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Outline:

Given an n-dimensional manifold W, a topological arbiter
associates a value 0 or 1 to codimension zero submanifolds of W/,
subject to natural topological and duality axioms.

e Given a manifold W, there may or may not exist an arbiter on W.
e There is a unique arbiter on RP2. Homological arbiters on RP?".

e There exists an uncountable collection of arbiters in dimension 4.
(Proof based on generalized link-slicing problems, Milnor group)

e Arbiters, not induced by homology, also exist in higher
dimensions. (Construction is based on nontrivial squares in stable
homotopy theory)

Motivation: Percolation, 4-dimensional surgery.

Generalization: multi-arbiters
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The concept of a topological arbiter is rooted in Poincaré-Lefschetz
duality, and it may be thought of as an axiomatization of
geometric properties of duality.

Axiomatizing properties of a mathematical structure may lead to a
useful notion interesting in its own right.

A well-known example: H. Whitney's generalization of linear
independence: matroids.
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Given a closed smooth n—manifold W, consider the collection
My of connected smooth codimension zero submanifolds of W.

Definition

A topological arbiter on W is a function A: My — {0,1}

satisfying axioms (1) — (3):

(1) “A is topological”: If M, M’ € My, and M is ambiently
isotopic to M’ in W then A(M) = A(M').

(2) “Greedy axiom”: If M C M' and A(M) =1 then A(M') = 1.

(3) “Duality”: Suppose A, B € Myy are such that W = AU B,
with AN B =0ANOB. Then A(A) + A(B) = 1.
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(1) If M is ambiently isotopic to M’ then A(M) = A(M").
(2) If M € M'" and A(M) =1 then A(M') =1.
(3) If W = AUB, with ANB = ANOB. Then A(A)+A(B) = 1.

It is easy to see that for any n, the n-sphere S™ does not admit a
topological arbiter.

More generally, any manifold W admitting an open book
decomposition does not support a topological arbiter. (However W
may admit a multi-arbiter, discussed later.)

(Odd-dimensional manifolds admit open book decompositions,
simply-connected even-dimensional manifolds (of dimension > 6)
are open books, provided that the signature is zero)
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(1) If M is ambiently isotopic to M’ then A(M) = A(M’).

(2) If M € M'" and A(M) =1 then A(M') =1.

(3) f W = AUB, with ANB = 0ANOB. Then A(A)+A(B) = 1.
A prototypical example: the homological arbiter A;, on RP?.

Given M C RP? define Ay, (M) = 1 if M carries the non-trivial
first homology class of RP?, i.e. if

H(M;Z/2) — H(RP%Z/2) = 7/2
is onto. Set A (M) = 0 otherwise.

The first two axioms are immediate, and (3) easily follows from
Poincaré duality.
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(1) If M is ambiently isotopic to M’ then A(M) = A(M").
(2) If M € M'" and A(M) =1 then A(M') =1.
(3) If W = AUB, with ANB = ANOB. Then A(A)+A(B) = 1.

In fact, Ay, is the unique topological arbiter on the projective plane:

Suppose there is a different arbiter A on RP?, so there is

A C RP? such that A(A) =1 but H1(4;Z/2) — H1(RP?;Z/2)
is the trivial map.

Then by Poincaré-Lefschetz duality the complement B = RP? \ A
carries the first homology of RP2. Since A lies in the complement
of a non-trivial cycle, it is contained in a 2-cell D? c RP2.

It follows from axioms (2), (3) that A(D?) = 0, so by (2)
A(A) =0, a contradiction proving that Ay, is the unique arbiter on
the projective plane.
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Higher-dimensional examples: the homological arbiter on
even-dimensional real and complex projective spaces:

Lemma

(1) Let M C RP?". Define Ay (M) =0 if
H,(M;7/2) — H,(RP*;7/2) = 7,/2 is the trivial map and
Ap(M) =1 otherwise.

(2) Fix a field F' and let M C CP"™, where n is even. Define
Ap(M) =0 if H,(M; F) — H,(CP™ F) = F s the trivial map
and Ap(M) = 1 otherwise.

Then Ay, is a topological arbiter on RP?", and for any F', Ar is a
topological arbiter on CP™.
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Proof. The first two axioms are immediate. To prove axiom (3),
let W = RP?" or CP", let the coefficients F' = Z/2 in the first

case and an arbitrary field in the second case. Consider the long
exact sequences

| i l

H™(W, B) —> H(W) — H"(B)

where the vertical maps are isomorphisms given by
Poincaré-Lefschetz duality. Since H,(W; F') = F it is clear that
precisely one of the two maps H,,(A; F) — H,(W; F),
H,(B;F) — H,(W;F) is non-trivial.
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Consider M = {(M,~)|M is a codimension zero, smooth,
compact submanifold of D", and M N OD?" is a tubular
neighborhood of an unknotted sphere : S~ C §2n~1}.

A local topological arbiter is an invariant 4: M — {0,1}

satisfying axioms (1) — (3):

(1) If (M,~) is ambiently isotopic to (M’,+') in D?" then
A(M,~) = AM',+).

(2) IF (M, 7) € (M,) and A(M, ) = 1 then A(M’,') = 1.

