ C1(X)|1 ≤ i ≤ j ≤ m, (i, j) 6=
(1,m)} satisfying

[cii] = αi for each i = 1, . . . ,m,

δcik =
k−1∑
j=i

cij ∪ cj+1,k for i < k.

Then the cochain
∑m−1
j=1 c1j ∪ cj+1,m is a cocycle, and its cohomology class in

H2(X) is called the Massey product of α1, . . . , αm defined by the system S. The
set of Massey products corresponding to all such defining systems is denoted by
〈α1, . . . , αm〉 ⊂ H2(X).

The Massey product of two elements is just a cup product. Note that given
some classes α1, . . . , αm, 〈α1, . . . , αm〉 is not necessarily defined. However, if all
Massey products of less than m elements vanish; then for any α1, . . . , αm ∈ H1(X),
〈α1, . . . , αm〉 is a well-defined element.

The following lemma justifies our definition of higher embedding obstructions.

Lemma 3.6. Let M be a 4-manifold with boundary and with H1(M ;Q) = 0, and
suppose M admits an embedding into R4. Then all Massey products on H1(∂M ;Z)
vanish.
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Proof. Let N denote the complement R4 \M . By Alexander duality, H2(N) and
H2(N) are trivial. The map i∗ : H1(N) −→ H1(∂M) in the cohomology sequence
of the pair (N, ∂M) is an isomorphism, since by assumption and by Poincaré duality
H1(N, ∂M) ∼= H3(N) and H2(N, ∂M) ∼= H2(N) are trivial. Assume inductively
that all Massey products of length less than m vanish for some m ≥ 2; then for any
α1, . . . , αm ∈ H1(∂M) one has

〈α1, . . . , αm〉 = i∗〈(i∗)−1α1, . . . , (i∗)−1αm〉 ∈ H2(∂M).

However, this is the image of an element in H2(N) = 0, and the result follows.

Let K be a 2-complex with H1(K;Q) = 0, and assume o(K) vanishes. Let M be
a thickening of K with trivial intersection pairing (its existence is given by Lemma
3.4). Note that the map H2(∂M) −→ H2(M) is an isomorphism, since by assump-
tion on K, H3(M,∂M) ∼= H1(M) = 0, and the map H2(M) −→ H2(M,∂M) is
trivial by assumption on the intersection pairing.

We now give the definition of higher embedding obstructions. Let a1, a2, a3 be
classes in H2(K), and let α1, α2, α3 ∈ H1(∂M) denote their images under the
isomorphism

H2(K) ∼= H2(M) ∼= H2(∂M) ∼= H1(∂M).

The triple cup product (α1 ∪ α2 ∪ α3)[∂M ] defines a homomorphism H2(K) ⊗
H2(K) ⊗H2(K) −→ Q and an element o3(K,M) ∈ H6(K ×K ×K). The coho-
mology class o3(K,M) depends in general on the choice of a thickening M ; thus
we define the third obstruction o3(K) to be the subset {o3(K,M)} ⊂ H6(K3;Q)
where M is to vary over all thickenings of K with trivial intersection pairing. Note
that if o3(K) is defined and contains zero, then there is a thickening M of K such
that all cup products on H2(∂M) vanish.

Definition 3.7. Define o2(K) to be the Van Kampen’s obstruction o(K). If o2(K)
vanishes, then o3(K) ⊂ H6(K3) is defined as above. Assume by induction that for
some m > 3 there is a thickening M of K such that om−1(K,M) is defined and is
equal to zero (equivalently, the intersection pairing on M is trivial, and all Massey
products on H1(∂M) of at most (m−2) elements vanish). Let a1, . . . , am, be classes
in H2(K), and let α1, . . . , αm denote the corresponding elements in H1(∂M). The
class om(K,M) ∈ H2m(Km;Q) is defined by the homomorphism

H2m(Km) ∼= ⊗m1 H2(K) ∼= ⊗m1 H1(∂M) −→ Q

which sends a1⊗ · · · ⊗am to (〈α1, . . . , αm−1〉 ∪ αm)[∂M ].

