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e Background: Identities for the chromatic and flow polynomials of
planar graphs from the Temperley-Lieb algebra
(with Paul Fendley '08-09)

e Applications to classical and quantum polynomials of graphs
(with lan Agol '17-18)

e Graphs on the torus: TQFT trace, topological Tutte polynomial,
and the Pasquier model (with Paul Fendley '19 and work in
progress)



The chromatic polynomial is defined by the contraction-deletion
rule: given any edge e of [ which is not a loop,

xr(x) = Xr\e(X) - Xr/e(X)

TN

If I contains a loop then x = 0.

If T has no edges and V vertices, then x(x) = xV.



The chromatic polynomial was defined by Birkhoff in 1912 as a
way to approach the 4-color conjecture.

If the parameter is a positive integer n, the value of the chromatic
polynomial x(n) of I' at n is the number of colorings of the
vertices of I" with n colors, so that no two adjacent vertices have
the same color.

o Contraction-deletion: X(x) = Xp\.(x) = Xr/e(X)

e If ' contains a loop then x = 0.

o If T has no edges and V vertices, then x(x) = x".



Chromatic - flow duality:

For (connected) planar graphs I,

Fr() = ()

where F- is the flow polynomial. T'* is the dual graph.



The flow polynomial Fr(x):

Given any edge e of I' which is not a bridge,
Fr(x) = ]:r/e(X) - fl—\e(X)

If I contains a bridge then F = 0.

If I has a single vertex and n loops, then F(x) = xV.

For x € Z, F(x) counts non-zero x-flows on I



For (connected) planar graphs I

Fol) = - xre(x)

X
where [* is the dual graph.

The chromatic and flow polynomials are one variable

specializations of the 2-variable Tutte polynomial Tp-(x,y):
(up to a normalization)

xr(x) = x“M Te(1-x,0), Fr(x) = Tr(0,1-x).

For planar graphs

TF(Xay) = TF* (y,X)



W.T. Tutte (1969), Relation I:

The golden identity: for a planar triangulation T,

X7(6+2) = (¢+2) ¢* V(D0 (x (¢ +1))2,

where V/(T) is the number of vertices of the triangulation.

1S

. 14+
¢ denotes the golden ratio, ¢ = =5

Corollary. For a planar triangulation T, x (¢ +2) > 0.

(¢ + 2~ 3.618...)



W.T. Tutte (1969), Relation II:

Xz, (6 +1) +Xxz,(6+1) = ¢ >[xy, (¢ + 1) + Xy, (¢ + 1)],

where Y;, Z; are planar graphs which are locally related as follows:

xalivolisvilioy



W.T. Tutte (1969), Relation IlI:

Let 7 be a planar triangulation with V' vertices. Then

IxrT(p+ 1) < ¢> Y

In the 1970s Beraha experimentally observed that real zeros of the
chromatic polynomial of large planar triangulations seem to

accumulate near Beraha numbers B, =2 + 2 cos (27”) specifically
near Bs = ¢ + 1.

The Beraha conjecture (that this is the case) is open.



W.T. Tutte (1969), Relation IlI:

Let 7 be a planar triangulation with V' vertices. Then

IxrT(p+ 1) < ¢> Y

L. Fidkowski, M. Freedman, Ch. Nayak, K. Walker, Z. Wang,
From String Nets to Nonabelions, CMP (2009):

A sharper bound for large regions of the hexagonal lattice, using
shadow evaluation.



The flow polynomial (or dually the chromatic polynomial) of planar
graphs is a common specialization of several invariants:

e The flow polynomial of abstract graphs

e The Yamada polynomial of spatial graphs in R3

e The trace evaluation in SO(3) TQFTs of graphs on a closed
surface Yz. (Parameter = root of unity)

e The “topological flow polynomial” of graphs on a surface 3.



The chromatic algebra CQ consists of C-linear combinations of
(isotopy classes of ) planar graphs G in the rectangle R with n
endpoints at the top and n endpoints at the bottom of the
rectangle, modulo local relations:

G Gle G\e



Figure: Examples of graphs in Cs.
The trace, tr,: CQ — C is defined on additive generators
(graphs) by connecting the endpoints by arcs in the plane and

evaluating

Q- Xe+(Q)-

TrI:X:

Figure: The trace = (Q — 1)*(Q — 2).




The Hermitian product on the chromatic algebra:

(a, b) = tr(ab)
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Consider the algebra homomorphism to the Temperley-Lieb
algebra:
¢ C8 — TLY,,

where Q = d?:

0] 1 U )

e = -3 ﬂ — d
The factor corresponding to a k—valent vertex is d(k=2)/2,



® is well-defined:

d% = d3/2 — d1/2



The map & is trace-preserving:

cQ %~ T1d

ltrx l try

C——C

For example, for the theta-graph G,



The expansions of @1 xo(G*), ®(G) where G is the theta graph.