(3) Let D>® = AU B be a decomposition of D?** such that

the distinguished spheres a, 8 of A, B form the Hopf link in
S2n=1 = 9D, Then A(A,a) + A(B,B) = 1.
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Figure : A 2—dimensional decomposition, D?=AUB.

Analogously to the case of RP?, there is a unique local arbiter in
dimension 2.
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Dimension 4: Given a decomposition D* = A U B extending the
standard genus 1 Heegaard decomposition of S = 9D*, by
Alexander duality either (a multiple of) a bounds in A, or (a
multiple of) 8 bounds in B.
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Local homological arbiters on D* (or analogously on D?" for any
n > 1):

Fix a field F' and let (M,~) C (D* dD*). Define Ap(M,~) =1 if
v=0¢€ H{(M;F) and Ap(M) = 1 otherwise.

It follows from the universal coefficient theorem that the arbiter
Ap on D?" depends only on the characteristic of the field F, so
{AF} is a countable collection.

All arbiters discussed so far are induced by homology (with various
coefficients). Focusing on D*, we construct a collection of arbiters
different from the homological ones:
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Theorem (Freedman - K.)

There are uncountably many topological arbiters on D*.
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Theorem (Freedman - K.)

There are uncountably many topological arbiters on D*.

Tools used in the proof: nilpotent embedding obstructions in
dimension 4 (measuring the failure of the Whitney trick), reflected
in particular by the Milnor group.

A general problem: Given two submanifolds

(M, ), (M',~') C (D* 0D*), what are obstruction to disjoint
embedding M, M' into D* so that v, 7' form the Hopf link in
oD*?
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Outline of the proof of the theorem: construction of a tree of
submanifolds with pairwise non-embedding properties:

[ 9
Aoo U Ao1 LJ Aw | T Au | T
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Since the Whitney trick is valid in dimensions > 4, our
construction of (uncountably many) arbiters on D* does not have
an immediate analogue in higher dimensions.

Theorem

To each non-trivial square in the stable homotopy ring of spheres
there is associated a local topological arbiter not induced by
homology on D?" for sufficiently large n. In particular, there exist
local arbiters not induced by homology on D*" for each n > 2.
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Main ingredient: a homotopy-theoretic obstruction to a generalized
link-slicing problem:

For each n > 2 we show that there exist submanifolds

(M, S"=1) c (D*",5?"=1), where S"~! is a distinguished

“attaching” sphere in the boundary of M, such that

(1) for any coefficient ring R the attaching (n — 1)-sphere of M is
non-trivial in H,,_;(M; R), and

(2) The components of the Hopf link S»~1 u S"~1 c §27~1 do
not bound disjoint embeddings of two copies of M into D?".
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(1) for any coefficient ring R the attaching (n — 1)-sphere of M is
non-trivial in H,,_;(M; R), and

(2) The components of the Hopf link S"~1 u S"~1 c §2"~1 do
not bound disjoint embeddings of two copies of M into D?".

The proof of (1) and (2) is based on a “secondary” obstruction to
disjointness where n + 1-cells are attached to S™~! via the
generator of 7['18, n > 3.

To prove the theorem define a “partial” arbiter, setting it equal to
1 on all submanifolds of D?" containing M and equal to zero on
all submanifolds contained in D?" ~. M.

(2) implies that this partial arbiter is consistently defined, and (1)
shows that it is different from any homological arbiter.
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M.Freedman “Percolation on the projective plane” (MRL 1997)

Theorem In the Voronoi model at any level of refinement and at
critical phase, p. = .5, the homological observable on RP? (the
presence of the essential cycle in Hy(RP?;7Z/2)) is conformally
(equivalently metric) invariant. It occurs with probability ¢ = .5
independent of the metric on RP?2.
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Proposition. A topological arbiter satisfying Axioms (1)-(4) is an
obstruction to 4-dimensional topological surgery.

Axiom (4): Suppose A(M',v') =1 and A(M",~";) = 1. Then
A(D(M',M"),~) =1 where D(M', M") is the “Bing double”.

Ml/

Figure : The Bing double of M’, M".
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Definition

( “Poincaré multiarbiters”) Let M be a codimension zero submanifold of
a d-dimensional manifold W. A multiarbiter f associates to M a number
F(M) € {0,...,d— 1}, subject to the axioms:

(1) If M is ambiently isotopic to M’ in W then f(M) = f(M’).

(2) If M C M’ then f(M) < f(M').
(3) Suppose A, B are codimension zero submanifolds such that W =
AUB, with ANB =90AN0B. Then f(A)+ f(B) =d—1.

(4) f(ANB) > f(A) + f(B) — d.
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In each dimension d, the homological multiarbiter on the projective
space RP? may be defined by setting f(A) =maximal k such that
Hy(M;7Z/2) maps onto Hy(RP%7/2). The axioms (3)-(4) follow
from duality and intersection theory.

An example of a non-homological Poincaré multiarbiter on RP3:
Given a codimension zero submanifold M C RP3, set f(M) = 2
iff M contains a standard copy of RP2. Set f(M) = 0 iff M can
be isotoped into a 3-ball. f(1) is defined to be 1 on all other
submanifolds. The duality axiom holds since the complement of
RP? is a ball, and axiom (4) is a consequence of intersection
theory.
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Questions:
e Classification of arbiters and multi-arbiters in dimensions n > 27

e Arbiters for graphs and complexes?