Here since all Massey products on H1(∂M) of less than (m−1) elements vanish,
〈α1, . . . , αm−1〉 ∈ H2(∂M) is a well-defined element.

Definition 3.8. The obstruction om(K) is defined to be the subset

{om(K,M)} ⊂ H2m(Km)

where M is to vary over all thickenings such that om−1(K,M) = 0. Note that
om(K) is defined if om−1(K) is defined and contains zero.

Lemma 3.6 implies the following corollary.

Corollary 3.9. Let K be a 2-complex with H1(K;Q) = 0. If K admits an embed-
ding into R4, then om(K) is defined and contains zero for each m.
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In section 4 we show that om(K) does not contain zero for some m for examples
in [4], thus giving another proof that they do not embed into R4.

The relative embedding problem. Let K be a 2-complex with H1(K;Q) = 0,
and let L be a 1-dimensional subcomplex of K with a prescribed embedding φ :
L ↪→ S3. Consider the relative embedding problem: does there exist an embedding
K ↪→ B4 which extends φ? Denote B4∪φ(thickening of K) by M , where thick-
ening is taken in the sense of Definition 3.1. Let Km

L denote the subset in Km

consisting of all m-tuples (x1, . . . , xm) such that xi ∈ L for some i. Assume that
π0(L) −→ π0(K) is injective to have H1(M) = 0. Analogously to the absolute case,
Massey products on ∂M define an element, depending on M , in the relative coho-
mology group H2m(Km,Km

L ). Let om(K,L, φ) denote the set of these elements in
H2m(Km,Km

L ), where M is to vary over all thickenings for which the (m −1)-st
obstruction is zero. If there is an embedding of K into B4, extending φ, clearly
there is a 4-dimensional thickening M which embeds into S4, so 0 ∈ om(K,L, φ)
for each m.

Consider the simplest relative case when (K,L) = (D2q . . .qD2, S1q . . .qS1).
By the result of Turaev [11], the first non-trivial obstruction coincides in this case
with the first non-trivial Milnor’s µ̄-invariants of the link φ(L) in S3. In this sense
the obstructions om(K) may be thought of as an absolute analogue of µ̄-invariants.
However, since 2-complexes in general have a more complicated topology, {om(K)}
have a larger indeterminacy.

4. Examples

First we recall the construction of examples in [4]. Let C denote the 2-skeleton
of the 6-simplex with vertices v1, . . . , v7, with one 2-cell, with vertices v1v2v3,
removed. Take another copy C′ of C, with vertices v′1, . . . , v

′
7, and denote by C the

union of C and C′, identified along their last vertices, v7 = v′7. This 2-complex is
easily seen to admit an embedding into R4 (see [12]). Let γ (resp. γ′) denote the
loop v7v1v2v3v1v7 (resp. v7v

′
1v
′
2v
′
3v
′
1v7) in C.

Denote by F the free group on two generators, and fix a positive integer m. Let
α be an element in Fm, the m-th term of the lower central series of F . We identify
F with π1(γ∨γ′), and we associate to each word in F its “standard” representative
loop in the wedge of two circles γ ∨ γ′. Finally, we construct the 2-complex Kα by
attaching a 2-cell to C along α.

Theorem 4.1 ([4]). Let α be a non-trivial element in Fm for some m ≥ 2. Then
Van Kampen’s obstruction o(Kα) vanishes, but the 2-complex Kα does not admit
an embedding into R4.

We now present a computation of the obstructions {oi(Kα)}. The class m of the
commutator α is reflected in non-vanishing of the obstruction om+1(Kα).

Theorem 4.2. Let α be an element in Fm for some m ≥ 2, and assume α /∈ Fm+1.
Then om+1(Kα) is defined and does not contain zero. In particular, Kα does not
admit an embedding into R4.