The map & is trace-preserving:

cQ %~ T1d

ltrx l try

C——C

Trace radical: {a|(a, b) =,0 for all b}.

It follows that the pullback of the trace radical in TLY to Cff2 is in
the trace radical of the chromatic algebra.

The trace radical in the TL algebra is non-trivial for

d:2cos<7rj>;
n+1

at this value it is generated by the Jones-Wenz| projector p,.



Recall Tutte's linear relation at ¢ + 1:

Xz (0 + 1)+ xz,(@+1) =0 3[xy, (¢ + 1) + Xy,(¢ + 1)]

RS s s Sy

Proof that the relation
Zi+2 = ¢ [V1+ Vs

holds in the chromatic algebra CS’H:



Zi4+2 = ¢3[Vi+ Yol

> X \/
z 2 %

N

® maps the dual of Tutte's relation to the 4-th Jones-Wenz!
projector (at d = ¢):

-2l = (04 N Z21 X
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Figure: A generalization of Tutte's relation for the chromatic polynomial

at Q:2+2cos(

27j

n+1

).



Theorem
For a planar triangulation G,

Ye(6+2) = (0+2) 9* VO (g + 1))
where V(G) is the number of vertices of G.
Idea of the proof (Fendley - K., 2008): Construct a map
V.2 9 R COTY/R
and apply the trace:

C¢+2 . C¢+1/R ® C¢+1/R

| |

C — C




V2 5 ¢ R CPTY/R

K00 (0 (@

Figure: Relations defining the chromatic algebra.

Key calculation:

Figure: The image under W of the first relation.



More conceptually, the golden identity
xe(¢+2) = (6+2) ¢* V(O (xa(o + 1))
is related to level-rank duality:

S50(3)4 and SO(4);3 theories are isomorphic; s0(4) = s0(3) x s0(3),
and SO(4);3 splits as a product of two copies of SO(3)3/».

The partition function of an SO(3) theory is given by the chromatic
polynomial: x(¢ + 2) for SO(3)4 and x(¢ + 1) for SO(3)3/».



More conceptually, the golden identity

xg(¢+2) = (6+2) $* V(O (xa(e + 1))
is related to level-rank duality:

S50(3)4 and SO(4);3 theories are isomorphic; s0(4) = s0(3) x s0(3),
and SO(4);3 splits as a product of two copies of SO(3)3/».

The partition function of an SO(3) theory is given by the chromatic
polynomial: x(¢ + 2) for SO(3)4 and x (¢ + 1) for SO(3)3/».

A related observation for knots:

Scott Morrison, Emily Peters, Noah Snyder, Knot polynomial
identities and quantum group coincidences (2011):

7i/10

The 2-colored Jones polynomial of a knot at e equals the

square of the Jones polynomial at emi/s,



Recall Tutte's inequality: for a planar triangulation T with V
vertices,

Ix7(p+1) <> V.

Theorem (Agol-K.) Given a planar triangulation T, let x be either
a Beraha number B, = 2+ 2 cos(2m/n) or a real number > 2.
Then

Tl < x(x = 1)(x = 2)72.

Tutte's inequality is the case Bs = ¢ + 1.



Outline of the proof: Use induction to reduce to 4-connected
planar triangulations.

e A

By Whitney's theorem any 4-connected planar triangulation has a
Hamiltonian cycle. Cut along the cycle to get two outer planar
triangulations, and use the Cauchy-Schwarz inequality

1, 0] < ()2 (y, y)2



Question: To what extent do Tutte relations detect planarity?

There are non-planar graphs satisfying the chromatic golden
identity:

X7(0+2) = (¢+2) ¢* V(10 (x (¢ + 1))2,

Figure: A non-planar graph G satisfying the chromatic golden identity



The chromatic golden identity: Given a planar triangulation T,

Xr(d+2) = (¢ +2) 6>V (x (¢ +1))2

The flow golden identity: Given a planar cubic graph G,

Fe(¢+2) = ¢F (Fg(¢+1))%



The chromatic golden identity: Given a planar triangulation T,

Xr(d+2) = (¢ +2) 6>V (x (¢ +1))2

The flow golden identity: Given a planar cubic graph G,

Fe(¢+2) = ¢F (Fg(¢+1))%,

Conjecture (Agol-K.) For any trivalent graph G,

Fo(o+2) < ¢F (Fglo+1))%,

Moreover, G is planar if and only if equality holds.



The chromatic golden identity: Given a planar triangulation T,

Xr(d+2) = (¢ +2) 6>V (x (¢ +1))2

The flow golden identity: Given a planar cubic graph G,

Fe(¢+2) = ¢F (Fg(¢+1))%,

Conjecture (Agol-K.) For any trivalent graph G,
Fo(¢+2) < 65 (Fglo+ 1)),
Moreover, G is planar if and only if equality holds.

There is extensive computer evidence. (Thanks to Gordon Royle!)



Represent a cubic graph in (; as a linear combination of basis
elements:

A consequence of the conjecture: at Q = (3 —v/5)/2,

(1+3¢)ap < v(a+B8+7).



The Yamada polynomial R(q) is an invariant of ribbon graphs
embedded in R3. It is defined by the relations:

e The SO(3) Kauffman Skein relations: \O =qg+1l+q1,

=) - X =
Xe ) [ - X

e The contraction-deletion rule



The Yamada polynomial R(q) is an invariant of ribbon graphs
embedded in R3.

e For planar graphs G it coincides with the flow polynomial:

R(q) = Fr(Q), where @ = g+1+q 1.

e Closely related to the SO(3) Kauffman polynomial of links and
graphs.

e For non-planar graphs the Yamada polynomial carries a lot of
information about the knotting in 3-space, so in general (for
non-planar graphs) it is very different from the flow polynomial.






Let G be a cubic graph with V vertices and E edges; ¢ = 1+2\/g.

Theorem (Agol-K., 2017)
A quadratic identity for the Yamada polynomial of cubic graphs:

RG(ewi/5) — (_1)V7E ¢E RG(ef27ri/5)2‘



Let G be a cubic graph with V vertices and E edges; ¢ = 1+2\/g.

Theorem (Agol-K., 2017)
A quadratic identity for the Yamada polynomial of cubic graphs:

RG(ewi/5) — (_1)V7E ¢E RG(ef27ri/5)2‘

This is an extension of the Tutte golden identity for the flow
polynomial of planar cubic graphs:

Fo(¢+2) = ¢F Fe(o+1)%



Let G be a cubic graph with V vertices and E edges; ¢ = 1+2\/§.

Theorem (Agol-K., 2017)
A quadratic identity for the Yamada polynomial of cubic graphs:

RG(ewi/5) — (_1)V7E ¢E RG(ef27Ti/5)2'

Compare with the Conjecture (Agol-K.): For any cubic graph G,

Fe(¢+2) < ¢F Fg(o+1)%

Moreover, G is planar if and only if this is an equality.



Question (David Treumann, Eric Zaslow):

Let P(n) be the set of polynomials that can occur as the chromatic
polynomial of a planar map (triangulation) with n countries. What
is known or conjectured about the growth of |P(n)|?



Question (David Treumann, Eric Zaslow):

Let P(n) be the set of polynomials that can occur as the chromatic
polynomial of a planar map (triangulation) with n countries. What
is known or conjectured about the growth of |P(n)|?

Answer (Agol - K., 2018): Exponential in n.

This may be thought of as an application of the Tits alternative for
free semigroups for the chromatic algebra.



An explicit free semi-group in the chromatic algebra C3¢Jr1
generated by A, B:

CH I

A, B acts on the 2-dimensional subspace spanned by

U 9,

Ei = m E = m



The action of A, B on this 2-dimensional space is represented by
the matrices

= -0 _ [—¢? 0}
A‘[o —A’B‘Lﬁ 5

A, B generate a free sub-semigroup.



Figure: The flow polynomial of the pictured graph at (3 — 1/5)/2 equals
(A'B%ey, ).



The flow polynomial (or dually the chromatic polynomial) of planar
graphs is a common specialization of several invariants:

e The flow polynomial of abstract graphs

e The Yamada polynomial of spatial graphs in R3

e The trace evaluation in SO(3) TQFTs of graphs on a closed
surface Yz. (Parameter = root of unity)

e The “Topological flow polynomial” of graphs on a surface ¥,.



Planar graphs:
Loop evaluation,
The flow polynomial,

Partition function of the Potts model

Graphs on the torus:
The trace evaluation in SO(3) TQFTs,
Topological flow polynomial,

Lattice models



Graphs on the torus:
The trace evaluation in SO(3) TQFTs.

Given a closed orientable surface ¥, V,(X) is the SU(2), level r —2
TQFT vector space (constructed by Blanchet, Habegger,
Masbaum, Vogel).

In this talk: ¥ = torus T.
Consider T as the boundary of a solid torus H. V, has a basis

{eo, e er_2}, where e; corresponds to the core curve of H,
labeled by the JW projector p;.

=



A multi-curve v in X acts as a linear operator on V,(X), so
associated to 7y is an element of V}(X) ® V,(X). (May be thought
of as an element of the Turaev-Viro theory.)