Proof. First we construct a thickening M of Kα with trivial intersection pairing and
such that oi(K,M) = 0 for all i ≤ m. The complex Kα is obtained from C = C∨C′
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by attaching a 2-cell along the commutator α ∈ Fm. Van Kampen constructed in
[12] an immersion of the 2-skeleton of the 6-simplex with vertices v1, . . . , v7 into R4

such that the 2-cells with vertices v1v2v3 and v4v5v6 intersect at one point, and all
other simplices are disjoint and embedded. Consider the corresponding embedding
of C, and let M denote its thickening in R4. Clearly the intersection pairing on
M is trivial, and all Massey products on H1(∂M) vanish. Recall that C and C′

have the vertex v7 in common. Consider the handle decomposition of M , given by
thickenings of simplices of Kα in R4. The union of the handles in M corresponding
to all simplices in C, containing v7, is a 4-ball B. The remaining 2-handles are
attached to B along a link L in S3 = ∂B. Each attaching curve is isotopic, within
the union of 0- and 1-handles, to the boundary curve of the corresponding 2-
simplex. There is no 2-cell attached to v1v2v3; however we introduce in S3 a circle,
isotopic to it. Because of the choice of the embedding of K into R4, L is a slice link,
and the curves isotopic to v1v2v3 and v4v5v6 (respectively v′1v

′
2v
′
3 and v′4v

′
5v
′
6) have

linking number one. The remaining 2-cell of Kα is attached along the commutator
of v1v2v3 and v′1v

′
2v
′
3. Choosing appropriately the corresponding curve l in S3, we

get the link L = L∪l such that all Milnor’s µ̄-invariants of L of length less thanm+1
vanish, and a µ̄-invariant of length m+1 of the 3-component link (v4v5v6, v

′
4v
′
5v
′
6, l)

is non-trivial. It is a result of Turaev [11] that the first non-vanishing µ̄-invariant
is equal to the corresponding Massey product on ∂M , where M = M ∪l 2-handle.
(Note that the framings of the components of L are zero, since the intersection
pairing on M vanishes, and we choose the framing of l also to be zero.) This proves
that oi(K,M) = 0 for all i ≤ m, and om+1(Kα,M) 6= 0.

It remains to show that om+1(Kα) does not contain zero. Let M be any thicken-
ing with trivial intersection pairing and with om(K,M) = 0. As above, the union
of the handles in M corresponding to all simplices, containing v7, is a 4-ball B.
By a theorem of Conway-Gordon [1] and Sachs [8] any embedding of the complete
graph on 6 vertices in S3 contains two disjoint linking cycles. Consider the complete
graph on vertices v1, . . . , v6 in C. According to the definition of M , the attaching
curves of the 2-handles in S3 = ∂B are isotopic to the attaching maps of simplices
of Kα. As above, we introduce in S3 a curve isotopic to v1v2v3. Now we have in
S3 a perturbed version of the complete graph on 6 vertices. Since, according to
Definition 3.1, these perturbations take place in the union of 0- and 1-handles, at
least two of the curves must have a non-trivial linking number. Since the intersec-
tion pairing on M vanishes, these two circles are the ones isotopic to v1v2v3 and
to v4v5v6. Similarly we have in S3 another, disjoint copy of a perturbed graph on
v′1, . . . , v

′
6, and two linking circles isotopic to v′1v

′
2v
′
3 and to v′4v

′
5v
′
6. Recall that

there are no 2-handles attached to v1v2v3 or v′1v
′
2v
′
3; however there is a 2-handle

whose attaching curve l is a commutator of these circles. It is easily seen that the
link (v4v5v6, v

′
4v
′
5v
′
6, l) has a non-trivial µ̄-invariant of length m+ 1. As above, this

is translated into non-vanishing of om+1(K,M).

Remark 4.3. The idea of the proof of the fact that any embedding of the complete
graph on 6 vertices in S3 contains two linking cycles ([1], [8]) is conceptually similar
to the proof of Van Kampen that the 2-skeleton of the 6-simplex does not embed
into R4 [12]. In both cases one shows that a certain number is invariant mod 2 for
different maps—in one case, the total linking number, in the other case, the total
number of singular points of an immersion. In this sense our proof of Theorem 4.2
is similar to the proof of Theorem 4.1 in [4].
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5. A note on configuration spaces

In this section we consider an approach to the embedding problem, suggested
by obstruction theory and configuration spaces. We give a reformulation of Van
Kampen’s obstruction in this context, which suggests another approach to defining
higher embedding obstructions. Given a space X , Cm(X) will denote its configu-
ration space of m points:

Cm(X) = {(x1, . . . , xm) ∈ Xm |xi 6= xj if i 6= j}.
In the simplicial category, for a complex K we define

Cm(K) = {σ1 × . . .× σm ⊂ Km | simplices σi, σj

have no vertices in common for i 6= j}.
The configuration space of two points C2(X) is sometimes called deleted product
and is also denoted by X∗. The symmetric groups are denoted by Sm; Sm acts
freely on Cm(K), and on its i-skeleton (Cm(K))i for each i, by exchanging the
coordinates.

A necessary condition for the existence of an embedding Kn ↪→ R2n is the
existence, for each m, of an Sm-equivariant map Cm(K) −→ Cm(R2n). We will
now analyze the first embedding obstruction, corresponding to m = 2; that is, the
obstruction to existence of a Z/2-equivariant map

K ×K \∆ −→ R2n × R2n \∆ ' S2n−1.

The Z/2-equivariant homotopy equivalence above is given by the projection of R2n×
R2n \ ∆ onto the unit sphere in the antidiagonal {(x,−x)} ⊂ R2n × R2n. The
diagonal ∆ in K × K is the “simplicial” diagonal, as defined in section 2, while
∆ ⊂ R2n × R2n is the usual set-theoretic diagonal. Recall that the spaces above
are denoted in short by K∗ and (R2n)∗ respectively.

Theorem 5.1. The obstruction to existence of a Z2-equivariant map K∗−→(R2n)∗

lies in H2n
Z/2(K∗;Z) and coincides with Van Kampen’s obstruction o(K).

Proof. Since K∗ is a (2n)-dimensional CW-complex, the only non-trivial obstruc-
tion group in this setting is H2n

Z/2(K∗; π2n−1(S2n−1)) ∼= H2n
Z/2(K∗;Z).

Let f : K −→ R2n be any immersion. Since f(σ) and f(ν) are disjoint for any
n-simplex σ and any (n − 1)-simplex ν, f × f restricted to the (2n − 1)-skeleton
of K∗ is a Z/2-equivariant embedding into (R2n)∗. Let σ, τ be two n-dimensional
simplices of K and consider σ × τ as an oriented generator of (2n)-dimensional
cellular chains on K∗. The obstruction cochain cf assigns to σ × τ the element

cf (σ × τ) = [(f × f)(∂(σ × τ))] ∈ π2n−1(S2n−1).

The map f × f sends σ × τ into R2n × R2n, and one has

of (σ × τ) = f(σ) · f(τ) = (f × f)(σ × τ) ∩∆R2n = (f × f)(∂(σ × τ)) = cf (σ × τ).

This shows that the homotopy-theoretic obstruction coincides with Van Kampen’s
obstruction even on the cochain level, when the map of (2n − 1)-skeleton of K∗

corresponds to the chosen immersion f . This completes the proof, since the coho-
mology class [cf ] is independent of the choice of a map of (2n− 1)-skeleton of K∗,
being the first non-trivial obstruction.
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Remark 5.2. This result is implicitly contained in [5], [10], [13]. It is interesting
to note that by Theorems 2.1 and 5.1, the existence of a Z/2-equivariant map
K∗ −→ (R2n)∗ is equivalent to existence of an embedding Kn ↪→ R2n for n 6= 2.

We conclude by suggesting the following approach to defining higher embedding
obstructions, which will be pursued in a separate paper. Suppose o(K) vanishes, so
there exists a Z/2-equivariant map K∗ −→ (R4)∗. One may consider the obstruc-
tions to existence of an equivariant, with respect to the free action of the symmetric
group Sm, map Cm(K) −→ Cm(R4), m = 3, 4, . . . . Fadell and Neuwirth [2] have
determined homotopy types of the symmetric products of Euclidean spaces, thus
(rationally) explicitely giving the coefficients of obstruction groups. Note that the
examples in [9] (similar to those constructed in [4]) show that the entire sequence
of such obstructions, arising from configuration spaces, is incomplete.
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