Given a multi-curve v C T, the trace tr,(7) is defined as
Z,(T x St,), the SU(2) quantum invariant of the banded link ~
in the 3-manifold T x S. (Modular invariant)

Concretely, tr,(+y) can be calculated as the trace of the curve
operator in Hom(V,, V,) with respect to the usual basis. For
example, in Vs:

J
p
_ | sin(2(j+1)7/5)
ﬁ = [ sin((+1)7/5) ] @

[

k



The trace of k non-trivial loops with label 1 on the torus equals

trg = ¢f + (=)



Graphs on the torus are labeled with the 2nd JW projectors, and so
are considered as linear combinations of multi-curves:

L I NP ey
X

The factor corresponding to a k—valent vertex is dk=2)/2,

@
Q=

Using this map, graphs G on the torus give rise to elements
®(G) € Hom(V,, V;).



=207 =2+ (3P +2 = 5 +2



Considered as elements of Hom(V,, V,), graphs in T satisfy local
relations:

G G/

. = | -
NN
=(Q-1)- A /}\ =0.

and the local relation corresponding to the JW projector p,_1, for
example for r = 5:

G\e



The "topological flow polynomial” (motivated by the
Bollobas-Riordan polynomial):

PG(Y, W,A) — Z (71)E(G)7E(H) Yn(H) WE(H) AS(H)7
HCG

where the summation is taken over all spanning subgraphs of G.

> +2 > +

For k non-trivial loops, the polynomial equals (YW — 1).

= Y2W2 -2YW +1 = (YW — 1)



Given a graph G C T, consider

RS(G) = PG(¢27 17¢_2) + PG(¢2>¢_4a¢_2)

Theorem. (Fendley - K.) Given any graph G C T, the SO(3)
TQFT trace evaluation trs(G) at Q = ¢ + 1 (corresponding to
q = €*™/%) equals Ry(G).

More generally:

r—2

R.(G) := Z 'DG(d2v Wi.r, d_z)v
j=0

o sin(2(j + 1)m/r)
PE sin((+ D /r)

The trace evaluation of G at g = e*™/" equals R,(G).




Theorem. (Fendley - K., 2019) Let G C T be a trivalent graph.
Then
Rio(G) = ¢ Rs(G)?,

where E is the number of edges of G.

The proof of is by induction on the number of edges of the cubic
graph G, using the theorem of Negami that any two
quasi-triangulations of a surface are related by diagonal flips.




Vincent Pasquier, Lattice derivation of modular invariant partition
functions on the torus, J. Phys. A: Math. Gen., 20 (1987).

Given a graph G on the torus, the partition function is of the form

y —1\EGI-IVI
Ze="Co ) (d) Ts

SCG

where Ts is a topological weight.

To relate to the usual Tutte polynomial notation,
(x —1)(y — 1) = Q = d?. The original Pasquier model defined in
the self-dual case, y —1=x—-1=d

To define the topological weight Ts, consider labelling of the
clusters (connected components) of S and the dual S, with the
labels determined by the Dynkin diagram. (Adjacent clusters have
heights which are connected by an edge in the Dynkin diagram.) In
the SU(2) case, the heights take integer values 0,...,r — 2.



The topological weight is given by the sum over all height
configurations,
Ts = S w(P(S), {h))
{h}
The weight w(P(S),{h}) for a height configuration is determined

by the components of the eigenvector of the adjacency matrix for
the largest eigenvalue.

Conjecture/Work in progress with Paul Fendley:

At roots of unity, the partition function of the (generalized)
Pasquier model equals the SO(3) TQFT trace evaluation, and the
sum R, of evaluations of the topological flow polynomial.

Higher genus?



Question Analogue of the golden identity on surfaces of higher
genus?

Conjecture (Agol-K.) For any trivalent graph G,
Fe(o+2) < ¢F (Felo+1))3,
Moreover, G is planar if and only if equality holds.

Conjecture (Beraha) Real roots of large planar triangulations
accumulate near ¢ + 1. (More generally, real roots accumulate
near Beraha numbers B, = 2 + 2cos(2m/n).)

Conjecture (Birkhoff-Lewis) The chromatic polynomial of
(loopless) planar graphs is positive for x > 4.
(Known for x =4 and x > 5.)



This talk is based on:

Fendley - K. "Tutte chromatic identities from the Temperley-Lieb
algebra" arXiv:0711.0016

Agol - K. “Tutte relations, TQFT, and planarity of cubic graphs’
arXiv:1512.07339

Agol - K. “Structure of the flow and Yamada polynomials of cubic
graphs’ arXiv:1801.00502

Fendley - K. “Topological quantum field theory and polynomial
identities for graphs on the torus”, arXiv:1902.02760
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